Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2015, 7(9):261-267 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Refractometric study of substituted aminopyrimidine in polar solvent

M. M. Kalaskar¹, H. S. Chandak² and M. P. Wadekar¹*

¹Applied Chemistry Division, Govt. Vidarbha Institute of Science and Humanities, Amravati, (M.S.), India ²Dept. of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon(M.S.)

ABSTRACT

Measurement of refractive index has done by Abbe's refractometer for four substituted aminopyrimidine drugs. From the data of refractive index and density, molar refraction (R_m) and polarizability constant (α) are calculated. The values of these parameters and their variations are used to explain interactions taking place in the solution.

Keywords: Refractive index, molar refraction, polarizability constant.

INTRODUCTION

The refractive index is the characteristics of a given material. It is defined as the ratio of speed of light in vacuum to its speed in given material. The refractive index of a material is the most important property of any optical system that uses refraction. Refractometry is a well-established technique for the analysis of gases, liquids and solids. Recently, refractometric analysis is applied for the study of biomolecular interactions. The information regarding the transport property of the ion-solvent interactions can obtained from refractrometric measurements. These measurements provide useful information about solute-solvent interactions.

One of the unique and important properties of liquid is refractive index. When a ray of light passes from less dense to denser medium then there is a change in the direction of ray and angle of refraction changes and ultimately the refractive index is changed. The result obtained during this investigation directly through light on the dipole association of ligand, intermolecular attraction between solute and solvent, dielectric constant of medium, polarizability and mutual compensation of dipoles. These interactions have been studied in aqueous and non aqueous solutions by many workers[1-3]. Oswal et al[4] have studied dielectric constants and refractive indices of binary mixtures. Dadhichi et al[5] have investigated the measurement of viscosity, refractive index of substituted benzofurones in different solvents. The properties of liquid such as viscosity, refractive index and ultrasonic velocity of binary mixtures are studied by many workers[6-10]. Sengwa[11] have studied dielectric constants and refractive indices in mixed solvents. Wagh[15] has studied molar refraction and polarizability of 2-amino-5-chloro-benzene sulphonic acid and 2-hydroxy ethyl benzene in dioxane water and DMF-water medium respectively. The refractometric study of azomethine drugs is done[16]. The refractometric study of substituted-2,3-dihydroquinazolin-4(1*H*)-ones in different binary mixture is reported[17-18].

The present work deals with the study of molar refraction and polarizability constants of some different substituted aminopyrimidine drugs in same concentration of ligand in different percentages of solvent concentration. Substituted aminopyrimidene used for present work are:

MATERIALS AND METHODS

The refractive indices of solvent mixture and solutions were measured by Abbe's refractometer (± 0.001). Initially, the refractometer was calibrated with glass piece (n=1.5220) provided with the instrument. For evaluating the molar refraction and polarizability constant of the compounds, the solution of 0.01M concentration were prepared in different percentage (20%, 40%, 60%, 80%, 100%) by adding accurately weighed substituted aminopyrimidine in Ethanol-Water, Methanol -Water solvent mixture at 300K . The temperature was maintained by using the thermostat. The data obtained was used to compute intermolecular interactions. The refractometric readings were taken as described in literature[19]. Carbon dioxide free double distilled water was used. The entire chemicals used are of A.R. grade. All weighing were made on one pan digital balance (petit balance AD_50B) with an accuracy of + 0.001 gm. The density of solutions were determined by a bicapillary pyknometer ($\pm 0.2\%$) having a bulb volume of about 10 cm³ and capillary having an internal diameter of 1mm and calibrated with deionised doubly distilled water. The accuracy of density measurements were within $\pm 0.1 \text{kgm}^3$.

RESULTS AND DISCUSSION

The molar refraction of solvent and solution are determined using Lorentz-Lorentz equation. The molar refraction of solvent - water mixtures are determined from-

where,

 \mathbf{R}_1 and \mathbf{R}_2 are molar refractions of solvent and water respectively.

