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ABSTRACT

Recently several triazine derivatives were identified as excellent cytotoxic agents against non-small cell lung
carcinoma by our group. QSAR model for prediction of biological activity of triazine derivatives against non-small
cell lung carcinoma cell line (A549) is needed to construct selective inhibitors for lung cancer. Twenty four models
were constructed using genetic function approximation algorithm. The best of these models was chosen based on its
statistical validation parameters where the R? value was found to be acceptable (0.98).The developed model was
based on four molecular descriptors, two fast descriptors and two VAMP electrostatics descriptors. External
validation of the model was governed by calculating the residual values for test set. Further external validation is
investigated by calculating the biological activity of four new triazine derivatives synthesized by our group in a
previous contribution from our laboratory. Our developed model is proved to have high predictive and diagnostic
abilities and can distinguish different sterecisomers. The accuracy of the 3D structures used affects the model
quality.
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INTRODUCTION

A major breakthrough in the field of quantitativieusture activity relationship (QSAR) of triazinas anticancer
agents was achieved by Hansch in 1975 [1]. He dpeel a QSAR model correlating the biological atfiaf a set

of 256 compounds of triazines synthesized by Bakgroup [2] to their chemical structures. Afterwaeleral
QSAR studies for triazines were developed [3-10hgato the importance of this class of compoundsiaZines
have a wide range of biological activities[11]indilng, anti-microbial [12], antifungal [13] , antifaaial activity
[14], antiviral activity [15]and cytotoxic activif§6-18].Several studies based on the triazine skhffoward
antitumor activity have been carried out[19, 20}stg by Baker who studied active site-directedaeversible
inhibition of dihydrofolatereductase (DHFR) enzy2je[Hexamethylmelamine (HMM) is 1,3,5-triazine dextive
and is used clinically as antitumor agent againstg] ovarian and breast cancers[21]. Hydroxymethyl
pentamethylmelamine (HMPMM) is the hydroxylated afetlite and is the major active form of HMM [21].

Dihydrofolatereductase (DHFR) enzyme is responditmesynthesis of tetrahydrofolate (THF) which is@factor
necessary for DNA synthesis. Repressed expres$i@HBR induces cell cycle arrest in human cell lwancer
(A549)[22]. Methotrexate (MTX) is reported to bénatally useful DHFR inhibitor[23] and is frequentlised in the
treatment of cancer [24]. The antitumor activitpnesented as kgbf MTX was determined in 6 different cancer cell
lines and was in an extensively broad range frddrV to more than 1,000 nM. The osteosarcoma (3a0kss,
>1,000 nM) and breast cancer (MCF-7) {3€114.31 nM) cells were the most resistant to MTiXcbntrast, the
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gastric cancer (AGS) and colon cancer (HCT-116sagkre highly sensitive to MTX with Kg of 6.05nM and
13.56nM respectively. The two non-small cell lurancer cell lines, (NCI-H23) and (A549) cells denteaited
similar sensitivity to MTX with 1Gy = 38.25nM and 38.33 nM respectively[25].

According to the world health organization (WHOeh are more than 100 types of cancers and anyopéne
body can be affected. Lung cancer is one of thetroauses of the majority of cancer deaths all dverworld.
Worldwide, the five most common types of canceoider of frequency that kill men are lung, stomadrer,
colorectal and esophagus. For women they are bfaagt stomach, colorectal and cervical [26].

Recently, synthesis of new triazine derivativeshwémarkable antitumor activity against non-smaell king cancer
was achieved in our laboratory[27].Consequently, deeided to explore the relationship between thenttal
structure and cytotoxic activity for triazines atnhizine analogs against lung cancer by constrgaimew QSAR
model to provide useful information on the struatuequirements for anticancer activity against-somall cell lung
carcinoma (A549) which could lead to potent drugdidates as well as better prediction of biologmetivity of
novel non classical anticancer compounds.

