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ABSTRACT

The application of first generation nonselective @A inhibitors has been diminished because
of their severe side effects however lately seledlOA-A inhibitors are being developed for the
treatment of depression. A series of tricyclic[6]§6,6,6] compounds have been reported as
selective MOA-A inhibitors. In order to understah@ structural requirement of these MAO-A
inhibitors a ligand based pharmacophore and atorsdsh 3D-QSAR model have been
developed. A four-point pharmacophore has beenrgés with three hydrogen bond acceptors
(A) and one aromatic ring(R) denoted asA& Az and R. The atom based 3D-QSAR model was
generated with good predictability % 0.6229) as well as fitness’fr 0.9595). The results of
ligand-based pharmacophore hypothesis and atom @2 QSAR give detailed structural
insights as well as highlights important bindingtigres of tricyclic derivatives as selective
MAO-A inhibitors.

Keywords: PHASE, Ligand based pharmacophore, Atom based SBF) Selective MAO-A
inhibitors

INTRODUCTION

Monoamine oxidase (MAO) is a FAD-containing enzyofiehe outer mitochondrial membrane
and exists as two isomezyme forms MAO-A and MAO¥TBey are responsible for oxidative
deamination of major neurotransmitter monoamindséncentral nervous system and peripheral
tissues [1, 2]. MAO-A preferably catalyzes the @tide deamination of serotonin, adrenaline
and noradrenaline and is selectively inhibited clmbemide and clorgylene. On the other hand
MAO-B selectively catalyzes the oxidative deammwrabf f-phenylamine and benzylamine and
is selectively inhibited by selegiline. The MAO ibhors are used for the treatment of
psychiatric and neurological disorders [3,4]. Sirthey are involved in the metabolism of
neurotransmitters they provide a good target fag thesign of antidepressant and anti-
parkinsonian drugs [5]. Depression is a commongeuious illness characterized by persistent
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feelings of sadness, hopelessness, pessimism, lgsit of interest in activities and decreased
energy. Combination of these along with many otBgmptoms severely affects person’s

professional, social and family life [6]. Most dfet antidepressant drugs act by modulation of
synaptic transmission of monoamines [7]. Iproniazidl tranylcipromine , the prototype of

MAO inhibitors were introduced in early sixties.

They are irreversible and nonselective inhibit@jsut found responsible for some side effects
including side reactions with other drugs and foBdcause of side effects the application of
these first generation MAO inhibitors has been distied. [9,10] Further research on the
development of more reversible , selective and B&O inhibitors led to toloxatone[11].

Unlike conventional tricyclic inhibitors such as ipramine, amytryptine with heptoatomic
central ring and which are nonselective MAO infoiis with variety of side effects ; new
tricyclics with pentatomic and hexatomic centralgriwith at least one heteroatom are being
developed as selective MAO-A inhibitor [12-14].

Since last few years pharmacophore modeling has baee of the important and successful
approach for new drug discovery [15-17]. A pharnpe is concept in rational drug design
that underlies the importance of specific molacfeatures that favor the interaction with a
particular enzyme or receptor active sight[15].Fapnacophore hypothesis can be used to know
the characteristics of the binding site. For adfeactive molecules, pharmacophore methods
involve analyzing the molecules to identify pharmattoric features like atoms or functional
groups that can potentially interact with atomgha binding site and then aligning the active
conformations of the molecules such that their esponding pharmacophoric features are
overlaid. [15-17].

PHASE, Pharmacophore Alignment and Scoring EngiASE) [18] is a comprehensive, self-
contained system for pharmacophore perception, 3B#) model development, and 3D
database screening. PHASE uses a range of scedhgitiues and fine-grained conformational
sampling to generate and identify common pharmaoa@ hypothesis, which convey
characteristics of 3-D chemical structures that essential for binding. Each hypothesis is
accompanied by a set of aligned conformations shiggest the relative manner in which the
molecules are likely to bind to the receptor. Gatet hypothesis with the aligned conformations
may be combined with known activity data to creat8D-QSAR model that identifies overall
aspects of molecular structure that govern activity

In the present study, ligand-based pharmacophomgothgsis and an atom-based three-
dimensional quantitative structure activity relasbip (3D-QSAR) is performed with for series
of tricyclic[6,5,6] and tricyclic[6,6,6] compound42-14] as selective MAO-A inhibitors. The
objective of the present study is to develop lighaded pharmacophore hypothesis and to derive
atom-based 3D-QSAR model to update the designezegsdor new tricyclic selective MAO-A
inhibitors.

