## Available online at www.derpharmachemica.com



ISSN 0975-413X CODEN (USA): PCHHAX

Der Pharma Chemica, 2022, 14(8): 1-35 (http://www.derpharmachemica.com/archive.html)

# Phytochemical, Pharmacological and Toxical Proprieties of Euphorbia Helioscopia: Review

Anjoud Harmouzi<sup>1,2\*</sup>, Yassine El Ammari<sup>1</sup>, Amina CHLOUCHI<sup>1</sup>, Rabha AFROUKH<sup>1</sup>, Ahmed Boughdad<sup>2</sup>

<sup>1</sup>Agrophysiology, Biotechnology, Environment and Quality laboratory, Sciences Faculty, Ibn Tofail University, BP 133, 14000 Kenitra. Morocco

<sup>2</sup>Department of Plant Protection and Environment. National School of Agriculture - Meknes. B.P. S/40 50000; Meknes, Morocco

\*Corresponding author: Anjoud Harmouzi, Agrophysiology, Biotechnology, Environment and Quality laboratory, Sciences Faculty, Ibn Tofail University, BP 133, 14000 Kenitra. Morocco, E-mail: nojoud.harmouzi@gmail.com

**Received**: 22-Jul-2022, Manuscript no: dpc-22-70003, **Editor assigned**: 25-Jul-2022, PreQC No: dpc-22-70003, **Reviewed**: 8- Aug -2022, QC No: dpc-22-70003, **Revised**: 11-Aug-2022, Manuscript No: dpc-22-70003, **Published**: 26-Aug2022, **DOI**: 10.4172/0975-413X.14.8.1-35

### ABSTRACT

Euphorbia helioscopia L. (Euphorbiaceae), also known as "Sun spurge" is one of used herbs in most parts of the world since thousands of years. This work aims to provide updated comprehensive and categorized information on chemical composition, pharmacological and toxical properties of this plant. To achieve this purpose, several scientific databases were used, including Wiley, PubMed, Web of Science, Springer, Science Direct, Elsevier, and Google Scholar and related books published up to December 2019 were also used as references. After description of its history, botanical characteristics and distribution, this review highlights the different types of secondary metabolites, such as diterpenoids, tannins, glucosides and steroids, which have been isolated from E. helioscopia L. in several researches over the last four decades. Related Twenty five pharmacological activities (among them: antibacterial, antiviral, antioxidant, antifungal, phytotoxic, anthelmintic, anti-allergic, antiasthmatic, cytotoxic, anticancer, allelopathic, anti-nociceptive, anti-inflammatory, anti-pyretic, vasodepressor, antileishmanial, lipid-lowering activity, and triglyceride-lowering activity) are presented and discussed. E. helioscopia L. toxicity related studies against Humans, snails and some herbs are summarised and presented with correspondent references. This study can be used by researches interested by this plant since it resumes all relevant published papers in link with E. helioscopia L.

Keywords: Euphorbia Helioscopia; Chemical composition; Pharmacological properties; Toxicity

### INTRODUCTION

*Euphorbiaceae* is the largest family of *Anthophyta* with 300 genera and 5,000 species [1]. Euphorbia, is one of the largest angiosperms' genera, with about 2,000 species, and has long been known for its wide variety of growth forms, including many xerophytic species. Despite its great vegetative diversity, the genus is morphological united by the possession of a cyathium which is a very small inflorescence that looks like a single flower [1-3].

*Euphorbia helioscopia L.*, also called Sun spurge, is an annual plant with a tall between 10 and 50 cm high, with a rich latex stem, oval alternate leaves and small yellow-green flowers. The plant is native to temperate regions of Eurasia but has been adapted to subtropical conditions. It behaves as a winter annual in Japan that is blooming from April to May. In Morocco, this plant blooms from December to April in plains and up to May in mountainous areas [4]. Most *E. helioscopia L.* compounds are biologically active; for example: Antibacterial [1, 5-8], antitumor/anticancer [9-12] antioxidant [1, 13-15], Antifungal [16] plus other types of activities. Plants in Euphorbiaceae family are also promising sources of high quality tanning agents for leather industry [17]. *E. helioscopia L.* has been considered as a medicinal plant and is used in traditional medicine in various countries of the world [3, 18-20]. For Maghrebian traditional medicine, *E. helioscopia L.* is locally called "Bou Labeena" (in reference to the plant's milky latex). However, *Euphorbia* stems are an irritant drug that cause severe toxicity like phytotoxic effects [21], Molluscicidal activity [22-24] and skin irritant [25].

The objective of this review is to present an evaluation of art state of *E. helioscopia L.*, in particular chemical compounds identified and characterized in its different parts, in one hand; in the other hand, to examine pharmacological and toxic properties of this plant, based on a comprehensive and in-depth analysis of relevant literature.

### MATERIALS AND METHODS

In this work we collected literatures published documents up to December 2019 on phytochemistry, botany, pharmacology and toxicity of *E. helioscopia L.* All available information on this plant was retrieved by Internet databases (Springer, PubMed, Web of Science, Wiley, Science Direct, Elsevier, and Google Scholar) and a number of books and PhD dissertations were also used. Used key words in the search were: "*Euphorbia helioscopia L.*", "Traditional uses of *Euphorbia helioscopia L.*", "Chemical composition of *Euphorbia helioscopia L.*", "pharmalogical activity", "toxicity". Scientific name of the plant has been identified and validated by the Scientific Institute of Rabat (Morocco) and through www.theplantlist.org.

#### Traditional uses of Euphorbia L. (Euphorbiaceae)

Historically, natural extract from plants have showed a significant role in humans live, whether for food or for drugs [26]. *Euphorbia L.* (*Euphorbiaceae*) has attracted human interest around the world since the earliest and even prehistoric times [27-29]. *Euphorbia* species are easily identified especially by their milky latex and unique inflorescences (cyathia) [30]. They are known for their use as ornamental and domestic plants [31], and their latex has contributed to the economic interest for certain species such as *Euphorbia antisyphilitica Zucc* [31] and *Euphorbia Intisy Drake* (intisy rubber) [31]. According to Hippocrates, Galen and Dioscorides [32, 33], Sumerians and Akkadians knew the toxic properties of *E. helioscopia L.* [34], the medicinal properties of "euphorbia genus with various medicinal uses, including topical treatments and purging of the gastrointestinal tract [37-39]. *E. helioscopia L.* takes her name from a Greek origin, deriving from "helioscopion" used first by Dioscorides to describe this species and meaning "sun gazer". In fact, according to the Roman naturalist Pliny, the plant moves its flowers round to follow the sunlight [40, 41]. Furthermore, as reported for other species belonging to the *Euphorbiae* genus, the plant was used by Greeks and Romans to take away all kinds of warts, knobs, and the hard calluses of fistulas, hot swelling and carbonucles. Nowadays, the plant is still used in China for a variety of ailments: as a cure for boils, to get rid of worms, and to bring down high temperatures [41].

#### **Botanical characteristics**

*E. helioscopia L.* (Figure 1) is a fleshy annual plant, glossy green and glabrous, up to 50 cm tall but more commonly between 10 to 30 cm. All parts of the plant emit a milky sap, once cut. *E. helioscopia L.*'s stems are clearly tinged with red and radiate outward from a central point. All leaves (1 to 2 mm long) are usually attached directly to the stem and do not appear on petioles. Not very visible, light green to pale yellow, inflorescences (cyathias) occur at stems' ends and have 4 lobes. Each lobe has a round yellowish gland [42, 43].

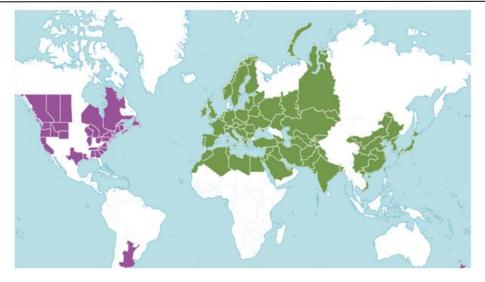



Figure 1: Euphorbia helioscopia L. (By Anjoud HARMOUZI)

*E. helioscopia L.* is classified in reign: Plantae, under reign: *Tracheobionta*, Super division: *Spermatophyta*, Division: *Magnoliophyta*, Class: Magnoliopsida, Subclass: *Rosidae*, Order: *Malpighiales*, Family *Euphorbiaceae*, Genus: *Euphorbia* and Species: *Euphorbia helioscopia* [43].

#### Distribution

*Euphorbia helioscopia* is native to North Africa, Europe, and some parts of Asia. It was introduced in North and South America as shown in the cart below (Figure 2). African native countries are Algeria, Egypt, Libya, Morocco and Tunisia, European ones are: Albania, Belgium, Bulgaria, Cyprus, Czech, Finland, France, Germany, Great Britain, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Romania. Asian ones are: Afghanistan, Bangladesh, Belarus, China, India, Iran, Iraq, Japan, Kazakhstan, Kirgizstan, South Korea, Lebanon, Syria, Mongolia, Pakistan, Palestine, Saudi Arabia, Tadzhikistan, Taiwan, Turkey, Turkmenistan and Vietnam. While introduced countries are: Canada, United States of America and Argentina [44-52].

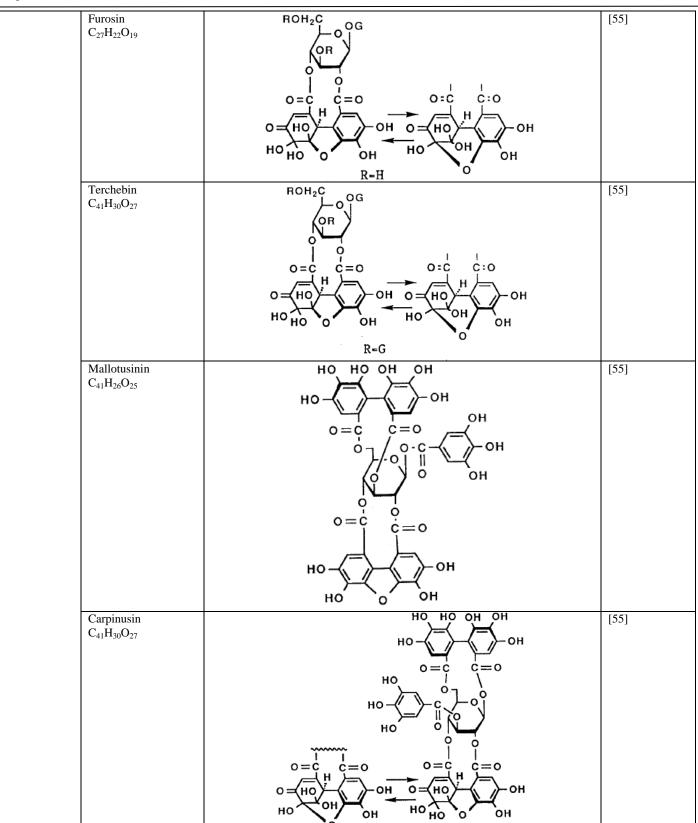


■ Native ■ Introduced Figure 2: Distribution of *Euphorbia helioscopia L.* (https://www.ipni.org/n/346754-1)