MATERIALSAND METHODS

Biological activity data:

Our data set comprised of 43 compounds. The cl@mtiuctures of 1,3,5-triazines and triazine agslare shown
in Figure 1 while their anticancer activities exgsed as 16 against non-small cell lung carcinoma cell lin4A)

are listed in Table 1 [19, 20, 28].The training seprised of 32 compounds including methotrexata eeference
compound because binding of triazine derivativeBi-R mimic that of MTX [29]. The remaining 11 commnds

constituted the testing set including HMPMM. Thislestion considered the fact that the test molecuheist
represent a range of biological activities simitathat of the training set [30]. The logarithmlIG%, (log1/1Gsg) was

used as dependent variable to develop the QSARImsitegy Accelrys® Materials Studio (MS5.0) softw#Bd].
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Figure 1.Chemical structuresof 1,3,5-triazinesand triazine analogs that wer e extracted from three different literature sources after
comprehensive and car eful survey of literatureto develop a statistically significant QSAR model

Table 1.Chemical and biological activity data of the training and test sets of series A, B and C compounds against non-small cell lung
carcinoma cell line (A549) [19, 20, 28]

Chemical and biological activity data of series (A) compounds[19]

Entry R n ICs0(UM)
1. H 1 0.0402
2. F 1 0.0588
3. a Cl 1 0.0271
4, NO, 1 0.0658
5. Me 1 0.0481
6. t-Bu 1 0.1599
7. MeO 1 0.0591
8. @ CN 1 0.0607
9. CH;CO 1 0.0598
10. H 2 0.0697
11 F 2 0.0592
12. Cl 2 0.0496
13 a NO, 2 0.3293
14 @ Me 2 0.0833
15 t-Bu 2 0.4956
16 MeO 2 0.0516
17. CN 2 0.1164
18. @ CHs;CO 2 0.1448
19. SO:NH; 2 0.1664
20. Methotrexate (MTX)(reference compound) 0.0374
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Chemical and biological activity data of series (B) compounds[20]

Entry R R; isomer ICs¢ (LM)
21. 4-Methoxy N-methylpiperazinyl dl, cis 6.30
22. a 4-Methoxy N-methylpiperazinyl dI, trans 5.83
23. 3,4,5-Trimethoxy N-methylpiperazinyl dI, trans 5.67
24. 3,4,5-Trimethoxy N-methylpiperazinyl dl, cis 9.84
25. a 4-Methoxy N-methylpiperazinyl |, cis 3.13
26. 4-Methoxy N-methylpiperazinyl |, trans 2.1
27. 4-Isopropyl N-methylpiperazinyl |, cis 1.75
28. 4-Isopropyl N-methylpiperazinyl |, trans 1.76
29. a 4-Methoxy N-ethylpiperazinyl |, trans 1.61
30. a 4-Methoxy N-propylpiperazinyl |, trans 1.67
3L 4-Methoxy N-methylpiperazinyl d, cis 11.46
32. 4-Methoxy N-methylpiperazinyl d, trans 3.00
33 -H N-methylpiperazinyl d, cis 8.62
34. -H N-methylpiperazinyl d, trans 3.21
35. a 4-Methyl N-methylpiperazinyl d, trans 2.34
36. 4-Chloro N-methylpiperazinyl dI, trans 6.55

Chemical and biological activity data of series (C) compounds[28]

Entry R; X ICs¢ (LM)
37. 4-methylmorpholino N 7.0
38. 2,2 ,A-trimethylmorpholino N 6.5
39. trans 2,3,4-trimethylmorpholino N 6.8
40. cis 2,3,4-trimethylmorpholino N 4.1
41. trans 2,3,4-trimethylmorpholino C 54
42. cis 2,3,4-trimethylmorpholino C 3.1
43. @ Hydroxymethylpentamethylmelamine (HMPMM) 83

& Test compounds
Geometry
optimization:

3D Structures were drawn and geometry optimizechgushe ChemAxon® MarvinSketch 5.1.4 [32]. These
structures were further geometry optimized using Yfienna ab-initio Molecular dynamics Package (VAMP
module [33]. Different algorithms were used to gikie best output structure energy.

Alignment of molecules:
The consensus flexible alignment was done in matd X axis using the root mean square (RMS) Vidhd fit
method by employing a combination of steric andtetestatic field.