MATERIALS AND METHODS

Pharmacophore modeling

Pharmacophore modeling was carried out in Maesi®o(Schrédinger Itd) [19]. A set of 65
tricyclic[6,5,6] / [6,6,6] analogs synthesized awaluated by Harfenist et.al [12-18 selective
MAO-A inhibitors (Table 1,2,3,4,5,6,)/with available 1@, data was taken from literature for
the development of ligand-based pharmacophore hgpst and atom-based 3D-QSAR model .
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The biological activity data was reported asgol@M) and was converted to 1/Logs§3pICsp)

in moles to get the linearity. The dataset consi$tsome highly active and inactive molecules.
From the total 65 compounds, 52 were randomlgehdor training set and 13 were selected as
test set Table 1,2,3,4,5,6,) by using the “Automated Random Selection” optorasent in the
PHASE software.

Generation of common pharmacophore hypothesis

The 3D structure of each compound was built usimgdBmodule with the default maestro
settings. The 3D structures were minimized by défaniversal force field within maestro. The
pharmacophore generation and atom based 3D-QSAR werformed using the PHASE
module. PHASE is a versatile product of Schrodinfgerpharmacophore perception, structure
alignment, activity prediction, and 3D databased®ng. Given a set of molecules with affinity
for a particular target, PHASE utilizes fine-graine@hformational sampling and a range of
scoring techniques to identify common pharmacophgmothesis, which convey characteristics
of 3D chemical structures that are reported to beca for binding. Each hypothesis is
accompanied by a set of aligned conformations shggests the relative manner in which the
molecules are likely to bind to the receptor. Aegivhypothesis may be combined with known
activity data to create a 3D-QSAR model that idegioverall aspect of molecular structure that
govern activity. The pharmacophore model was dg@ezlaising a set of pharmacophore features
to generate sites for all the compounds. Each tstreigs represented by a set of points in 3D
space, which coincides with various chemical feegihat may make easy non-covalent binding
among the ligand and its binding pocket [20]. PHABEvides a standard set of six
pharmacophore features, hydrogen bond acceptorhfAlogen bond donor (D), hydrophobic
group (H), negatively ionizable (N), positively iaable (P), and aromatic ring (R).[ 21]

Initially conformational space of all the moleculgas explored through combination of Monte-
Carlo Multiple Minimum (MCMM) / Low Mode (LMOD) wih maximum number of conformers
2500 per structure and minimization steps 100 [EHch minimized conformer was filtered
through a relative energy window of 50 kJ/mol. hyough sampling and redundancy check of
2A in the heavy atom positionéctive compounds are normally considered during rmom
pharmacophore hypothesis generation and thus pbatmas defined by setting threshold for
actives of plGy > 0.65 and a threshold for inactives of gJ& 0.34. The above mentioned
pharmacophore features were introduced in all comitions by pharmacophore create site.
Four point common pharmacophore hypotheses werdifieéel from all conformation of the
active ligands having identical set of featureshwiery similar spatial arrangement keeping
minimum intersite distance 2.0°An a final box size of 2.0 A These common pharmacophore
hypotheses were examined using a scoring functoyidld the best alignment of the active
ligands using an overall maximum root mean squangation (RMSD) value of 1.2A with
default options for distance tolerance.