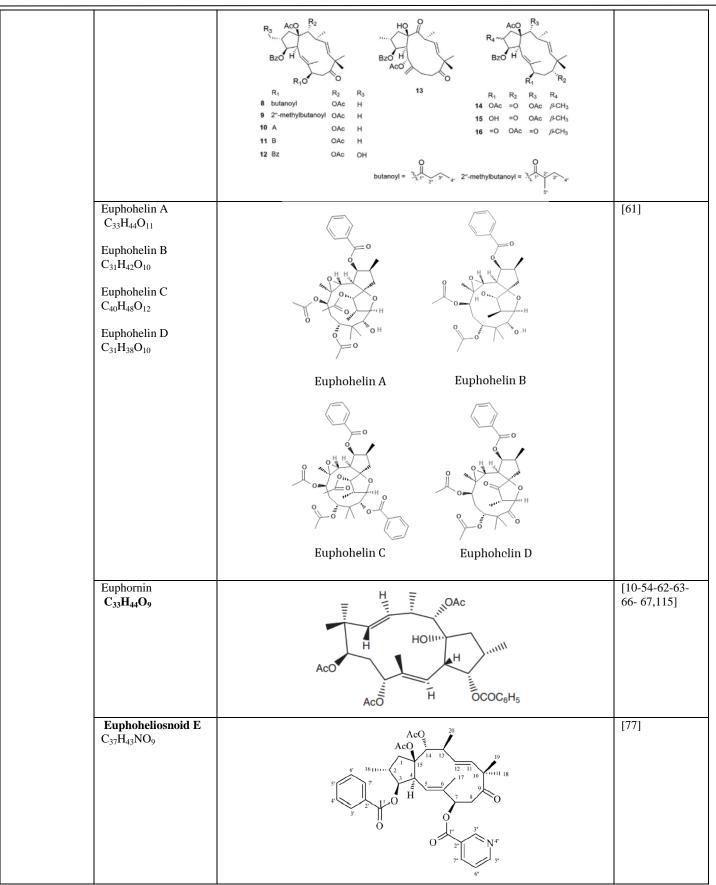
### Chemical composition

*Euphorbia* is the largest genus of *Euphorbiaceae* family, which is well known for the chemical diversity of terpenoids [35]. Diterpenoids are particularly rich and diversified in Euphorbia species, with more than 650 diterpenoids that have been isolated and identified, including jatrophanes, lathyranes, ingenanes, tiglianes, abietanes, kauranes, pimaranes, daphnanes, casbbanes and myrsinanes [35- 36, 53]. A large number of secondary metabolites have been reported from E. helioscopia L. plant including diterpenoid, triterpenoid, tannins, glucosides and lipids [3,54-59] which offer to *E. helioscopia L.* a wide array of bioactive functions.

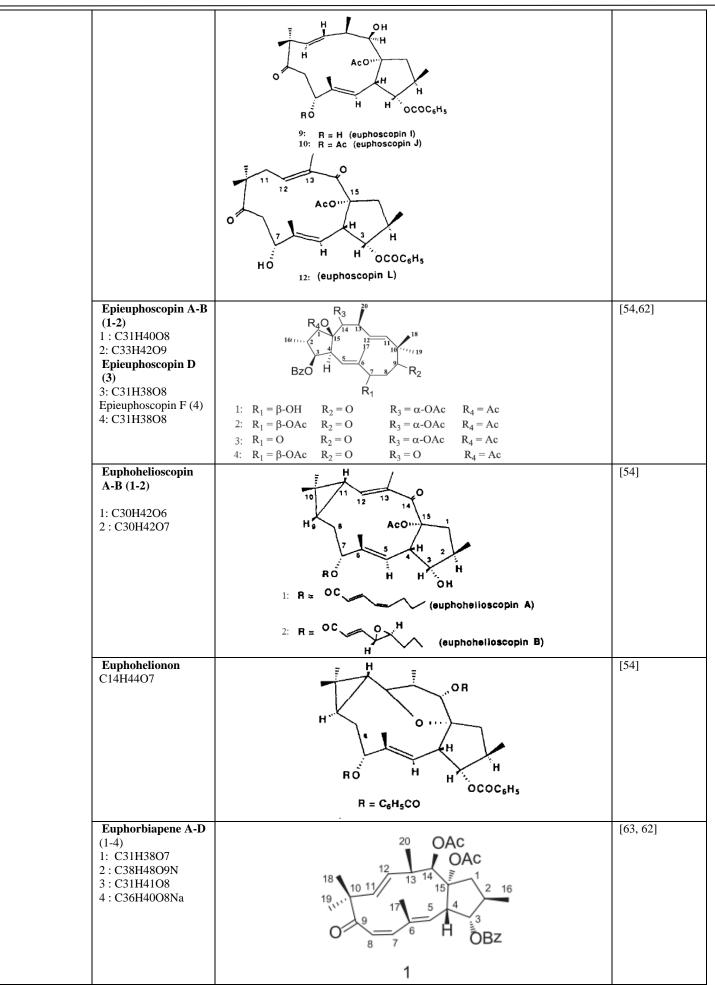
More than 133 diterpenoids have been isolated and structurally characterized from E. helioscopia L. [57, 60], which present the main class components studied in this plant (table 1), e.g Euphohelin A [61], Euphornin A-K (1-11), Euphoscopin A-L, Euphorpin A-F [62], Euphorbiapene A-D [63, 62] and Helioscopianoids A–Q [64].

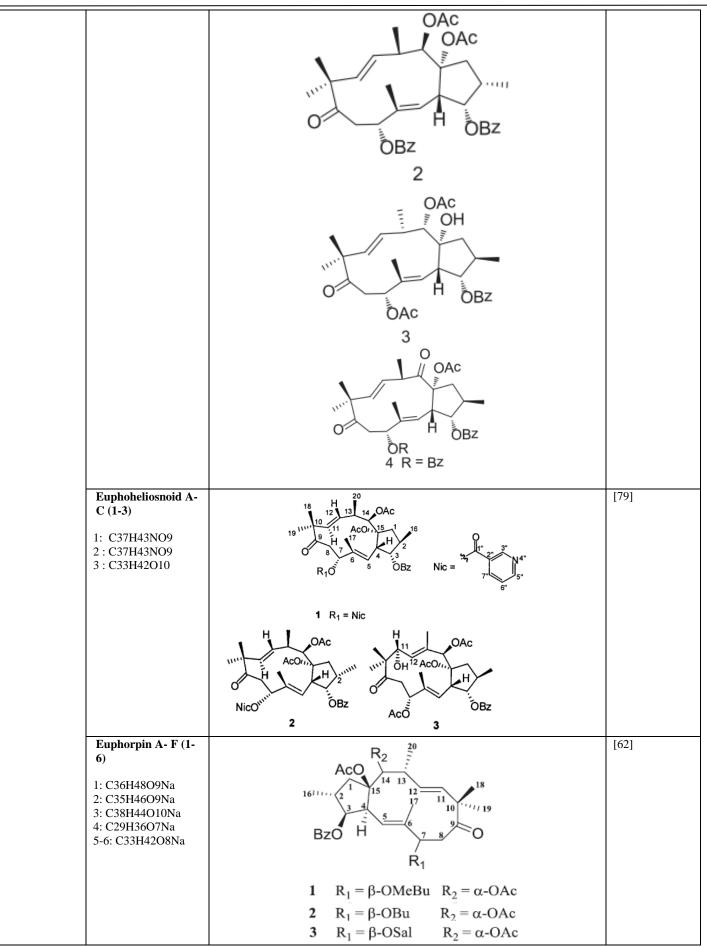

Oil content of *Euphorbia helioscopia's* seeds is equal to 30.33 % with a d15: 0.9346, nD: 1.4847, Iodine index, % J2: 176.6–204.4, and saponification value is 191.1mg KOH [65]. According to [64], E. helioscopia L. contains diterpenoid esters of jatrophane, helioscopianoides A–Q and euphornin N [66-67, 115]. Triterpenes like Euphorbatrine A-G [68]. Four hydrolysable tannins named: heliscopinins A & B, and helioscopins A & B were found in all parts of E. helioscopia L. [55-17, 69]. Other studies have revealed the presence of flavonoids like, Heliosin [70,71], glycosides such as quercetin-3-pglucoside, quercetin-3- $\beta$ -galactoside, quercetin-3- $\beta$ -galactoside-2"-galla [72] and aryl glycoside, 300-O-galloyl-benzyl-O- $\alpha$ -L-rhamnopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -D-glucopyranoside [57-73,74], Hyperoside and Quercetin [75], steroids and lipids like Glucoclionasterol [54, 59] and other secondary metabolites such as 24-methylene cycloartanol, 24-methylenecycloart-3-one, cycloartanol, and stigmast-4-ene-3-one [3]. Diversity in secondary metabolites in all parts of *E. helioscopia L.* would explain their various uses in several areas.

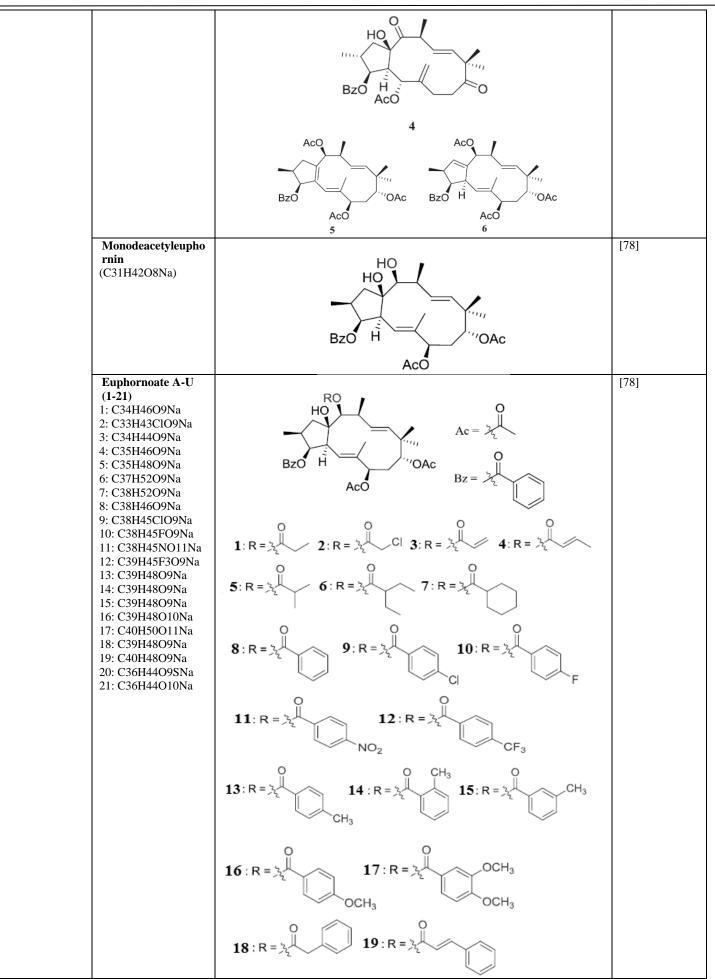
Details related to extraction methods used can be found in mentioned references. Throughout this review, it is seen that chemical proprieties are deeply investigated by researchers from different countries from 1968 up to nowadays (2019). Some substances are present in all parts of the plant while other are located in some of them (table3). Further studies about the use of these chemical constituents can be envisaged. E. helioscopia L. diterpenoids have been extensively studied over the years. However, for many other classes of compounds, with have nteresting pharmacological affects possibilities, investigations are scarce. Examples of these compounds include saponins especially in *E. helioscopia L.* roots, and tannins isolated from *E. helioscopia L.* where there is still much to be explored and published.


| Compound<br>class | Compound name<br>and formula                                       | Chemical structure | References     |
|-------------------|--------------------------------------------------------------------|--------------------|----------------|
| Tannins           | Helioscopin A<br>C <sub>47</sub> H <sub>34</sub> O <sub>32</sub>   |                    | [17-55,69]     |
|                   | Helioscopin B<br>C <sub>47</sub> H <sub>36</sub> O <sub>32</sub>   |                    | [17-55,69]     |
|                   | Helioscopinin A<br>C <sub>41</sub> H <sub>28</sub> O <sub>27</sub> |                    | [17-55-69, 76] |
|                   | Helioscopinin B<br>C <sub>27</sub> H <sub>22</sub> O <sub>18</sub> |                    | [17-55,69]     |