Building a QSAR model:

Genetic function approximation (GFA)[34], a statiat modeling algorithm, was used to build the nlaggng the
most simplest fast descriptors which either oneedlisional (1D) or two dimensional (2D) and the mummhplex
three dimensional (3D) atomistic descriptors, VAMIBctrostatics, spatial descriptors and for citergetics [35].
GFA was employed to search for the best possiblaR®gression equation capable of correlating diréations in
biological activities of the training compounds hvivariations in the generated descriptors, i.e.ltiple linear
regression modeling (MLR). GFA method was used @oycout both data reduction and parametric regress
simultaneously. The equation length was set to nmakaber of variables do not exceed one third to fidtiethe
number of data points. GFA parameters include adjmrd number and scoring function. Population wetse 500,
maximum generations were set to 10000, numberpétmations returned was set to 8 and constantieguangth
of 5, scoring function Friedman LOF, scaled LOF sthoess parameter of 0.5, mutation probability df &nd
using both linear, quadratic and spline functiansittain the best equation.

Validating the model:

All constructed models were validated using theortgd validation parameters[36-39]. These paramméteriude
Friedman lack of fit (LOF), the squared correlatiomefficient (R), adjusted R cross validated R(CV) and
significance of regression (SOR) F-values of tfaning set in addition to Rvalue of the test set. Scaled LOF
smoothness parameter was set to default of 0.5.

RESULTSAND DISCUSSION
Development of statistically significant QSAR modidpends mainly on careful selection of data set us

building the model [40, 41]. Consequently the madiable and representative data set was extrdobaa three
different literature sources [19, 20, 28] aftempwehensive and careful survey of literature.
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Some descriptors, such as the dipole moment compmndepend on having all the molecules in the same
alignment. The alignment of compounds involved imiststudy is achieved using flexible alignment.

GFA was selected to construct the QSAR models secthis approach has a number of important advastager
other algorithms that utilize multiple linear regs®n (MLR), partial least squares (PLS) and neustlvork
analysis [38]. These advantages include; buildindtiple models rather than a single model, autarably

selecting which features are to be used in the m@tie most important step in QSAR studies) , bete
discovering combinations of features that take athge of correlations between multiple featuresdiporates
Friedman's LOF error measure which estimates th&t engpropriate number of features), resists ovéndi and
allows control over the smoothness of fit [38, 42]. Moreover it can use a larger variety of equaterm types in
construction of its models (for example, splinggpsfunctions, or high order polynomials). Finaliyprovides,
through study of the evolving models, additiondbimation that is not available from standard regi@n analysis,
such as the preferred model length and usefultjpaugi of the data set [41].

Twenty four models each contain eight equationsewenstructed. No good model can be built usingclEement
fast descriptors only because they are either omergional (1D) or two dimensional (2D) and theg awot

geometry-dependent. The accuracy of the 3D strestused (i.e., the bond angles, etc.) will afféet model
quality. Inclusion of 3D shape descriptors in thedel lead to improved descriptions relating comgysarameters
to biological activity which revealed that stereewstichal parameters have a remarkable effect orodal

activity. The best generated model was based onrfmlecular descriptors, two fast descriptors amd YAMP

Electrostatics descriptors. Equations and involasalecular descriptors and their physicochemical mimep are
given in Table 2.

Table 2. The developed QSAR model, equations and molecular descriptors

Equation

Equation

@

Y = -31.658446473 * X37
+0.003324167 * X74
+0.108327040 * ramp(X13 - 30.996253036)

- 0.866099800 * (ramp(X18 - 1.578054048)) ()

+740.952842524 * (ramp(X18 - 3.193861285
+ 2.638204064

Y = - 31.718039989 * X37

+0.003330155 * X74

+0.108402634 * ramp(X13 - 30.919103344)

- 0.759090066 * (ramp(X18 - 1.473600396))

+ 765.668152326 * (ramp(X18 - 3.195387969))
+2.638472161

@

Y = -31.658446473 * X37
+ 0.003324167 * X74
+0.108327040 * ramp(X13 - 30.996253036)

+ 740952842524 * (ramp(X18 - 3.193861285 (©)

- 0.866099800 * (ramp(X18 - 1.578054048))
+ 2.638204064

Y = - 31.718039989 * X37

+0.003330155 * X74

+0.108402634 * ramp(X13 - 30.919103344)

+ 765.668152326 * (ramp(X18 - 3.195387969))
- 0.759090066 * (ramp(X18 - 1.473600396))
+2.638472161