The molar refraction of solutions of ligand in solvent-water mixtures are determined from-

$$R_{Mix} = \frac{(n^2 - 1)}{(n^2 + 2)} + \left\{ \frac{[X_1 M_1 + X_2 M_2 + X_3 M_3]}{d} \right\}.....(2)$$

where,

n is the refractive index of solution, d is the density of solution,

 X_1 is mole fraction of solvent, X_2 is mole fraction of water and X_3 is mole fraction of solute, M_1 , M_2 and M_3 are molecular weights of solvent, water and solute respectively.

The molar refraction of ligand is calculated as – $R_{lig} = R_{mix} - R_{s-w}$ (3)

The polarizability constant (α) of ligand is calculated from following relation-R_{lig} = 4/3 π No α (4)

www.scholarsresearchlibrary.com

where, No is Avogadro's number.

Table 1: V	Values o	of molar	refraction of	different	% of	ethanol-	water	mixture
------------	----------	----------	---------------	-----------	------	----------	-------	---------

% of solvent mixture	Molar Refraction
20	12.4983
40	11.5390
60	10.1181
80	7.8878
100	4.2067

Table 2: The values of refractive index (n), density (gm/cm-3), molar refraction (Rm) and polarizability constant(a) at 300K

	Constant ligand	onstant ligand concentration system(0.01M) with change in				
C	ethanol percentage					
Conc. In %	Refractive	Density (d)	Rm x10 ³	α x10 ⁻²³		
	index (n)	gm/cm ³	cm ³ /mole	cm ³		
	Ι	Ligand L _A				
20	1.352	1.0047	51.5675	2.0450		
40	1.354	1.0022	58.0015	2.3001		
60	1.356	1.0106	60.1691	2.3861		
80	1.364	1.0096	62.7263	2.4875		
100	1.400	1.1002	63.4006	2.5142		
	Ligand L _B					
20	1.344	1.0040	42.9099	1.7016		
40	1.345	1.0027	48.0154	1.9041		
60	1.354	1.0171	50.3986	1.9986		
80	1.416	1.0728	56.2933	2.2324		
100	1.420	1.0070	61.2397	2.4285		
	Ligand L _C					
20	1.352	1.0024	46.6533	1.8501		
40	1.353	1.0033	52.1185	2.0668		
60	1.357	1.0134	54.2338	2.1507		
80	1.362	1.0136	56.0441	2.2225		
100	1.364	1.0042	57.5685	2.2829		
Ligand L _D						
20	1.347	0.9939	46.4518	1.8421		
40	1.349	1.0120	51.1423	2.0281		
60	1.351	1.0107	53.5563	2.1238		
80	1.363	1.0091	56.4308	2.2378		
100	1.365	0.9984	58.0445	2.3018		

Table 3: Values of molar refraction of different % of methanol- water mixture

% of solvent mixture	Molar Refraction
20	8.5567
40	7.8236
60	6.8605
80	5.6834
100	4.0666

Conc. in %	Constant ligand concentration system(0.01M)						
with change in methanol percentage							
	Refractive	Density(d)	$\operatorname{Rm}_{3} \times 10^{\circ}$	$\alpha x 10^{23}$			
	index (n)	gm/cm ³	cm ³ /mole	cm ³			
		Ligand L _A					
20	1.311	0.9164	50.1351	1.9882			
40	1.330	1.0058	53.7739	2.1325			
60	1.357	1.0371	58.2540	2.3101			
80	1.360	0.9476	65.5709	2.6003			
100	1.410	1.0080	70.0700	2.7787			
Ligand L _B							
20	1.338	1.0006	42.0544	1.6677			
40	1.341	1.0045	47.0210	1.8647			
60	1.342	1.0428	47.2236	1.8727			
80	1.351	0.9921	51.8562	2.0564			
100	1.369	1.0078	54.0567	2.1437			
		Ligand L _C					
20	1.332	1.0037	43.8588	1.7393			
40	1.334	1.0097	48.8383	1.9367			
60	1.338	1.0385	49.9247	1.9798			
80	1.341	0.9758	54.6601	2.1676			
100	1.357	1.0058	55.9608	2.2192			
Ligand L _D							
20	1.380	1.0104	49.1941	1.9508			
40	1.383	1.0152	54.9356	2.1785			
60	1.394	1.0182	58.4200	2.3167			
80	1.410	1.0248	61.3575	2.4332			
100	1.430	1.0289	64.5144	2.5584			