**Table 1**: Identification of the main chemical constituents in Euphorbia helioscopia L.

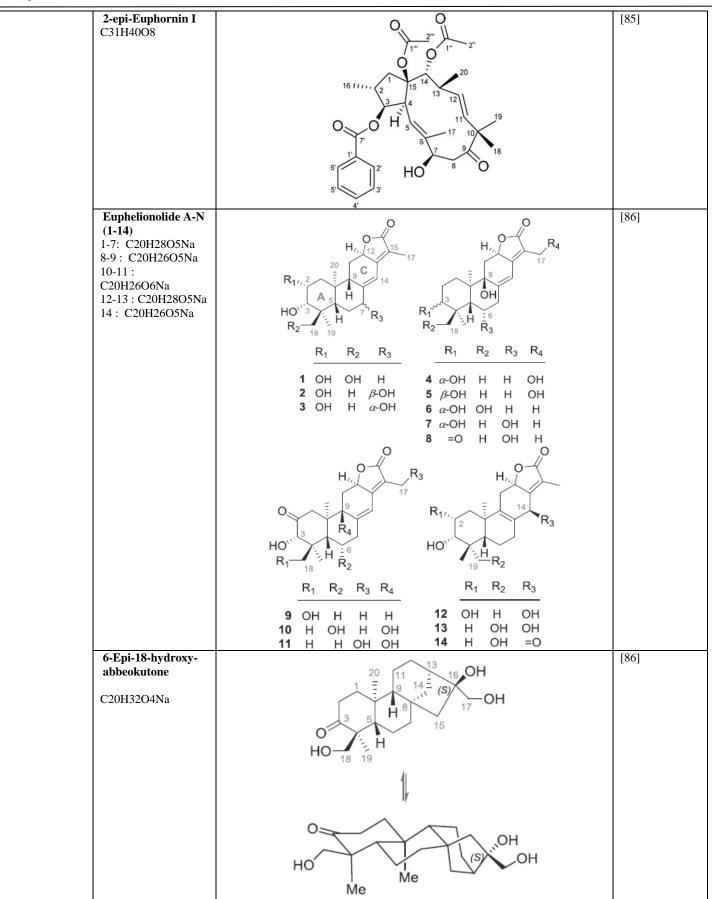

| Corilagin<br>C <sub>27</sub> H <sub>22</sub> O <sub>18</sub>     | но но он он                                                | [55] |
|------------------------------------------------------------------|------------------------------------------------------------|------|
|                                                                  | но-Он                                                      |      |
|                                                                  |                                                            |      |
|                                                                  |                                                            |      |
|                                                                  |                                                            |      |
|                                                                  |                                                            |      |
| Punicafolin<br>C <sub>41</sub> H <sub>30</sub> O <sub>26</sub>   | но но он он                                                | [55] |
| 41 50 20                                                         | но-О-он                                                    |      |
|                                                                  |                                                            |      |
|                                                                  |                                                            |      |
|                                                                  |                                                            |      |
|                                                                  | G Ĩ<br>G                                                   |      |
| Geraniin<br>C <sub>41</sub> H <sub>28</sub> O <sub>27</sub>      | но но он он                                                | [55] |
|                                                                  | но-                                                        |      |
|                                                                  |                                                            |      |
|                                                                  | C OG                                                       |      |
|                                                                  | Ň,                                                         |      |
|                                                                  |                                                            |      |
|                                                                  | $R_2$<br>$R_1, R_2 = (R)DHHDP$                             |      |
| Elaeocarpusin<br>C <sub>47</sub> H <sub>34</sub> O <sub>32</sub> | но но он он                                                | [55] |
|                                                                  | но-Сон                                                     |      |
|                                                                  | 0=¢ ¢=0                                                    |      |
|                                                                  | °Ţ∕oŷĠ                                                     |      |
|                                                                  |                                                            |      |
|                                                                  | $ \begin{array}{c}                                     $   |      |
|                                                                  | $\mathbf{R}_{1}, \mathbf{R}_{2} = (R)\mathbf{E}\mathbf{C}$ |      |
|                                                                  |                                                            |      |





|              | iniouzi, et at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|              | Mauotusinin<br>C <sub>41</sub> H <sub>26</sub> O <sub>25</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [55] |
| Diterpenoids | Helioscopinolide A<br>C <sub>20</sub> H <sub>28</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [69] |
|              | Helioscopinolide B<br>C <sub>20</sub> H <sub>28</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH <sub>3</sub><br>H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [69] |
|              | Helioscopinolide C<br>C <sub>20</sub> H <sub>26</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [69] |
|              | Helioscopianoids A–<br>Q<br>1: $C_{29}H_{38}O_7Na$<br>2: $C_{33}H_{44}O_9Na$<br>3: $C_{33}H_{44}O_{10}Na$<br>4: $C_{31}H_{38}O_8Na$<br>5: $C_{31}H_{40}O_9Na$<br>6: $C_{33}H_{46}O_{11}Na$<br>7: $C_{29}H_{34}O_7Na$<br>8: $C_{35}H_{46}O_9Na$<br>9: $C_{36}H_{48}O_9Na$<br>10: $C_{38}H_{44}O_{10}Na$<br>11: $C_{38}H_{44}O_{10}Na$<br>11: $C_{38}H_{44}O_{10}Na$<br>12: $C_{38}H_{44}O_{10}Na$<br>13: $C_{29}H_{36}O_7Na$<br>14: $C_{33}H_{42}O_9Na$<br>15: $C_{31}H_{40}O_8Na$<br>16: $C_{31}H_{38}O_8Na$<br>17: $C_{29}H_{36}O_8Na$ | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | [64] |



| njoud Harmouzi, et at                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Euphoscopoids A-C<br>(1-3)<br>1: $C_{31}H_{40}O_8$<br>2: $C_{31}H_{40}O_8$<br>3: $C_{29}H_{36}O_6$                                                                                                                                                                                                                                                       | $\begin{array}{c} AcO & 14 & 20 \\ AcO & 14 & 12 & 11 & 19 \\ 16 & 2 & 4 & 17 & 18 \\ BZO & H & 5 & 6 & 7 & 8 \\ HO & 1 & 2 & 11 \\ 16 & 10 & 16 & 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [53]        |
| Euphornin A-K (1-<br>11)<br>1: $C_{31}H_{41}O_7$<br>2: $C_{31}H_{42}O_7$<br>3: $C_{31}H_{40}O_8$<br>4: $C_{35}H_{46}O_{10}$<br>5: $C_{29}H_{38}O_7$<br>7: $C_{31}H_{40}O_8$<br>8: $C_{33}H_{42}O_9$<br>9: $C_{33}H_{42}O_9$<br>10: $C_{31}H_{40}O_8$<br>11: $C_{31}H_{40}O_8$                                                                            | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [54-62, 78] |
| $\begin{array}{c} \textbf{Euphoscopin A-L} \\ \textbf{(1-12)} \\ 1: C_{31}H_{40}O_8 \\ 2: C_{33}H_{42}O_9 \\ 3: C_{38}H_{44}O_9 \\ 4: C_{31}H_{38}O_8 \\ 5: C_{29}H_{36}O_7 \\ 6: C_{31}H_{38}O_8 \\ 7: C_{29}H_{38}O_7 \\ 8: C_{31}H_{40}O_8 \\ 9: C_{29}H_{38}O_7 \\ 10: C_{31}H_{40}O_8 \\ 11: C_{29}H_{39}O_7 \\ 1_{2:} C_{29}H_{36}O_7 \end{array}$ | ACO<br>$R_2$<br>$R_1$<br>$R_1$<br>$R_1 = \beta$ -OH<br>$R_1$<br>$R_1 = \beta$ -OH<br>$R_1$<br>$R_1 = \beta$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OBz<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OBz<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OBz<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OH<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OH<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OH<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_1 = \beta$ -OAc<br>$R_2 = \alpha$ -OAc<br>$R_2 = 0$<br>$R_1 = \beta$ -OAc<br>$R_2 = 0$<br>$R_1 = R_2 = AC$<br>$R_1 = R_2 = AC$<br>$R_2 = H$ | [54,62]     |

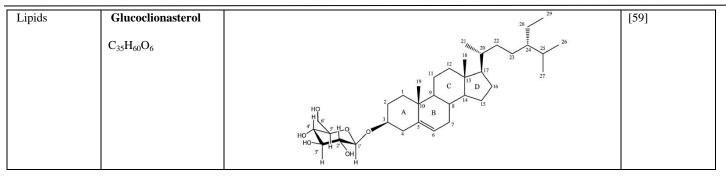







| Anjouu Huin | ,                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|-------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|             |                                                                                                     | 20:R=32 S 21:R=32 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|             | Heliojatrone A-B (1-<br>2)<br>$1:C_{31}H_{38}O_8$<br>$2:C_{31}H_{40}O_8$                            | $\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [80] |
|             | Euphorhelipane A-<br>B<br>(1-2)<br>1: C <sub>20</sub> H <sub>30</sub> O <sub>4</sub><br>2: C20H30O4 | $\begin{array}{c} \begin{array}{c} 16 \\ 18 \\ 10 \\ 18 \\ 10 \\ 18 \\ 10 \\ 10 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [81] |
|             | Heliojatrone C                                                                                      | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [82] |
|             | C33H42O9Na                                                                                          | $\begin{array}{c} AcO \\ AcO \\ 16 \\ 10 \\ 2 \\ 3 \\ H \\ 5 \\ 6 \\ 7 \\ 8 \\ 6 \\ 7 \\ 8 \\ OAc \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|             | Euphcopenoid A-B<br>(1-2)<br>1: C20H26O4<br>2: C20H28O4                                             | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 18 \\ 19 \\ 1 \end{array} \begin{array}{c} 0 \\ 16 \\ 10 \\ 18 \\ 19 \\ 1 \end{array} \begin{array}{c} 0 \\ 16 \\ 16 \\ 16 \\ 18 \\ 19 \\ 1 \end{array} \begin{array}{c} 0 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [83] |
|             | Euphoscopoid D-F<br>(1-3)<br>1: C29H34O7Na<br>2: C31H40O7Na<br>3: C36H40O8N                         | $\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $ | [82] |
|             |                                                                                                     | AcO<br>BZO<br>H<br>BZO<br>3: 2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |

| Anjouu Harmouzi, et at                                                                                                           | Der 1 harma Chemica, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22, 11(0): 1 55 |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Jatrophane-type<br>diterpenoids (1-4)           1: C33H44O10           2: C29H40O7           3: C33H44O10           4: C38H44O10 | AcO = 20 $AcO = 4$ $HO = 4$ $BzO = H$ $AcO = 10$ $AcO = 10$ $AcO = 10$ $BzO = H$ $AcO = 10$ $AcO = 10$ $AcO = 10$ $BzO = H$ $AcO = 10$ $AcO = 10$ $BzO = 10$ $AcO = 10$ $AcO = 10$ $BzO = 10$ $AcO = 10$ $AcO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [11]            |
| Euphorhelipanes A-<br>B (1-2)<br>1: C20H30O4<br>2: C20H30O4                                                                      | $1^{16} \xrightarrow{19} O \xrightarrow{12} O \xrightarrow{110} B \xrightarrow{110} O \xrightarrow{12} O \xrightarrow{110} O \xrightarrow{12} O \xrightarrow{111} O \xrightarrow{12} O \xrightarrow{111} O \xrightarrow{11} O \xrightarrow{11} O \xrightarrow{111} O \xrightarrow$ | [8]             |
| Heliosterpenoids A-<br>B (1-2)<br>1: C31H38O7Na<br>2 : C29H36O6Na                                                                | $\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [84]            |
| Secoheliosphanes A<br>and B (1-2)<br>1: C31H40O8<br>2: C31H40O8                                                                  | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [85]            |
| Secoheliospholane A<br>C31H40O10                                                                                                 | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [85]            |