®

Y = -31.658468036 * X37
+0.108326746 * ramp(X13 - 30.996253036)
+0.003324232 * ramp(X74 + 197.695990383

+ 740958760509 * (ramp(X18 - 3.193861285 (/)

- 0.866105350 * (ramp(X18 - 1.578054048))
+1.981014867

Y = - 31.674135306 * X37
+0.108386588 * ramp(X13 - 30.996253036)
+0.003326166 * ramp(X74 + 197.695990383)
-0.758573593 * (ramp(X18 - 1.473600396))
+765.258709111 * (ramp(X18 - 3.195387969))
+2.001029408

4

Y = -31.658468036 * X37
+0.108326746 * ramp(X13 - 30.996253036)
+0.003324232 * ramp(X74 + 197.695990383

- 0.866105350 * (ramp(X18 - 1.578054048)) (&)

+ 740.958760509 * (ramp(X18 - 3.193861295
+1.981014867

Y = - 31.674135306 * X37

+0.108386588 * ramp(X13 - 30.996253036)
+0.003326166 * ramp(X74 + 197.695990383)
+765.258709111 * (ramp(X18 - 3.195387969))
-0.758573593 * (ramp(X18 - 1.473600396))
+2.001029408

Where, Y: log (1/1Csp)

X37: N2 (3): Mulliken charge (VAMP Electrostatics)
X13: Subgraph counts (1): path (Fast Descriptors)
X74: Octupolexxz (VAMP Electrostatics)

X18: Chi (3): cluster (Fast Descriptors)

Fast descriptors are Sub graph counts (path) andcCister). They are topological indices which éd®n graph
theory concepts [43]. They help to differentiatelesales according to their size, degree of brarg;hilexibility,
and overall shape. topological indices were fisgdiin QSAR studies of triazines as DHFR inhibitar2006 [9].

VAMP Electrostatics descriptors are Mulliken chafgé] and Octupolexxz electrostatic moment compt30].
The VAMP module [45] allows to predict geometriémats of formation, and a host of molecular proesrt
including ionization potential, multipole momentsiolecular and atomic polarizabilities, and potdrdierived
charges.
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Mulliken charges arise from the Mulliken populatianalysis [44]. They provide a means of estimatagtial
atomic charges calculated by the methods of coatipm@al chemistry, particularly those based on lthear
combination of atomic orbitals molecular orbitalthre.

The developed model prove that the biological #@gtief these series of compounds controlled maioyythe
molecular size, shape and charge which is cleagyesented by descriptors in the constructed emsati

A comparatively reported 3D-QSAR study on dihydr8;8-triazines and their spiro derivatives (seAgss DHFR
inhibitors by comparative molecular field analy&@MFA) revealed that the biological activity igghly dependent
on the molecular size, shape and molecular chédrtfedigand [10].

The best of these constructed equations was chossed on its statistical validation parameters. ifernal

validation parameters calculated for the model espnted by equations 1-8 are shown in Table 3 wiherd?
value was found to be acceptable (0.98).

Table 3. Theinternal validation parameters calculated for the developed QSAR model represented by equations 1-8

Internal validation parameters  Equation (1) Equation (2) Equation (3) Equation (4)

Friedman LOF 0.36815100 0.36815100 0.36815400 0.36815400
R-squared 0.98603600 0.98603600 0.98603600 0.98603600
Adjusted R-squared 0.98312700 0.98312700 0.98312700 0.98312700
Cross validated R-squared 0.97859700 0.97859700 0.97859700 0.97859700
Significant Regression Yes Yes Yes Yes

Internal validation parameters  Equation (5) Equation (6) Equation (7) Equation (8)
Friedman LOF 0.36993300 0.36993300 0.36995400 0.36995400
R-squared 0.98596800 0.98596800 0.98596800 0.98596800
Adjusted R-squared 0.98304500 0.98304500 0.98304400 0.98304400
Cross validated R-squared 0.97843900 0.97843900 0.97843700 0.97843700
Significant Regression Yes Yes Yes Yes

The internal validation [39] results prove that tteveloped QSAR model represented by equationssla8cepted
in terms of good correlation coefficient and low E®@alue.