The quality of alignment was measured by a sungeale, defined as:
S = WsiteSsite + WvecSvec + WvolSvol+WselSsel™&W,

Where W are weights and S are scores; Ssite reptisealkgnment score, the RMSD in the site
point position; Svec represents vector score, amilages the cosine of the angles formed by
corresponding pairs of vector features in alignedctures; Svol represents volume score based
on overlap of van der waals models of non-hydroggms in each pair of structures; and Ssel
represents selectivity score, and accounts for dhation of molecules are likely to match the
hypothesis regardless of their activity toward eeptor. Wsite, Wvec, Wvol, and"ew have
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default values of 1.0, while Wsel has a defaulugabf 0.0. In hypothesis generation, default
values have been used."Ww represents reward weights definedmby- 1, wherem is the
number of actives that match the hypothesis. Comptwarmacophore was examined, and a
scoring procedure was applied to identify the plemphore from each box that yielded the best
alignment of the active ligands. The scoring pracedrovided a ranking of different hypothesis
from which further investigation was carried out &ppropriate hypothesis with rational choice.
The hypotheses were ranked according to survivakgdor active and inactive compounds. The
phamacophoric features involved in hypothesis wereeased by two factor for active scoring.

An atom-based 3D-QSAR model is more useful in @rpig the structure activity relationship
than Pharmacophore-based 3D-QSAR as latter do omsider ligand features beyond the
pharmacophore model. In atom-based 3D-QSAR, a migds treated as a set of overlapping
van der Waals spheres. Each categories accordmgitople set of rules: hydrogens attached to
polar atoms are classified as hydrogen bond doirscarbons, halogens, and C—-H hydrogens
are classified as hydrophobic/non-polar (H); atomith an explicit negative ionic charge are
classified as negative ionic (N); atoms with anlexppositive ionic charge are classified as
positive ionic (P); non-ionic atoms are classifeedelectron withdrawing (W); and all other types
of atoms are classified as miscellaneous (X). kopgses of 3D-QSAR development, van der
Waals models of the aligned training set moleculese placed in a regular grid of cubes, with
each cube allotted zero or more ‘bits’ to accowntthe different types of atoms in the training
set that occupy the cube. This representation gigedo binary-valued occupation patterns that
can be used as independent variables to creatldagst-squares (PLS) 3D-QSAR models.
Atom-based 3D-QSAR models were generated for aglbtheses using the 52-member training
set using a grid spacing of 1.0A. The best 3D-Q®#drlel was validated by predicting activities
of the 13 test set compounds. 3D-QSAR models aontione to nine PLS factors were
generated, and the models were validated by preditte activity of test set ligands. The 3D-
QSAR was evaluated by cross validated correlatamfficient (), standard error of estimation
(s), Fisher test (F), correlation coefficien)(fPerson(R). The predicted pié are tabulated in
Tables 1,2,3,4,5,6,7The correlation graph between predicted and agii@o of both training
and test set are depictedrigure 3. .

Table 1: In vitro MAO-A inhibitory activity of comp ound 1-7
5 4

IC5o Experimental Predicted .
Comp X 2 3 7 (M) pIC (M) DIC 50 (M) Residual
1 (0] NHAC 0.3 0.40 0.41 -0.006
2 C=0 | NHAc 0.04 0.62 0.61 0.014
3 C=0 | NHAc NO, | 1.3 0.32 0.36 -0.039
4! SO NH, 1.0 0.33 0.04 0.293
5 SO NHCHO 1.0 0.33 0.37 -0.037
6" SO NHAC 0.26 0.41 0.41 0.004
7 SO NHCOEt 1.2 0.32 0.35 -0.025
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www.scholarsresearchlibrary.com