| Γ           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|             | Eupheliotriol A-B<br>(1-2)<br>1: C20H30O4Na<br>2: C20H30O5Na                                                                                                                                                              | $18 \xrightarrow{19} H \xrightarrow{20} O \xrightarrow{14} OH \xrightarrow{15} 16$ $H \xrightarrow{9} H \xrightarrow{17} \xrightarrow{5} H \xrightarrow{6} OH$ $H \xrightarrow{10} OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [86] |
|             |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| Triterpenes | Euphorbatrine A-G<br>(1-7)<br>(19 $\alpha$ H)-lupane : (1-<br>2) :<br>1 : C29H48O2<br>2 : C30H48O2<br>3 : C29H46O2<br>(9 $\beta$ H)-lanostane : (4-<br>6)<br>4 : C30H50O2<br>5 : C30H50O2<br>6 : C30H48O2<br>7 : C30H46O3 | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | [68] |
|             |                                                                                                                                                                                                                           | 5 6<br>19 11 + 113 + 15 + 15 + 15 + 15 + 15 + 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |

| Flavonoids          | Heliosin             | 10                      | [56, 71] |
|---------------------|----------------------|-------------------------|----------|
| Flavonoius          | $C_{27}H_{30}O_{17}$ | HO                      | [50, 71] |
|                     |                      | HQLO                    |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      |                         |          |
|                     |                      | но он                   |          |
| Falavones           | Quercetin-3-O-       | _OH                     | [87]     |
| Falavolies          | glucoside            | É                       |          |
|                     | $C_{21}H_{19}O_{12}$ | O OH                    |          |
|                     |                      |                         |          |
|                     |                      | OH OH OH                |          |
|                     |                      | HO                      |          |
|                     |                      |                         |          |
|                     |                      | OH                      |          |
| Flavonols           | Kaempferol           | ÓH OH                   | [88]     |
| Flavonois           | $C_{15}H_{10}O_6$    |                         | []       |
|                     |                      | HO                      |          |
|                     |                      |                         |          |
|                     |                      | Т ОН                    |          |
|                     | Isomyricitrin        | <u>ÓН Ö</u><br>он он    | [75]     |
| Flavonol glycosides | $C_{21}H_{20}O_{13}$ | НО ОН ОН                | [75]     |
|                     |                      |                         |          |
|                     |                      | ноинин о он             |          |
|                     |                      | HO <sub>NN</sub> , O OH |          |
|                     |                      |                         |          |
|                     |                      | HO                      |          |
|                     |                      | у то тон                |          |
|                     |                      | но                      |          |
|                     |                      | ОН                      |          |
| Glucosides          | Hyperoside           | ОН                      | [56, 75] |
|                     | $C_{21}H_{20}O_{12}$ | ОН                      |          |
|                     |                      | HO                      |          |
|                     |                      | I I I -                 |          |
|                     |                      |                         |          |
|                     |                      | он о стан               |          |
|                     |                      | ОН                      |          |
|                     |                      | он он                   |          |
|                     |                      |                         |          |

|                     | Quercetin<br>C <sub>15</sub> H <sub>10</sub> O <sub>7</sub>                                    | НО ОН ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [56, 75]    |
|---------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                     | Quercetin-3-O- $\beta$ ,<br>galactoside-2" –galate<br>$C_{28}H_{24}O_{16}$                     | OH O<br>OH O<br>$2^{+}$ OH<br>HO<br>$8^{-}$ OH<br>$0^{+}$ OH | [87]        |
|                     | Titimalin (Quercetin-<br>5,3-digalactoside)<br>C <sub>27</sub> H <sub>30</sub> O <sub>17</sub> | $HO - CH_2 O O O O O O O O O O O O O O O O O O O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [70-89, 90] |
| Glycosphingolipides | Cerebrosides 1-7<br>C <sub>41</sub> H <sub>77</sub> NO <sub>9</sub>                            | $H_{H} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [59]        |

| $H_{HO} \xrightarrow{4^{-1}}_{(H^{-1})^{-1}} \xrightarrow{1^{-1}}_{(H^{-1})^{-1}} \xrightarrow{1^{-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $HN \xrightarrow{1} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{0} \xrightarrow{1} \xrightarrow{1} \xrightarrow{2} \xrightarrow{1} \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \xrightarrow{0} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{2} \xrightarrow{1} \xrightarrow{2} \xrightarrow{2} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $HO_{3^{*}}^{0} OH HO_{3^{*}}^{0} OH OH C C C C C C C C C C C C C C C C C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $H_{O} \xrightarrow{3^{*}}_{OH} \xrightarrow{1^{*}}_{OH} \xrightarrow{1^{2}}_{OH} \xrightarrow{1^{2}}$ | [59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HO $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $H = \begin{pmatrix} 0 \\ s \\ s \\ H \\ H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{y} = \begin{bmatrix} \mathbf{y}_{1}^{(0)} + \mathbf{y}_{1}^{(0$ |



#### **Pharmacological properties**

In literature, twenty five pharmacological activities (table 2) were reported in relation with E. helioscopia L. References of studies describing these activities are summarized in table 3 below and are chronologically classified as described in the literature.

| Pharmacological activity                 | References       |
|------------------------------------------|------------------|
| Antibacterial activity                   | [1-5-7-77-91,93] |
| Antiviral activity                       | [7,85]           |
| Antioxidant activity                     | [1-13-14,15]     |
| Antifungal activity                      | [1-16,95]        |
| Phytotoxic activity                      | [1]              |
| Anthelmintic activity                    | [8, 96]          |
| Antitumor activity                       | [9,68]           |
| Anti-allergic activity                   | [76]             |
| Anti-asthmatic activity                  | [76]             |
| Cytotoxic activity                       | ([10-11-53,84]   |
| Anticancer activity                      | [12-41-92-91,94] |
| Allelopathic activity                    | [98,99]          |
| Anti-nociceptive activity                | [15]             |
| Anti-inflammatory activity               | [15,82]          |
| Anti-pyretic activity                    | [15]             |
| Vasodepressor activity                   | [3]              |
| Free-radical scavenging activity         | [59]             |
| Antifeedant                              | [53]             |
| Inhibitory activity                      | [63]             |
| Antileishmanial Activity                 | [100]            |
| Catalytic activity                       | [101]            |
| P-glycoprotein (P-gp) inhibitory         | [84]             |
| Lipid-lowering activity                  | [62]             |
| Multidrug resistance modulators activity | [78]             |
| Triglyceride-lowering activity           | [8]              |

Table 2: Different biological activities of Euphorbia helioscopia

The most interesting active compounds from *E. helioscopia L.* belongs to diterpenoids [9, 12]. For example, the bioactive jatrophane diterpenoides, heliosterpenoids A & B were found to be potent inhibitors of P-glycoprotein (ABCB1) and exhibited cytotoxicity against MDA-MB-231 cell lines [85]. The same Helioscopianoids A–Q showed neuroprotective activities against serum deprivation-induced PC12 cell damage [80], euphelionolides F and L diterpenoids exhibited significant cytotoxicity against MCF-7 and PANC-1 cell lines [86]. Triterpenoids Euphorbatrine E and F increased Hela–/– cell death via activating apoptosis pathway other than necroptosis [68]. And the most relevant activities are antibacterial [1-5-7-66-91, 93], antioxidant [1-13-14, 15] and anticancer [12-41-92-91, 94]. As previously described, *E. helioscopia L.* has several properties, among them its

antioxidant activity *E. helioscopia L.* flowers extracts have the highest levels of phenolics and flavonoids, as well as highest antioxidant compared to leaf and stem extracts, regardless of the solvent used [14]. Another study reported that methanolic extracts of *E. helioscopia L.* leaves possess significant antioxidant activity in vivo by increasing biomarkers of oxidative stress in tissue and homogenates serum enzymes [15].

Among bioactive functions of *E. helioscopia L.*, some studies mentioned an antiviral and antibacterial effect [6-7, 8]. In addition, it has been reported that antibacterial activity of dichloromethane and methanol extracts from aerial parts of *E. helioscopia L.* was performed against *Eschericha Coli, Bacillus Subtilis, Shigella Flexenari, Staphylococcus Aureu, Pseudomonas Aeruginosa* and *Salmonella Typhi* [1]. *E. helioscopia L.* was active against *Bacillus Anthracis* [5]. As well as extracts from *E. helioscopia L.* had an inhibition of more than 90% against *Botrytis Cinerea, Rhizoctonia, Solani, Fusarium Oxysporum, Cladosporium Cucumerinum* and *Alternaria Solani Fungi* [16].

Isolated compounds (*Euphornin L.* and *Euphoscopin*) of *E. helioscopia L.* exhibited cytotoxicity against HL-60 [10]. Extracts of *E. helioscopia L.* from Turkey showed a vasodepressor effect which could be due to its vasorelaxant activity [3]. *E. helioscopia L.* also showed an anticancer effect; indeed, ethyl acetate and chloroform extracts could inhibit the proliferation of five human cancer cell lines over a range of concentrations from 50 to 200  $\mu$ g / mL [12]. Park's study [76] indicates that polyphenol compound known as helioscopian *L.* has shown some inhibitory activity of capillary permeability in responses to passive cutaneous anaphylaxis in rats. The whole plant of *E. helioscopia L.* has significant anthelmintic activity, which may be a potential alternative to treating helminth infections in ruminants [96]. Studies showed that *E. helioscopia L.* have innumerable benefits especially from aerial parts, such as antioxidant, antiviral, antitumoral, antibacterial, antifungal, anti-allergic, anti-asthmatic allelopathic, lipid and triglyceride lowering activity and other effects, it is very promising as anthelmintic.

Table 3 below provides a summary of reported pharmacological activities, details of extracts, application type (in vivo or in vitro), test objective, used control; doses tested for drugs and found results. Among the thirty nine studies about pharmacological activities, 40 % of presented tests were conducted in vivo, 10% of them are performed in vivo and in vitro. Where extracts from all parts of the plant were used to determine these pharmacological proprieties. Encouraging findings can be considered as a scientific demonstration of the different historical uses of this plant as drug as specified in the chapter 3 of this review.

All previously cited researchers used the whole plant of *E. helioscopia L.* for their studies. However, there are no studies that use each organ (roots, stems, leaves or flowers) of the plant separately and compare their effects for example. The same remark is applicable for comparison of different methods of extraction or solvents that give the best yield extracts. Studies show that *E. helioscopia L* countless health benefits, such as antibacterial, antiviral, antioxidant, antifungal, anthelmintic, antitumor, anti-allergic, anti-asthmatic, cytotoxic, anticancer. Also, it is very promising as lipid- and Triglyceride-lowering activities. Thus, the pharmacological activities should be fully explored with in-depth in vitro and in vivo tests, and, ultimately, clinical trials to prove these activities in humans (Table 3).