External validation [39] of the developed modeachieved by calculating the predicted biologicdlvéty for test
set using equation (1). These calculated valuesated a good prediction ability of our developeddaias shown
in Figure 2A and 2B. The residual values are catedl from the difference between the actual andligtex
biological activity values (logl/l&) for test and training sets as shown in Tabléa #drth noting that compound
43(HMPMM) showed unexpected large residual valueiading from experimental value by (-4.16264042urO
result of the unexpected high predicted biologawlvity of HMPMM than practical activity is consént with and
supported by reported studies which was explainedshinherent chemical instability problem owirg ¢hemical
loss of formaldehyde to give pentamethylmelaming|®d, 47] as shown in Figure 3. General instabitifythe
hydroxymethyl species in melamine derivatives malkdmpossible to prepare stable hydroxymethylmétes
while having an amino proton (N-H) in the moleculéws the oxidative metabolite of PMM 2Kydroxymethyl-
NZ,N* N°-tetramethylmelamine is not obtained syntheticpdi.
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Figure 2.External validation of the developed model, the plot of predicted log (1/ | Csg) ver sus experimental valuesfor test set (A),
training set (B). Thisgraph revealed a good prediction ability of our model
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Table 4.External validation of the developed model by calculating the residual valuesfor test and training sets using equation (1)

Entry log (/ICsp) (M)  log (1/ICsp) (M) residual Entry log (/ICsp) (M)  log (V/ICsp) (M) residual
(series) (practical) (predicted) value (series) (practical) (predicted) value

1. (A) 17.02939884 16.72779417  0.30160467  27. (B) 13.25589477 13.15071598  0.10517879
2. (A) 16.64912398 16.53264790 0.11647608  28. (B) 13.25019675 13.35406075  -0.10386400
3. %(A) 17.42373211 16.59879797  0.82493414 29. ?(B) 13.33927638 1254397594  0.79530044
4. (A) 16.53664600 16.46134782 0.07529818 30. 2(B) 13.30268693 12.68359786 0.61908907
5. (A) 16.84998366 16.74708873  0.10289493  31. (B) 11.37664785 11.69883513  -0.32218728
6. (A) 15.64871722 15.31802345  0.33069376  32. (B) 12.71689827 12.88229026  -0.16539199
7. (A) 16.64403491 16.66705088  -0.02301597 33. (B) 11.66142547 12.16429635  -0.50287087
8. 2 (A) 16.61732214 16.16126624  0.45605590 34. (B) 12.64923962 12.26945682  0.37978280
9. (A) 16.53664600 16.46134782  -0.45028696 35. 2(B) 12.96535963 11.87891508 1.08644455
10. (A) 16.84998366 16.74708873  -0.26687514 36. (B) 11.93604551 11.82890377  0.10714174
11. (A) 15.64871722 15.31802345 0.06902815  37. (B)

12. (A) 16.64403491 16.66705088  0.20345567  38. B) -

13. 2 (A 14.92629665 17.13777789  -2.21148124 39. (B)

14. 2 (A) 16.30081729 16.70975997  -0.40894268 40. ©) 11.86960041 12.04526966  -0.17566925
15. (A) 14.51749669 14.92976091  -0.41226422 41. ()

16. (A) 16.77974416 16.37143598  0.40830819 42. (o) I

17. (A) 15.96623330 16.40314421  -0.43691091 43. ©) 11.94370838 11.71754993 0.22615845
18. 2 (A) 15.74791236 16.42043906  -0.67252670 44. (o) I e

19. (A) 15.60887131 15.61294445  -0.00407314 45. ©) 11.89858795 12.15686692  -0.25827897
20. (A) 17.10159513 17.11671607  -0.01512094 46. ©) 12.40452358 12.17359041 0.23093317
21. (B) 11.97496092 11.68691513  0.28804580  47. (o) I

22. 2 (B) 12.05249356 12.51538471  -0.46289115 48. () R

23. (B) 12.08032144 12.02717877  0.05314267  49. ©) 12.12911160 12.33846176  -0.20935016
24. (B) 11.52905485 11.58977800 -0.06072315 50. ©) 12.68410845 11.95702913 0.72707932
25. #(B) 12.67447755 11.88911734  0.78536022 51. Z(C) 9.39666995 13.55931037  -4.16264042
26. (B) 13.07357321 12.87418347 0.19938975