Sharad H. Bhosalest al

Der Pharma Chemica, 2010, 2 (6): 171-182

Table 2: In vitro MAO-A inhibitory activity of comp ound 8-14

6 5
z
7 3
2
Y
1
IC5o Experimental Predicted .
Com Z Y 2 3 7 Residual
P (uM) | pICs (M) PIC s¢ (M)
g SO C=0 | NHAc 0.12 0.48 0.38 0.101
9 SO C=0 NHAC 0.06 0.56 0.49 0.072
10 SQ C=0 NHAC Me | 0.7 0.35 0.45 -0.099
11 SO C=0 NHAC Et 0.01 1.00 0.61 0.39
12 SO C=0 NHAC Pr 0.02 0.77 0.74 0.029
13 SO 0] NHAC 0.014 0.87 0.82 0.053
14 C=0 | C=0| NHAc 0.16 0.45 0.39 0.064
Table 3: In vitro MAO-A inhibitory activity of comp ound 15-28
0
I,
)
s 3
5 O// \\O 4
. ICso Experimental pICso Predicted .
Comp Substituent (M) ) pICsc (M) Residual
15 2-Br 1.0 0.33 0.52 -0.187
16 3-CONHMe 0.06 0.56 0.71 -0.148
17 2,6-(CONHMe) 0.05 0.58 0.72 -0.131
18 5-Me-3-CONHMe 0.05 0.59 0.63 -0.041
19 7-Me-3-CONHMe 0.008 1.07 0.92 0.187
20 7i-Pr-3-CONH 0.7 0.35 0.6 -0.249
27 7--Pr-3-CONHMe 0.006 1.28 1.04 0.245
22 7-PrO-3- CONK 0.45 0.38 0.45 -0.073
23 7-PrO-3- CONHMe 0.002 0.32 0.39 -0.068
24 7-OAc-3-CONHMe 0.13 0.47 0.42 0.053
25 7-OCHCOOMe-3-CONHMe 0.3 0.40 0.26 0.144
26° 7-NMe-3-CONHMe 0.03 0.68 0.76 -0.083
27 5,7-Me-3-CONHMe 0.02 0.77 0.74 0.029
28 3-C(=NH)NHMe 0.06 0.56 0.35 0.212
Table 4: In vitro MAO-A inhibitory activity of comp ound 29-36
5
o
i
s 2
9 1
o// \\o
. IC Experimental Predicted .
Com Substituent 50 Residual
P (uM) pIC 50 (M) pIC ¢ (M)
29 0.05 0.59 0.52 0.069
30 2-CN 0.2 0.43 0.42 0.015
31° 2-CONHMe 0.03 0.68 0.64 0.037
32 3-CN 0.06 0.56 0.55 0.012
33 3-CONHMe 0.6 0.36 0.37 -0.01
34 3-C(O)NHGH;NHAC 0.3 0.40 0.45 -0.046
35 2-OCONHMe 0.2 0.43 0.44 -0.005
36 2,7-DiAc 0.5 0.37 0.42 -0.049
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Table 5: In vitro MAO-A inhibitory activity of comp ound 37-38

Comp Structure ICsg Experimental Predicted Residual
— (UM) pIC s (M) pICsc (M)
N
37 C[ ‘ 0.3 0.40 0.41 -0.006
S CONHCHj,
0/ \\0
0
38 ) = 0.6 0.36 0.37 0.01
O/ \O
Table 6: In vitro MAO- A inhibitory activity of compound 39-61
8 o
7 |
8 S
’ 0// \\0 !
. Experimental Predicted .
Comp Substituent 1Cso (UM) 0IC 50 (M) DIC 50 (M) Residual
39 1-Me 0.03 0.68 0.59 0.087
40 3-Me 0.2 0.43 0.54 -0.105
41 4-Me 0.8 0.34 0.35 -0.006
42 1-Et 0.07 0.54 0.53 0.012
43 2-Et 0.007 1.18 1.03 0.153
44° 3-Et 0.006 1.29 1.36 -0.274
45 4-Et 1.0 0.33 0.37 -0.037
46 1-CH=CH 0.04 0.62 0.58 0.044
47 1-GCH, 0.1 0.50 0.57 -0.07
48 1-CF 0.08 0.52 0.58 -0.054
49 1-CHOH 0.14 0.46 0.47 -0.004
50° 1-CH,CH,OH 0.02 0.77 0.77 -0.001
51 2-C(O)Me 1.0 0.33 0.41 -0.077
52 1-C(O)COOMe 0.6 0.36 0.39 -0.03
53 1-CHBr 0.1 0.50 0.52 -0.02
54 2-OMe 0.2 0.43 0.52 -0.085
55 2-OEt 0.04 0.62 0.69 -0.066
56 1-Br 0.06 0.56 0.55 0.012
57 3-Br 0.02 0.76 0.77 -0.001
58 1-l 0.05 0.59 0.57 0.019
59 1,9-Me 0.05 0.59 0.62 -0.031
60 1-Et-7-OH 0.11 0.49 0.5 -0.01
61 1-Et-2-OMe 0.6 0.36 0.34 0.02
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Table 7: In vitro MAO-A inhibitory activity of comp ound 62-65
o