| Pharmacologic<br>al activity                          | Extract<br>details                                                | In vivo / in<br>vitro test | Objective                                                                                                                                                                              | Used control                                                                                                                                                                                        | Dose tested for<br>drugs                                                                                                                                                                                                    | Findings                                                                                                                                                                      | Reference<br>s |
|-------------------------------------------------------|-------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Antibacterial<br>activity                             | Methanol<br>extracts of<br><i>E.helioscopia</i><br><i>L.</i>      | In vitro                   | To evaluate the<br>antibacterial<br>activity of 306<br>plants from 52<br>families from<br>northeastern Iran<br>(Khorasan<br>province),<br>including <i>E.</i><br><i>helioscopia L.</i> | In each plate, a<br>positive control<br>(gentamycin 0.8<br>mg / 0.2 ml or<br>clotrimazole 8 µg /<br>0.2 ml) and<br>negative control<br>(methanol 0.2 ml)<br>were included.                          | Crude extracts<br>(0.2 ml),<br>corresponding to<br>0.5 g of<br>powdered plant /<br>ml of extract.                                                                                                                           | Methanol<br>extracts from <i>E.</i><br><i>helioscopia L.</i><br>reported a<br>significant<br>effect against<br><i>Bacillus</i><br><i>Anthracis.</i>                           | [5]            |
| Antitumor<br>Activity                                 | Aquatic extract<br>of <i>E.</i><br><i>helioscopia L.</i><br>roots | In vitro                   | 3 types of cancer<br>cells were used<br>to assess the<br>antitumor<br>activity.                                                                                                        | Control cells<br>exhibited normal<br>morphology.                                                                                                                                                    | 1.43, 1.67,<br>0.97mg/ml of<br>aquatic extract.                                                                                                                                                                             | <i>E.helioscopia</i><br>extracts<br>(4mg/ml)<br>inhibited 7721,<br>Hela, MKN-45<br>cells with<br>59.8%, 66.4%,<br>70.5%. <i>They</i><br>had obvious<br>antitumor<br>activity. | [9]            |
| Anti-Allergic<br>and Anti-<br>Asthmatic<br>activities | Extraction of<br>polyphenol<br>compound,<br>helioscopinin-<br>A.  | In vivo: rats<br>and pigs  | To identify the<br>chemical nature<br>of principal<br>active                                                                                                                           | Control of relaxant<br>activity: positive<br>reference FPL<br>55712 (100<br>µg/ml).<br>Control of allergic<br>response : Rat<br>passive cutaneous<br>anaphylaxis<br>(45mg/kg of<br>Helioscopinin-A) | Relaxant activity:<br>500, 1000 µg/ml<br>of extract of E.<br>helioscopia L<br>Allergic<br>response:<br>- 1mg/ml of<br>Helioscopinin-A<br>for rat mast cell<br>Histamine release<br>test<br>- 30 mg/ml of<br>Helioscopinin-A | Helioscopinin-<br>A showed an<br>anti-allergic and<br>anti-asthmatic<br>activity.                                                                                             | [76]           |

#### Table 3: Main pharmacological activities of Euphorbia helioscopia

| 0                                            | nouzi, et at                                                                                                                                                       |          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |      |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                              |                                                                                                                                                                    |          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | for asthmatic<br>bronchial<br>constriction<br>- 0.1; 0.5; 1<br>mg/ml of<br>Helioscopinin-A<br>for leukotriene<br>D4 introduced<br>tracheal<br>contraction<br>- 0.1 et 1 mg/ml<br>of Helioscopinin-<br>A for leukotriene<br>D4 induced ileal<br>contraction.                                                                                                                                                                            |                                                                                                                                                                                                                                         |      |
| Antimicrobial<br>activity                    | 0.25 g leaf of<br>each species<br>was ground in a<br>braying mortar,<br>then 2.5 ml or 5<br>ml DMSO or<br>ethanol was<br>added in order<br>to prepare<br>solutions | In vitro | To study E.<br>helioscopia L.<br>activity against<br>Bacillus subtilis,<br>Staphylococcus<br>aureus,<br>Escherichia coli<br>and Candida<br>albicans.                                                                    | Control discs were<br>soaked in ethanol<br>and DMSO.                                                                                                                                                                                            | 0.05 g/ml and 0.1<br>g/ml                                                                                                                                                                                                                                                                                                                                                                                                              | E. helioscopia<br>L.<br>proved to be the<br>most effective<br>against Bacillus<br>subtilis,<br>Staphylococcus<br>aureus,<br>Escherichia coli<br>and Candida<br>albicans.                                                                | [6]  |
| Antifungal<br>activity                       | Extracts of 14<br>plants<br>including: <i>E.</i><br><i>helioscopia L</i>                                                                                           | In vitro | To evaluate<br>antifungal<br>activity of 14<br>plants' extracts<br>against fungi:<br>Botrytis Cinerea,<br>Rhizoctonia.<br>Solani,<br>Fusariurn<br>Oxysporurn,<br>Cladosporiurn<br>Cucurnerinurn et<br>Alternaria Solani | Control: without<br>treatment.                                                                                                                                                                                                                  | Concentration of<br>extracts was 0.1 g<br>/ ml. Using<br>methods of<br>growth rate and<br>spore<br>germination.                                                                                                                                                                                                                                                                                                                        | Extracts of X.<br>sibiricurn, E.<br>helioscopia L.,<br>S. flavescens, S.<br>nigrurn, A.<br>Annua and T.<br>mongolicum had<br>an inhibition<br>rate superior<br>than 90% in<br>spore<br>germination of<br>at least one<br>tested fungus. | [16] |
| Cytotoxic<br>activity                        | Euphornin L,<br>and seven<br>known<br>analogues were<br>isolated from <i>E.</i><br><i>helioscopia</i> L.                                                           | In vitro | To extraire<br>Euphornin L, and<br>seven analogues<br>and evaluate<br>their toxicity<br>against HL-60.                                                                                                                  | Control: without<br>treatment.                                                                                                                                                                                                                  | 2.7 and 9.0 μM.                                                                                                                                                                                                                                                                                                                                                                                                                        | Euphornin L<br>and<br>euphoscopin F<br>showed<br>significant<br>cytotoxicity to<br>HL-60 cell lines<br>with $LC_{50}$<br>values of 2.7<br>and 9.0 $\mu$ M.                                                                              | [10] |
| Antiviral and<br>Antibacterial<br>activities | Soxhlet and<br>maceration in<br>methanol<br>extracts of<br>aerial parts of<br><i>E. helioscopia</i><br><i>L.</i>                                                   | In vitro | To evaluate<br>antiviral activity<br>using plaque<br>reduction assay                                                                                                                                                    | Negative control:<br>contained all<br>content for<br>treatment except<br>for replacement of<br>bacterial<br>suspension with<br>PA Top Agar<br>medium.<br>Positive control:<br>plate the extract<br>was replaced with<br>500 µL<br>trifluridine. | Sterile Eppendorf<br>micro-centrifuge<br>tubes<br>(polypropylene;<br>1.5 mL; Sarstedt)<br>were used. Each<br>tube contained<br>colony-forming<br>units (cfu) ml <sup>-1</sup><br>of Bacillus<br>Cereus ATCC<br>10876 cultures,<br>serially diluted <i>E.</i><br><i>helioscopia</i><br><i>L.</i> extract in<br>distilled water<br>(62.5, 125, 250,<br>375, 500, 750,<br>1000 and 1250<br>µg.mL <sup>-1</sup> ) and<br>respective growth | Macerated<br>extract showed<br>the hight<br>reduction of the<br>number of<br>plaques in other<br>hand extracts by<br>Soxhlet method<br>might destroy<br>the active<br>compounds.                                                        | [7]  |

| Cutotoria                                                                    | Four                                                                                                                                                                                                  | In                                             | To avaluate                                                                                                                                                                                                                                                                                             | A drianavain                                                                                                                           | medium .                                                                                                                                                                                     | Unline and a list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [11] |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Cytotoxic<br>activity                                                        | Four<br>jatrophane-type<br>diterpenoids,<br>were isolated<br>from <i>E.</i><br><i>helioscopia L.</i> .                                                                                                | In vitro                                       | To evaluate<br>isolated<br>compounds<br>effect against<br>HeLa and MDA-<br>MB-231 cells.                                                                                                                                                                                                                | Adriamycin as a<br>positive control<br>(LC50) $0.41 \mu M$<br>against HeLa cells<br>and $0.34 \mu M$<br>against MDA-MB-<br>231 cells). | -                                                                                                                                                                                            | Helioscopinolid<br>e A and<br>Euphornin<br>showed<br>cytotoxic<br>activity                                                                                                                                                                                                                                                                                                                                                                                                                         | [11] |
| Antioxidant,<br>antifungal,<br>antibacterial and<br>phytotoxic<br>activities | Dichlorometha<br>ne and<br>methanol<br>extracts from<br>the aerial parts<br>of <i>E.</i><br><i>helioscopia L.</i> .                                                                                   | In vitro                                       | To evaluate<br>antioxidant,<br>antifungal,<br>antibacterial and<br>phytotoxic<br>activities of<br><i>Euphorbia</i><br><i>Helioscopia</i><br>extracts.                                                                                                                                                   | Control: Without<br>treatment.                                                                                                         | -                                                                                                                                                                                            | Dichloromethan<br>e extract<br>showed<br>significant<br>activity against<br><i>Fusarium</i><br><i>Solani</i> with<br>90% inhibition,<br>where the same<br>extract also<br>showed non-<br>significant<br>activity against<br><i>Salmonella</i><br><i>Typhi</i> and<br><i>Bacillus</i><br><i>Subtilis.</i> The<br>methanolic<br>extract has a<br>promising<br>radical<br>scavenger<br>activity in this<br>assay. Both<br>extracts have<br>non-significant<br>phytotoxicity on<br><i>Lemna Minor.</i> | [1]  |
| Multidrug<br>resistance<br>activity in<br>cancer therapy                     | EtOAc extract<br>of <i>E.</i><br><i>helioscopia L.</i><br>offred<br>Jatrophane and<br>lathyrane<br>diterpenes.                                                                                        | In vitro                                       | To investigate of<br>the aerial parts of<br><i>Euphorbia</i> spices<br>among them <i>E.</i><br><i>helioscopia L.</i> , to<br>isolate their<br>bioactive<br>metabolites and<br>to test their<br>multidrug<br>resistance<br>activity.                                                                     | Cyclosporin A<br>(CsA) was used as<br>a reference<br>inhibitor.                                                                        | Compounds were<br>tested at<br>concentrations of<br>0, 0.5, 2.0, 2.5,<br>10, 20 µM                                                                                                           | <i>E. helioscopia</i><br><i>L.</i> , appeared to<br>be specific<br>inhibitors of<br>Pgp<br>since they<br>showed no<br>significant<br>activity against<br>BCRP, thus<br>resembling to<br>the third-<br>generation class<br>of specific<br>MDR inhibitors.                                                                                                                                                                                                                                           | [41] |
| Allelopathic<br>activity                                                     | Aqueous<br>extracts of root,<br>stem, leaf, and<br>fruit were<br>prepared by<br>soaking dried<br>plant parts of <i>E.</i><br><i>helioscopia L.</i><br>in water (1:20<br>w/v) for a<br>period of 24 h. | In vivo:<br>wheat,<br>chickpea,<br>and lentil. | To study the<br>effects of extract<br>from different<br>parts of <i>E</i> .<br><i>helioscopia L</i> . on<br>wheat, chickpea,<br>and lentil<br>germination and<br>seedling growth,<br>and to compare<br>the allelopathic<br>potential of<br>various plant<br>parts of <i>E</i> .<br><i>helioscopia L</i> | Control: Distilled<br>Water                                                                                                            | In each petri dish<br>72 mL of extract<br>or<br>distilled water<br>was added<br>according to the<br>treatment to<br>avoid the drying<br>out of seedlings<br>throughout the<br>growth period. | MDR inhibitors.<br>Water extracts<br>from <i>E.</i><br><i>helioscopia L</i> 's<br>root, stem, leaf<br>and fruit<br>resulted in a<br>reduction in the<br>seed<br>germination<br>(chickpea and<br>lentil only) and<br>germination<br>index; but leaf<br>extracts<br>increased the<br>mean<br>germination<br>time in all test<br>crops.                                                                                                                                                               | [98] |