& Test compounds
N
N ~ N -~ ~ N ~

NZ N oxidative metabolism )\ J\

| - NZ IN Chemical decomposition‘ NI N N
T N T \T \N T/\OH _HCHO \T N H/

hexamethylmelamine

N -hydroxymethylpentamethylmelamine pentamethylmelamine
(HMPMM) (PMM)

\N/\

. “1)\”
)\ )\
\T N H/

N2-hydroxymethyl-N2,N* N°-
tetramethylmelamine

OH

oxidative metabolism

Figure 3.Metabolism of hexamethylmelamine (HMM). HMM is 1,3,5-triazine derivativeand isused clinically asantitumor agent.
Hydroxymethylpentamethylmelamine (HM PM M) is the hydr oxylated metabolite and isthe major active form of HMM showing inherent
chemical instability problem owing to chemical loss of for maldehyde to give pentamethylmelamine

Further external validation is investigated by o#ting the biological activity of four new triaznderivatives
synthesized by our group (Figure 4) using the dmpedl model. The developed model revealed very good
predictability as shown in Figure 5 and Table 5 esgidual values ranged from 0.3574514156 to 0.823@75.

NHR R{HN N NHR
§ T K
N N S S
A L) x ST
RHN” “N” °N N 7N
H N\ /k
N CeHs
where, (44): R=H, X=NO, where, (46): R;=H
ICSO (nM):50 ICSO (nM):62
(45): R=C¢H;;, X=H (47): R{=CeHy;
ICSO (nM):42 ICSO (nM):28

Figure 4.Chemical structuresand I Cs, of new 1,3,5-triazine derivatives synthesized in our laboratory
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Table 5.External validation of the developed model by calculating predicted log (1/ 1 Cs) and residual values for the newly synthesized

four triazine derivatives

Compound | log (1/1Cso) (M) | log (1/I1Csg) (M) residual
number (practical) (predicted) value
44 17.30102999 16.83069918 0.47033081
45 17.37675071 17.0192992944| 0.3574514156|
46 17.20760831 | 16.2841304425| 0.9234778675
47 17.55284196 | 16.8303105576| 0.7225314024
i g — —— 173
170 | g — — 1 17.0
16.6 ‘% 16.6
16.2 16.2
15.8 15.8
15.4 15.4
3 i £2 3
2 12 142 &
o 133 33 2
¥ 130 130 ¥
- 12.6 12.6 =
12.2 12.2
11.8 11.8
11.4 11.4
11.0 11.0
== Actual activity == predicted activity

Figure5.Plot of predicted log (1/ | Cso) versus experimental valuesfor the newly synthesized four triazine derivatives

Quality of our model not limited to predict the esaiific fact of HMPMM chemical decomposition or dret the
biological activity of new triazine derivatives, thalso it can distinguish different stereoisomessnaseries B. It can
predict different biological activity for compoun@®l, 22, 25, 26, 31, and 32), (23 and 24), (2728)dand (35 and
37) although they have the same molecular formoth sequence of bonded atoms (constitution), but dtifer
only in the three-dimensional orientations of theioms in space. In addition, compounds 49 andn5efies C
were pyrimidine derivatives and the model showgdad prediction.

CONCLUSION

A new QSAR model with good predictive and diagrostbilities is developed using GFA approach. Itvdes a
useful guideline in future design of highly promigiselective non-small cell lung cancer cytotoxierts. The
developed model can be used to predict the bidbgictivity (1G) of different classes (e.g., inhibitor versus non
inhibitors) of compounds before the actual biolagitesting against A549 cell line. It can also ksediin the
analysis of physicochemical structural charactesdghat can give rise to inhibitors of non-smahd cancer (A549)
tumor cell proliferation. Being inhibitor of proéfation of non-small lung tumor cell (A549) requpsotonated
partially charged substituted nitrogen atom oretina ring to form hydrogen bond and ionic intei@ctsimilar to
those made by the 2,4-diaminopteridine ring of MBXilky substituent at triazine ring is preferred friydrophobic
interactions similar to benzoyl moiety of MTX.
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