6

S
’ O// \0 !
. Experimental Predicted .
Comp Substituent 1Cso (LM) pIC« (M) pICs (M) Residual
62 4-Me 0.06 0.56 0.35 0.212
63 4-Et 0.4 0.38 0.36 0.024
64 4,5-Me 0.3 0.40 0.38 0.024
65" 2-Br 1.0 0.33 0.51 -0.177

a = active pharmaset, i= inactive pharmaset, t stteet.

Table 8: Best Pharmacophore hypothesis according tscoring values

Hypothesis Survival Active Survival Inactive Posteh #Matches
AARR.1 7.280 4.859 3.708 14
AARR.2 7.173 4,721 3.602 14
AARR.4 7.173 4.721 3.602 14
AARR.5 7.173 4.721 3.602 14
AARR.3 7.173 4.721 3.602 14
AARR.6 6.987 5.155 3.401 14
AAAR.31 6.875 4.847 3.409 14
AAAR.22 6.875 4.847 3.409 14
AAAR.10 6.875 4.847 3.409 14
AARR.10 6.863 5.055 3.287 14
AARR.8 6.863 5.055 3.287 14
AARR.7 6.863 5.055 3.287 14
AARR.9 6.863 5.055 3.287 14
AAAR.4 6.843 4.675 3.401 14
AAAR.7 6.843 4.675 3.401 14
AAAR.19 6.843 4.675 3.401 14
AAAR.5 6.738 4.609 3.297 14
AAAR.6 6.738 4.609 3.297 14
AAAR.20 6.738 4.609 3.297 14
AAR.21 6.738 4.609 3.297 14
Table 9: Statistic parameters for best pharmacopha hypothesis
PLS Factors|  SP P F P RMSE 4 Pearson-R
1 0.3982 | 0.2047| 12.9 0.0007574 0.7206 0.114 0.3089
2 0.2998 | 0.5581| 30.9 2.042e-009 0.1724 -0.2439 0.4693
3 0.2016 | 0.8043| 65.8 5.049e-017 -0.0485 -0.0185 0.6006
4 0.1572 | 08835 | 89.1 2.514e-021 -0.0749 0.3528 0.7038
5 0.1203 | 0.9332| 128.6 | 7.473e-026 -0.0976 0.5954 0.811
6 0.0951 | 0.9592| 176.1 | 7.473e-029 -0.117 0.6229 0.838
7 0.0766 | 0.9742| 236.5 | 1.496e-033 -0.1303 0.593 0.8327
8 0.0662 | 0.9811| 279.3 | 1.753e-034 -0.1301 0.587 0.8309
9 0.0576 | 0.986 329 5.678e-036 -0.1333 0.5811 0.8316
177
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Figure 1: Pharmacophore hypothesis and distance beeen pharmacophoric sites, all distances are in“Ainit
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Predicted pIC50