# Der Pharma Chemica, 2022, 14(8): 1-35

| activity                                         | avtracts                                                                                                                                                                                                                        |                                                                                                                                                                                               | antiovidant                                                                                                                                                                                                                                                                                                                       | plue methanel we-                                                                                                       | concentrations of                                                                                                                                                                                                    | E haliogaania                                                                                                                                                                                                                                                                      |      |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| activity                                         | extracts                                                                                                                                                                                                                        |                                                                                                                                                                                               | antioxidant<br>activity of total<br>methanol<br>extracts from 54<br>species of 30<br>families which <i>E.</i><br><i>helioscopia L.</i><br>among them.                                                                                                                                                                             | plus methanol was<br>used as a control                                                                                  | concentrations of<br>extracts (10, 20,<br>50, 100, 200 and<br>300 µg/mL, in<br>methanol) were<br>added at an equal<br>volume (2.5 mL)<br>to methanolic<br>solution of DPPH<br>(0.3 mM, 1 mL).                        | <i>E.helioscopia</i><br>was among<br>plant exhibited<br>the strongest<br>activity.                                                                                                                                                                                                 |      |
| Anticancer<br>activity                           | Extracts with<br>aqueous<br>ethanol;<br>petroleum ether<br>extract (PEE),<br>ethyl acetate<br>extract (EAE),<br>chloroform<br>extract (CE)<br>and n-butanol<br>extract (NBE)<br>from <i>Euphorbia</i><br><i>Helioscopia L</i> . | In vitro                                                                                                                                                                                      | To evaluate the<br>growth inhibitory<br>effects of <i>E.</i><br><i>helioscopia L.</i><br>extracts on five<br>different human<br>cancer cells;<br>Human<br>hepatocellular<br>carcinoma cell<br>lines SMMC-<br>7721, BEL-7402,<br>HepG2, gastric<br>carcinoma cell<br>line SGC-7901<br>and colorectal<br>cancer cell line<br>SW480. | The control cells<br>exhibited normal<br>morphology of<br>nucleolus,<br>cytoplasm and<br>organelles.                    | Latex and leaves<br>methanol extract<br>(600 and 1.200<br>mg/kg) orally,<br>once a day, were<br>given to mice for<br>two weeks.                                                                                      | <ul> <li>Ethyl acetate<br/>extract and CE<br/>could inhibit the<br/>proliferation of<br/>all five human<br/>cancer cell lines<br/>at the<br/>concentration<br/>range of 50 to<br/>200 µg/mL.</li> <li>Flavonoids<br/>could be the<br/>main<br/>constituents of<br/>EAE.</li> </ul> | [12] |
| Antioxidant<br>activity                          | Methanolic and<br>ethanolic<br>extracts of <i>E.</i><br><i>helioscopia L.</i><br>aerial parts.                                                                                                                                  | In vitro                                                                                                                                                                                      | To evaluate total<br>phenolics,<br>flavonoids<br>contents of<br>methanolic and<br>ethanolic extracts<br>of <i>E. helioscopia</i><br><i>L.</i> leaves, flowers<br>and stem and<br>examine their<br>antioxidant<br>proprieties using<br>DPPH radical<br>scavenging<br>assay.                                                        | Positive control:<br>Trolox (6-<br>hydroxyl-2578<br>tertramethylchrom<br>e-2-carboxylic<br>acid)                        | 1ml of each<br>sample extract of<br>varying<br>concentrations<br>(20, 50, 100, 200<br>and 500µg/ml)<br>was mixed with<br>2ml of DPPH<br>methanol solution<br>(10-4M).                                                | Extracts from<br>Euphorbia<br>Helioscopia,<br>flowers had the<br>highest phenolic<br>and flavonoids<br>content as well<br>as the highest<br>antioxidant<br>potency<br>compared to<br>extracts from<br>leaves and stem,<br>regardless the<br>solvent used.                          | [14] |
| Anthelmintic<br>activity                         | Aqueous and<br>methanol<br>extracts of<br>stem, leaves<br>and flowers of<br><i>E. helioscopia</i><br><i>L.</i>                                                                                                                  | In vitro: A<br>worm<br>motility<br>inhibition<br>(WMI)<br>assay and<br>egg hatch<br>assay<br>(EHA)<br>In vivo:<br>sheeps<br>(faecal egg<br>count<br>reduction<br>(FECR)<br>assay was<br>used) | To evaluate the<br>in vitro and in<br>vivo anthelmintic<br>activity of <i>E.</i><br><i>helioscopia L.</i>                                                                                                                                                                                                                         | Positive control:<br>Levamisole (0.125 mg.ml <sup>-1</sup> )<br>Negative control:<br>1 ml of phosphate<br>buffer saline | Different<br>concentrations<br>(12.5 mg.ml <sup>-1</sup> , 25<br>mg.ml <sup>-1</sup> and 50<br>mg.ml <sup>-1</sup> ) of<br>aqueous and<br>methanolic<br>extracts were<br>used against <i>H.</i><br><i>Contortus.</i> | The entire plant<br>of <i>E</i> .<br><i>helioscopia L</i> .<br>possesses<br>significant<br>anthelmintic<br>activity and<br>could be a<br>potential<br>alternative for<br>treating cases of<br>helminth<br>infections in<br>ruminants.                                              | [96] |
| Anthelmintic<br>and<br>antimicrobial<br>activity | The powdered<br>plant parts (500<br>g) were<br>extracted with<br>distilled water<br>(2,000 ml) at<br>90–100 °C;<br>then, same<br>material was air<br>dried at<br>ambient room                                                   | In vitro:<br>worm<br>motility<br>inhibition<br>assay and<br>egg hatch<br>assay<br>In vivo:<br>Kashmir<br>Marino<br>sheep of                                                                   | Evaluate the<br>anthelmintic and<br>antimicrobial<br>efficacy of<br><i>Euphorbia</i><br><i>Helioscopia</i><br>crude extracts.                                                                                                                                                                                                     | Control: without<br>treatment                                                                                           | Different<br>concentrations<br>(12.5 mg/ml, 25<br>mg/ml, 1 and 50<br>mg/ml) of<br>aqueous and<br>methanolic<br>extracts were<br>used against <i>H.</i><br><i>Contortus</i> which<br>exhibited dose-                  | <i>E. helioscopia</i><br><i>L.</i> showed an<br>effect against<br>gastrointestinal<br>nematodes and<br>some selected<br>veterinary<br>pathogenic<br>microbes<br>suggest an<br>alternative to                                                                                       | [97] |

# Der Pharma Chemica, 2022, 14(8): 1-35

| nijouu nu                               | mouzi, <i>et al</i>                                                                                                                                                |                                  |                                                                                                                                                                                                                                           |                                                                                       | er Fnarma Chen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       | ,    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                         | temperature.<br>Methanolic<br>extraction<br>(2,800 ml,<br>Qualigens) was<br>done at 60 °C<br>in a Soxhlet<br>extractor using<br>a sequence of<br>solvents for 8 h. | both sexes<br>(1 year of<br>age) |                                                                                                                                                                                                                                           |                                                                                       | dependent<br>anthelmintic<br>effects on <i>H.</i><br><i>Contortus.</i><br>The antimicrobial<br>activity of<br>extracts ranging<br>from 100 to 500<br>mg.ml <sup>-1</sup> screened<br>by disc diffusion<br>method against<br>four selected<br>bacteria<br>( <i>Staphylococcus</i><br><i>Aureus</i> ,<br><i>Klebsiella</i><br><i>Pneumoniae</i> ,<br><i>Pseudomonas</i><br><i>Multocida</i> and<br><i>Escherichia Coli</i> )<br>and two fungal<br>strains<br>( <i>Aspergillus</i><br><i>Flavus</i> and<br><i>Candida</i><br><i>Albicans</i> ) | the use of<br>commercially<br>available<br>anthelmintics<br>and<br>antimicrobials<br>for the<br>treatment of<br>sheep's<br>gastrointestinal<br>diseases.                                                                                              |      |
| Inhibitory<br>activity                  | Methanol<br>extract of<br>whole plants <i>E.</i><br><i>helioscopia L.</i>                                                                                          | In vitro                         | To evaluate<br>inhibitory<br>activity on<br>lipopolysacchari<br>de (LPS)-<br>induced NO<br>production in<br>murine<br>microglial BV-2<br>cells                                                                                            | SMT (2-methyl-2-<br>thiopseudourea,<br>sulfate) was used<br>as a positive<br>control. | From 17 to 77<br>μM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All the<br>evaluated<br>diterpenes<br>exhibited<br>inhibitory<br>effects on LPS-<br>induced NO<br>production                                                                                                                                          | [63] |
| Antioxidant<br>activity                 | Methanol<br>extract of<br>leaves and<br>Latex from <i>E.</i><br><i>helioscopia L.</i><br>steams.                                                                   | In vivo:<br>mice                 | To evaluate in<br>vivo antioxidant<br>activity of latex<br>and leaves<br>methanol extract<br>of <i>E. helioscopia</i><br><i>L.</i> .                                                                                                      | Control: without<br>treatment.                                                        | Latex and leaves<br>methanol extract<br>(600 and 1 200<br>mg/kg) orally,<br>once a day, were<br>given to mice for<br>two weeks.                                                                                                                                                                                                                                                                                                                                                                                                             | Leaves<br>methanol<br>extract of <i>E.</i><br><i>helioscopia</i><br><i>L.</i> raised<br>antioxidant<br>enzymes levels<br>in mice. It<br>showed<br>hepatorenal-<br>curative effect,<br>hypolipidemic<br>effect and<br>hemostasis<br>potential.         | [15] |
| Free-radical<br>scavenging<br>activity. | Methanolic<br>leaves extracts<br>of <i>E.</i><br><i>helioscopia L.</i> .                                                                                           | In vitro                         | The free-radical<br>scavenging<br>activity of the<br>crude extract as<br>well as of each<br>isolated fraction<br>was assayed and<br>compared to that<br>one of a<br>commercial<br>standardized<br>antioxidant<br>extract of green<br>tea. | Tea extract (Green<br>Select®)                                                        | Both samples and<br>standard were<br>dissolved in<br>ethanol<br>containing up to<br>2% DMSO at<br>concentration of<br>6 mg/mL.<br>Reaction mixture<br>was prepared by<br>adding 100 µl of<br>extract solution<br>(or standard<br>solution) to 3.9<br>mL of DPPH<br>solution, freshly<br>prepared<br>dissolving DPPH<br>in<br>methanol/KH2P                                                                                                                                                                                                  | An interesting<br>free-radical<br>scavenging<br>activity % was<br>evidenced, since<br><i>E. helioscopia</i><br><i>L.</i> reached a<br>maximum effect<br>( $E_{max}$ ) of 60% at<br>15 µg/mL and<br>with an<br>EC <sub>50</sub> value of<br>6.9 µg/mL. | [59] |