Table 4: The values of refractive index (n), density (gm/cm⁻³), molar refraction (Rm) and polarizability constant(a) at 300K

Fig 1-5: Graphical representation of molar refraction (Rm) versus change in Ethanol solvent percentage at constant (0.01M) ligand concentration

Fig 6-10: Graphical representation of molar refraction (Rm) versus change in Methanol solvent percentage at constant (0.01M) ligand concentration

www.scholarsresearchlibrary.com

The values of molar refraction of different percent of (Ethanol-Water) and (Methanol-Water) solvent shown in tableland 3 respectively. From the data it is observed that value of molar refraction goes on decreasing with the decrease in amount of water in percent mixture. Molar refraction is greater in polar protic solvent than polar aprotic solvent. This is due to the ability of formation hydrogen bonding of protic solvent.

The data of molar refraction and polarizability constant of substituted aminopyrimidine drugs having same concentration in different percentage of (Ethanol- Water) and (Methanol -Water) solvent presented in table-2 and 4 respectively. It shows that the values of molar refraction and polarizability constant of substituted aminopyrimidine drugs increases with increase in percentage of organic solvents. This is due to fact that the dipole in substituted aminopyrimidine drugs lies perpendicular to the longer axis of molecule and with increase in percentage of solvents causing decrease in dielectric constant of medium, considerable dipole association take place. The graphs of Rm versus concentration are plotted. These are shown in fig. 1 to 10. It is seen that there is linear relationship between molar refraction and concentration.

Acknowledgement

The authors gratefully acknowledge The Director; Head, Department of Chemistry, Govt. Vidarbha Institute of Science and Humanities, Amravati for providing necessary facilities and help when needed for the work.

REFERENCES

[1] K. J. Patil, S. M. Manwatkar, S. S. Dondge, J. Ind. Chem. Soc., 1994, 33,4.

[2] F. Karia, S. Baluja, Asian J. Chem., 2000, 12 (2), 593.

[3] R. K. Wadi, V. Kakkar, J. Ind. Chem. Soc., 2000, 39(6), 598.

- [4] S.L. Ostwal, M.V.Rathnam, Indian J. Chem., 1987, 26, 29.
- [5] V. S. Jamode, J. C. Dadhichi, D. D. Malkhede, M. L. Narwade, J. Ind. Coun. Chemist, 2005, 22(2), 35.
- [6] D. Tayade, A. Kshirsagar, The Open Phys. Chem. J., 2014, 6, 1.
- [7] G. Satyamaiah, M. Prasad, Ind. J. Adv. Chem. Sci., 2014, 2(2), 116.
- [8] D. Tayade, A. Kshirsagar, Der Chemica Sinica, 2013, 4(4), 25.
- [9] M. Aralaguppi, T. Aminabhavi, J. Phys. Chem., 1991, 95, 5299.
- [10] A. Burghate, P. Agrawal, M. Narwade, Asian J. Chem., 2001,13(4),1652.
- [11] R. Sengwa, S. Sankhla, S. Sharma, Ind. J. Chem., 2007, 46A, 1419.
- [12] S. Devsarkar, V. Pandhare, P. Kattekar, J. Eng., 2012, 20, 1.
- [13] S.Dhondge, J. Chem. Eng. Data, 2010, 55, 3962.
- [14] G. Pethe, A. Ramteke, J. Chem. Pharm., 2010, 2(4), 68.
- [15] S.Wagh, Ph.D. Thesis in Chemistry, Amravati University, Amravati, 2004.
- [16] A. V. Kawalkar, D. S. Hedaoo, M. P. Wadekar, J. Chem. Pharm. Res., 2015, 7(8), 600.
- [17] D. S. Hedaoo, M. M. Kalaskar and M. P. Wadekar, Der Chemica Sinica, 2015, 6(6), 07.
- [18] D. S. Hedaoo, M. M. Kalaskar and M. P. Wadekar, J. Chem. Pharm. Res., 2015, 7(6), 242.
- [19] A. I. Vogel, Practical Organic Chemistry, 3rd Edition, Longman, 1974, 171.