Figure 3: Correlation graph of Experimental versuspredicted plCs of training (a) and test sets (b)
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Figure 4: Visual representation of atom-based 3D-Q&R on most active ligand 23

| |
08 10 12
Experimental pIC50

www.scholarsresearchlibrary.com

14

179



Sharad H. Bhosaleet al Der Pharma Chemica, 2010, 2 (6): 171-182

Figure 5: Visual representation of atom-based 3D-Q&R on least active ligand 3

RESULTS AND DISCUSSION

After completion of common pharmacophore we were ab identify a total of 20 different
hypothesesTable 8). The best model was found to be associated waitin-point hypothesis
(Figure 1), which consists of three hydrogen bond accepfd)sand one aromatic ring(R)
denoted as AA; Az and R. The pharmacophore hypothesis aligned on referkgaed 16 is
depicted inFigure 2. Pharmacophore sitespatial distribution of AAAR. 22 models show three
acceptor sites intercalated by a aromatic site tet@hedral space of about 4.AThe three
hydrogen bond acceptor; AA; and A form scalene triangle. The distances between®d, Ax-
Asand A-As are 2.554, 4.520 and 5.602 Aespectively. The aromatic ring {Ris slightly
orientated towards the sitg A

For the 3D-QSAR models generation, non-modelecc{iv& or moderately active) molecules in
the dataset were then aligned on the basis of thatching with at least four pharmacophore
features.The pharmacophore hypothesis yielded a 3D-QSAR mwidk good PLS statistics.
The 3D-QSAR was evaluated by cross validated aticel coefficient (), standard error of
estimation (s), Fisher test (F), correlation caiéiit (F) and Pearson-R. The predicted gl@re
tabulated inTables 1,2,3,4,5,6,7The goodness of the model was validated bjon test set
(Table 9).The training set correlation is characterizedPh factor6 (r*= 0.9592, SD=0.0951,F
=176.1 Pearson-R =7.437e-29). The test set cdmeli& characterized by PLS factors 6 (q
=0.6229, RMSE=-0.117, Pearson-R =0.838). ResulBL& statistics of atom-based 3D-QSAR
are shown irfable 8 Correlation graph of Experimental versus prediqiéCs, of training and
test sets are shown Figure 3. Additional insights into the inhibitory activityan be gained by
visualizing the 3D-QSAR model in the context of @ranore ligands in the series with diverse
activity. A pictorial representation of the cubesngrated in the present 3D-QSAR for most
active ligand44 and least active ligan@ is shown inFigure 4 and5 respectively. In these
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generated cubes, the blue cubes indicate favofesleres, while red cubes indicate unfavorable
features for biological activity.

The blue cubes around aromatigd® the most active compour#8 suggest that substitution at
C; aromatic carbon is favorble for biological actyiEurther substitution with aliphatic chain at
C; aromatic carbon significantly increased the adtivitThus compounds having aliphatic
substitution at €position (compound9, 21, 26, 27) are more active than substitution by other
group at G position in the ring (compourZl, 24, 2%. Moreover, the most significant favorable
and unfavorable features observed at thef@he aromatic ring which indicated that preseoice
N-methyl amide groups essential for biological activity. Thereforenggounds having N-methyl
amide group are more active than the compound gawsubstituted amide group.

In Figure 6 the red cube adjacent to the nitro group of thstlactive compoungindicates that
presence of polar substitution orn €rbon of the aromatic ring diminish the biologjiaetivity.
The blue cubes around keto of the anilide groupcatd that presence of anilides at gosition
of the aromatic ring favors the biological actvielatively as seen in compouhénd2, while
the compounds having substitution a @sition of the aromatic ring in compounds,7
exhibit weak activity.

CONCLUSION

In conclusion, a highly predictive pharmacophoredtiiesis was generated using a training set
of 65 molecules. It is a four-point pharmacophoypdthesis with three hydrogen bond acceptors
(A) and one aromatic ring (Rjenoted as AA, Az and R. An atom-based 3D-QSAR models
were generated for all hypotheses using the 52-reetnéining set. The predictive power of the
atom based 3D-QSAR was well validated using 13 neznalb test setThe developed atom-
based 3D-QSAR model can provide insights into tinectural requirement of novel tricyclic
[6,5,6] / [6,6,6] compounds as selective MAO- Aibitors. The present study aimed to develop
ligand-based pharmacophore hypothesis and atontb@BeQSAR gives detailed structural
insights as well as highlights important bindingttees of tricyclic derivatives as selective
MAO-A inhibitors, which can provide guidance forthational design of novel potent selective
MAO-A inhibitors.
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