| 0                                                                                | liouzi, et at                                                                                                                                                                                                                                 |                      | •                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |      |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                  |                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              | O4 and NaOH<br>buffer (50/50,<br>v/v) at a<br>concentration of<br>$6 \times 10-5M$ ,<br>giving test<br>solutions at final<br>concentration of<br>75,37. 5, 15, and<br>7.5, $\mu/mL$ .                         |                                                                                                                                                                                                                                                                                                                      |      |
| Allelopathic<br>activity                                                         | <i>E.helioscopia</i><br>leaves were<br>dried powdred<br>and extracted<br>in distilled<br>water and four<br>different<br>organic<br>solvents, i.e.<br>methanol, ethyl<br>acetate, acetone<br>and n-hexane,<br>by using<br>Soxhlet<br>extractor | In vivo              | Allelopathic<br>effects of<br><i>E. helioscopia L.</i><br>on the growth of<br>lettuce seeds<br>were studied;                                                                                                                                                                                                                                          | Control: without<br>treatement                                                                                                                                                                                                                                               | Different<br>concentrations,<br>i.e. 2%, 4% and<br>6% of five<br>different solvents<br>(aqueous,<br>methanol, ethyl<br>acetate, n-hexane<br>and acetone)<br>were used against<br>the growth of test<br>plant. | All extracts'<br>concentrations<br>exhibited a<br>variable<br>inhibitory effect<br>on lettuce<br>germination.<br>Extract of <i>E.</i><br><i>helioscopia L.</i><br>inhibited 8–9%<br>radicle and 11%<br>hypocotyl<br>growth                                                                                           | [99] |
| Anticancer<br>activity                                                           | Ethyl acetate<br>extract (EAE)<br>of<br><i>E.helioscopia</i>                                                                                                                                                                                  | In vivo:<br>mice     | To evaluate EAE<br>to treat nude<br>mice xenografts<br>of human HCC<br>and investigated<br>its effect on<br>tumor<br>progression with<br>regard to growth,<br>apoptosis,<br>invasion,<br>and metastasis.                                                                                                                                              | Control: without<br>treatment                                                                                                                                                                                                                                                | The EAE was<br>mixed with<br>sterile water, at a<br>concentration of<br>$1\mu g/m$ , 50<br>$\mu g/mL$ , 100<br>$\mu g/mL$ , 200<br>$\mu g/mL$ .                                                               | EAE could<br>effectively<br>inhibit tumor<br>growth, induce<br>apoptosis, and<br>inhibit tumor<br>invasion and<br>metastasis in<br>vivo; it is<br>suggested that<br>EAE is a<br>potential<br>candidate for as<br>a new<br>anticancer<br>agent.                                                                       | [92] |
| Anti-<br>nociceptive,<br>anti-<br>inflammatory<br>and anti-pyretic<br>activities | Latex and<br>leaves methanol<br>extract of <i>E.</i><br><i>helioscopia L.</i>                                                                                                                                                                 | In vivo:<br>mice     | To evaluate<br>effects of latex<br>and leaves<br>methanol extract<br>of <i>E. helioscopia</i><br><i>L.</i> against<br>chemical (acetic<br>acid induced<br>writhing and<br>formalin tests)<br>and thermal pain<br>stimuli (hot plate<br>test), carrageenan<br>induced<br>pawedema and<br>brewer's yeast<br>induced pyrexia<br>in mice<br>respectively. | Group I:Control<br>without treatment;<br>Group II: standard<br>Brufen, 100<br>mg/kg, orally;<br>Group III:<br>standard<br>Tramadol, 10<br>mg/kg, orally;<br>Groups IV-VI:<br>Treated with<br>aqueous solutions<br>of L.MT (100, 200<br>and 300 mg/kg,<br>orally respectively | Leaves methanol<br>extract and latex<br>were<br>administered to<br>mice, orally at<br>doses, 100, 200<br>and 300 mg/kg.                                                                                       | <i>E. helioscopia</i><br><i>L.</i> possesses<br>marked anti-<br>nociceptive,<br>anti-<br>inflammatory<br>and anti-pyretic<br>activities that<br>can be<br>attributed to the<br>inhibition of<br>synthesis of<br>prostaglandins<br>and other<br>mediators<br>responsible for<br>pain,<br>inflammation<br>and pyrexia. | [15] |
| Antibacterial<br>activity<br>Antileishmanial                                     | Ethanol extract<br>of the whole<br>plant of <i>E.</i><br><i>helioscopia L.</i> .<br>Air-dried and                                                                                                                                             | In vitro<br>In vitro | To evaluate the<br>antibacterial<br>activity of the<br>compounds from<br>the whole plant<br>of <i>Euphorbia</i><br><i>helioscopia</i> L.                                                                                                                                                                                                              | DMSO, the<br>solvent for<br>compound <b>1</b> , was<br>employed as the<br>negative control<br>and triclosan<br>(MIC 3.9, 3.9<br>μg·mL-1) was<br>used as positive<br>control.<br>DMSO or                                                                                      | Antibacterial<br>activity was<br>tested with the 5<br>$\mu$ g/dics of the test<br>compound using<br>Whatman No.<br>1 sterile filter<br>paper discs (6<br>mm).<br>2 ; 50 & 200 $\mu$ L                         | Euphoheliosnoi<br>d E showed<br>significant anti-<br>microbial<br>activity against<br>oral pathogens.                                                                                                                                                                                                                | [77] |

| Activity                                   | powdered plant                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               | antileishmanial                                                                                                                     | pentamidine                                                                                                                                     | of extracts.                                                                                                                                                                                                        | helioscopia                                                                                                                                                                                                                                                                                                                                                                       |       |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                            | material was<br>extracted under<br>shaking at room<br>temperature<br>with MeOH.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | activity against<br>Leishmania<br>amazonensis.                                                                                      |                                                                                                                                                 |                                                                                                                                                                                                                     | showed<br>antileishmanial<br>activity with<br>LC50 between<br><12.5-26.9<br>$\mu$ g/mL and<br>acceptable<br>selectivity<br>indices of 8–5.                                                                                                                                                                                                                                        |       |
| Catalytic<br>activity                      | Aqueous<br>extract of dried<br>powder of <i>E.</i><br><i>helioscopia L.</i><br>leaves                                                                                                                                                                                                                                                                                                                                          | In vitro                                                                                                                                      | To study<br>Catalytic activity<br>of Ag NPs for<br>the synthesis of<br>propargylamines.                                             | Control without<br>catalyst                                                                                                                     | _                                                                                                                                                                                                                   | Synthesis of<br>silver<br>nanoparticles<br>(Ag NPs) using<br><i>E. helioscopia</i><br><i>L.</i><br>Linn leaf extract<br>for the synthesis<br>of<br>propargylamine<br>s, exhibits high<br>catalytic<br>activity.                                                                                                                                                                   | [101] |
| Vasodepressor<br>activity                  | 5,11-<br>jatrophadiene-<br>3-benzoyloxy-<br>7,9,14-<br>triacetyloxy-15-<br>ol and 2<br>derivatives of<br>lupane, lup-20<br>(29) -ene-3-<br>acetate and lup-<br>20 (29) -ene-3 -<br>palmitate, as<br>well as<br>common<br>triterpenoids of<br><i>Euphorbiaceae</i> ,<br>24-methylene<br>cycloartanol,<br>24-methylene-<br>cycloartanol<br>and stigmast-4-<br>en-3-one were<br>isolated from <i>E.</i><br><i>helioscopia L</i> . | In vivo :<br>Mice                                                                                                                             | To extract<br>secondary<br>metabolites of <i>E.</i><br><i>helioscopia L.</i><br>and evaluate<br>their<br>vasodepressor<br>activity. | Control group (n =<br>6) received ethanol<br>diluted 25% with<br>saline solution.                                                               | Test group (n =<br>6) received 2 mg<br>/ kg intravenous<br>doses of single<br>compounds.                                                                                                                            | Euphornin (1),<br>lup-20 (29) -<br>ene-3-acetate<br>(2) and<br>stigmast-4-en-3-<br>one (7) showed<br>a significant<br>vasodepressor<br>effect.                                                                                                                                                                                                                                    | [3]   |
| Antifeedant and<br>cytotoxic<br>activities | Dried and<br>powered whole<br>plant of <i>E.</i><br><i>heliscopia</i> was<br>extracted with<br>EtOH at room<br>temperature.                                                                                                                                                                                                                                                                                                    | Cytotoxic<br>Assay: In<br>vitro<br>Antifeedant<br>Activity:<br>The insect<br>cotton<br>bollworm<br>( <i>Helicoverp</i><br><i>a armigera</i> ) | To evaluate<br>Antifeedant and<br>cytotoxic<br>activities of<br>euphoscopoids<br>A-C.                                               | Cytotoxic Assay:<br>Taxol was used a<br>positive control<br>Antifeedant<br>Activity:<br>Commercial neem<br>oil was used as<br>positive control. | Cytotoxic Assay<br>Compounds were<br>added at a dosage<br>of 0.128 – 80<br>µM.<br>Antifee ant<br>Activity:<br>Compound was<br>tested in five<br>different<br>concentrations,<br>started from 62.5<br>to 1000 µg/mL. | All compounds<br>showed<br>significant<br>antifeedant<br>activity against<br>a generalist<br>plant-feeding<br>insect,<br><i>Helicoverpa</i><br><i>armigera</i> , with<br>$EC_{50}$ values<br>ranging from<br>2.05 to 4.34<br>$\mu g/cm^2$ . In<br>addition,<br>compound 2<br>showed<br>moderate<br>cytotoxicity<br>against tumor<br>cell lines NCI-<br>H1975, HepG2<br>and MCF-2, | [53]  |

|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | 1.11                                                                                                     | 1    |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | while<br>compounds 1<br>and 3 were not                                                                   |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | active at 80 µM.                                                                                         |      |
| Antimicrobial                               | E. helioscopia                                                                                            | In vitro                         | To evaluate                                                                        | Two control tubes,                                                                | Plant extracts                                                                                                                      | E. helioscopia                                                                                           | [93] |
| activity                                    | L. powder was<br>extracted by<br>percolation in<br>95% ethanol at<br>room<br>temperature for<br>two days. |                                  | antimicrobial<br>activity of <i>E.</i><br><i>helioscopia L.</i><br>extracts.       | containing the<br>growth medium,<br>saline and the<br>inoculum were<br>maintained | were tested in a<br>concentration of<br>100 mg/ml and<br>incubated at<br>37 C for 24-48 h<br>(bacterial strains)<br>and at 25 C for | L. extracts were<br>active against<br>bacterial and<br>fungal test<br>organisms<br>especially<br>against |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   | 3-5 days (fungal strains).                                                                                                          | Klebsiella<br>pneumonia,<br>Staphylococcus<br>aureus, S.<br>epidermidis,<br>Microsporum<br>canis and     |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | Geotricum                                                                                                |      |
| Antimicrobial<br>and anticancer<br>activity | The AgNPs<br>were<br>biosynthesized                                                                       | In vitro                         | To biosynthesize<br>of silver<br>nanoparticles                                     | Antimicrobial<br>activity:<br>Without                                             | anticancer<br>activity:                                                                                                             | <i>candidum</i> ,<br>Antimicrobial<br>activity:<br>The anti-                                             | [91] |
|                                             | from the leaves<br>extract of <i>E.</i><br><i>helioscopia L.</i><br>under mild                            |                                  | (AgNPs) and<br>AgNPs-loaded<br>chitosan-alginate<br>constructs using               | treatement<br>anticancer activity:                                                | Cells were<br>incubated with 20<br>µL of MTT (5<br>mg/mL in                                                                         | bacterial<br>activities of<br>AgNPs and<br>AgNPs loaded                                                  |      |
|                                             | reaction<br>conditions<br>without the<br>need for high                                                    |                                  | methanolic<br>leaves extract of<br><i>E. helioscopia.</i><br>with<br>antimicrobial | Cells without<br>AgNPs and<br>AgNPs loaded<br>chitosan alginate                   | PBS) in fresh<br>medium for 4 h at<br>37 °C.                                                                                        | chitosan-<br>alginate<br>constructs were<br>tested against                                               |      |
|                                             | temperature,<br>extensive<br>organic<br>solvents or<br>surfactants.                                       | and anticancer<br>potentialities | constructs<br>supplement were<br>considered as a<br>control                        |                                                                                   | six<br>bacterial strains<br>i.e.<br>Staphylococcus<br>aureus,                                                                       |                                                                                                          |      |
|                                             | surractants.                                                                                              |                                  |                                                                                    |                                                                                   |                                                                                                                                     | Pseudomonas<br>aeruginosa,<br>Klebsiella<br>pneumoniae,                                                  |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | Acinetobacter<br>baumannii,<br>Morganella                                                                |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | morganii and<br>Haemophilus<br>influenza. A<br>significant                                               |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | reduction in the<br>log values was<br>recorded for all<br>test constructs,                               |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | in comparison<br>to the initial<br>bacterial count<br>(control value,                                    |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | i.e., 1.5 × 108<br>CFU/mL).                                                                              |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | anticancer<br>activity:<br>The cytotoxicity<br>profile revealed                                          |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | complete<br>biocompatibility<br>against normal<br>cell line i.e.                                         |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | L929. Almost<br>all constructs<br>showed                                                                 |      |
|                                             |                                                                                                           |                                  |                                                                                    |                                                                                   |                                                                                                                                     | considerable                                                                                             |      |

|                                                                        |                                                                                                                                                                             |                      |                                                                                                            |                                              |                                                                                                                                                                         | cytotoxicity up<br>to certain extant<br>against human<br>epithelial cells<br>(HeLa) cancer<br>cells.                                                                                                                                                                                                                                                                                 |      |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| P-glycoprotein<br>(P-gp)<br>inhibitory and<br>cytotoxic<br>activities. | The dried and<br>powdered<br>whole plants of<br><i>E. helioscopia</i><br><i>L.</i> were<br>exhaustively<br>extracted with<br>80% EtOH<br>under reflux.                      | In vitro             | To evaluate<br>biological<br>evaluation of<br>Heliosterpenoids<br>A and B                                  | Positive control :<br>Cyclosporin A<br>(CsA) | Compounds were<br>tested at 0.5, 1.0,<br>2.5, 10 and<br>20 µM.                                                                                                          | Heliosterpenoid<br>s A and B were<br>found to be<br>potent inhibitors<br>of P<br>glycoprotein<br>(ABCB1) and<br>Heliosterpenoid<br>s A also<br>exhibited<br>cytotoxicity<br>against MDA-<br>MB-231 cell<br>lines.                                                                                                                                                                    | [84] |
| Antiviral<br>activity                                                  | The dried and<br>powdered<br>whole plants of<br><i>E. helioscopia</i><br><i>L.</i> were<br>exhaustively<br>extracted with<br>80%<br>EtOH under<br>reflux.                   | In vitro             | To evaluate<br>biological effects<br>of <i>E. helioscopia</i><br><i>L.</i> extracts.                       | positive control:<br>Acyclovir (ACV)         | -                                                                                                                                                                       | Secoheliosphan<br>es B showed<br>modest activity<br>against HSV-1<br>with IC50 value<br>of 6.41 µM.                                                                                                                                                                                                                                                                                  | [64] |
| Antitumor<br>activity                                                  | The air-dried<br>and powdered<br>E. helioscopia<br>L. were<br>extracted with<br>95% EtOH<br>three times.                                                                    | In vitro             | To evaluate<br>antitumor<br>activity of E.<br>helioscopia L.<br>extracts.                                  | CCCK8 kit                                    | Concentrations<br>for screening<br>assay was 10 µM<br>and for dose-<br>dependent<br>apoptotic activity<br>assay were 1 µM,<br>2 µM, 5 µM,10<br>µM, 20 µM, and<br>40 µM. | Two triterpenes<br>named<br>euphorbatrine<br>increased<br>Hela-/- cell<br>death via<br>activating<br>apoptosis<br>pathway other<br>than<br>necroptosis,<br>with EC50<br>values of 1.59 $\pm$<br>0.25 and 26.48<br>$\pm$ 0.78 $\mu$ M,<br>respectively,<br>which therefore<br>may account for<br>the therapeutic<br>use of E.<br>helioscopia L.<br>the treatment of<br>tumor in folk. | [68] |
| Lipid-lowering<br>activity                                             | Air-dried and<br>powdered <i>E.</i><br><i>helioscopia L.</i><br>was extracted<br>with<br>95% EtOH<br>three times at<br>room<br>temperature and<br>concentrated in<br>vacuo. | In vivo:<br>hamsters | <i>E. helioscopia L.</i><br>extacts were<br>established to<br>screen for<br>potential lipid<br>modulators. | Control without<br>treatement.               | Treatment Group<br>(n=6),<br>administered<br>CMC-Na or<br>Euphornin L<br>compound (30<br>mg/kg) daily in<br>an intragastric<br>manner<br>respectively for<br>18 days.   | Euphornin L, a<br>relatively<br>abundant<br>chemical in<br><i>E. helioscopia</i><br><i>L.</i> , showed<br>remarkable<br>lipid-lowering<br>effect in vivo,<br>which makes it<br>a promising<br>lead for<br>development<br>of new lipid-                                                                                                                                               | [62] |
| Multidrug<br>resistance<br>modulators                                  | The air-dried<br>and powdered<br><i>E. helioscopia</i>                                                                                                                      | In vitro             | To evaluate<br>MDR reversal<br>activities of the                                                           | Positive control :<br>Verapamil              | Tested<br>concentrations (2<br>μM and 20 μM)                                                                                                                            | lowering agents<br>Inhibition ratios<br>of all<br>compounds                                                                                                                                                                                                                                                                                                                          | [78] |

| · · ·                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 1                                                                                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¥.,¥                                                                                                                                                                                                                                                                                                    |      |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| activity                | <i>L.</i> were<br>extracted with<br>95% EtOH at<br>room<br>temperature and<br>concentrated to<br>give a crude<br>extracted.                                                                                                                                                                                                                                                                                                                                                         |                  | compounds<br>against the<br>K562/ADR cells<br>were measured<br>using a MTT<br>assay.                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | were less than<br>$50\%$ at 2 $\mu$ M<br>and only<br>two compounds<br>(euphornoate B<br>and C)<br>exhibited<br>cytotoxic<br>(inhibition<br>ratios were<br>more than 50%)<br>at 20 $\mu$ M. and<br>almost all tested<br>compounds'<br>reversal abilities<br>were greater<br>than the positive<br>control |      |
| Anti-cancer<br>activity | Qiyusanlong<br>(QYSL)<br>decoction was<br>composed of 10<br>variants of<br>Chinese<br>medicine<br>including<br>Astragalus<br>membranaceus<br>(Huangqi),<br>Polygonatum<br>odoratum<br>(yuzu),<br>Scolopendra<br>(tianlong),<br>Pberetima<br>(dilong),<br>Solanum<br>nigrum<br>(longkui),<br>Herbahedyotis<br>(baihushecao),<br>Semen coicis<br>(yiyiren),<br>Euphorbia<br>helioscopia<br>(zeqi),<br>Curcuma longa<br>(eshu) and<br>tendril-leaved<br>fritillary bulb<br>(chuanbei). | In vivo:<br>mice | To study effects<br>and function of<br>Qiyusanlong<br>(QYSL)<br>decoction                                              | Control group:<br>Mice received<br>dosage of 0.2<br>ml/10 g<br>physiological<br>saline via<br>intragastric admin-<br>istration for 21<br>days, and 0.4 ml of<br>physiological<br>saline by<br>intraperitoneal<br>injection once a<br>week. | <ul> <li>20.12 g/kg<br/>QYSL decoction<br/>for 21 days, and<br/>0.4 ml<br/>physiological<br/>saline via<br/>intraperitoneal<br/>injection once a<br/>week.</li> <li>40.24 g/kg<br/>QYSL for 21<br/>days, and 0.4 ml<br/>physiological<br/>saline via<br/>intraperitoneal<br/>injection once a<br/>week.</li> <li>80.48 g/kg<br/>QYSL for 21<br/>days, and 0.4 ml<br/>physiological<br/>saline via<br/>intraperitoneal<br/>injection once a<br/>week.</li> </ul> | Results revealed<br>the function of<br>QYSL<br>decoction as a<br>lung cancer<br>treatment and<br>provided insight<br>for a novel lung<br>cancer therapy.                                                                                                                                                | [94] |
| Cytotoxic<br>activity   | Ethanolic<br>extract of <i>E.</i><br><i>helioscopia L.</i>                                                                                                                                                                                                                                                                                                                                                                                                                          | In vitro         | To evaluate<br>cytotoxic activity<br>of Ethanolic<br>extract of <i>E.</i><br><i>helioscopia L.</i>                     | Positive control:<br>Gemcitabine<br>(IC50 59.2 nM on<br>PANC-1)                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results showed<br>euphelionolides<br>F and L had<br>significant<br>cytotoxic<br>activity against<br>MCF-7 (IC50<br>9.5 and 9.8 mM,<br>respectively)<br>and PANC-1<br>(IC50 10.7 and<br>10.3 mM,<br>respectively)<br>cells.                                                                              | [86] |
| Antifungal<br>activity  | Leaves of <i>E.</i><br><i>helioscopia L.</i><br>were extracted<br>with distilled<br>water                                                                                                                                                                                                                                                                                                                                                                                           | In vitro         | Nanoparticles of<br>CuO and Fe2O3<br>fabricated using<br>leaves extract of<br><i>E. helioscopia L.</i><br>were used to | Positive control:<br>Hexahit 0.1 mg/ml<br>(20 µl/disc)                                                                                                                                                                                     | Different<br>concentrations<br>were used 25 µl,<br>50 µl, 75 µl of 0<br>(.10 mg/ml NPs)                                                                                                                                                                                                                                                                                                                                                                         | Iron oxide<br>nanoparticles<br>using leaves<br>extract of <i>E.</i><br><i>helioscopia L.</i><br>exhibit greater                                                                                                                                                                                         | [95] |

|                                       |                                                                                                                                                                                                                                                                                                                                           |          | prevent the<br>growth of fungus<br>-Cladosporium<br>herbarum                                     |                                                                      |                                                                                                          | antifungal<br>activities<br>against the<br><i>Cladosporium</i><br><i>herbarum</i> as<br>compared to<br>copper oxide<br>nanoparticles.                                                                                                                                                                          |      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Triglyceride-<br>lowering<br>activity | Ethanolic<br>extract of the<br>whole plants of<br><i>E. helioscopia</i><br><i>L.</i>                                                                                                                                                                                                                                                      | In vitro | To evaluate<br>triglyceride-<br>lowering activity<br>of<br>Euphorhelipanes<br>A and B            | positive<br>control : clinic<br>lipid-lowering<br>drug rosiglitazone | 1–50 μM                                                                                                  | Euphorhelipane<br>s A and B<br>showed a<br>triglyceride-<br>lowering effect<br>in oleic-acid-<br>stimulated<br>HuH7 cells at<br>concentrations<br>of 1–50 µM                                                                                                                                                   | [8]  |
| Anti-<br>inflammatory<br>Activity     | The air-dried<br>aerial parts of<br><i>E. helioscopia</i><br><i>L.</i> were<br>powdered and<br>extracted with<br>95% EtOH<br>(room<br>temperature)<br>three times.<br>After being<br>suspended in<br>water, the<br>combined<br>extract was<br>partitioned with<br>petroleum<br>ether,<br>ethylacetate,<br>and n-butanol,<br>successively. | In vitro | To evaluate Anti-<br>inflammatory<br>Activity of <i>E.</i><br><i>helioscopia L.</i><br>extarcts. | Positive controls:<br>Cajaninstilbene<br>acid and<br>dexamethasone   | Inhibition ratios<br>of $30.19 \pm 4.09\%$<br>and $34.25 \pm 4.01\%$ ,<br>respectively, at<br>$15 \mu M$ | Heliojatrone C<br>showed an IC50<br>of $7.4 \pm 0.6 \mu$ M,<br>which might be<br>related to the<br>regulation of the<br>NF-<br>$\kappa$ B signaling<br>pathway by<br>suppressing the<br>translocation of<br>the p65 subunit<br>and the<br>consequent<br>reduction of IL-<br>6 and TNF- $\alpha$<br>secretions. | [82] |

### Toxicity

Some herbal products are sold as non-toxic food supplements or popular drugs. However, this is not always true, especially if taken as over-thecounter medications, or used in combination with other herbs. In addition, they can have adverse effects, such as stimulation and hallucinogenic properties [102, 103]. Nevertheless, these products are readily available and have widespread use. A large variety of dietary supplements to lose weight are marketed with claims of effectiveness [104-105, 106]. The lack of data on toxicity and/or efficiency of many ingredients of these products, even the predominant ingredients, are worrying an alarming [107-108, 109].

Studies in vivo and in vitro were conducted to evaluate the potential toxicity of *E. helioscopia L.*, their extracts or their association with other ingredients (Table 4). *E. helioscopia L.* caused several irritant contact dermatitis or allergic contact dermatitis, as a result of direct contact [25]. 12-dioxyphorbol-13-phenylacetate-20-acetate has been shown to be the major component of the toxic fraction and the most irritating substance [110, 111].

Molluscicidal activity is widespread in *Euphorbiaceae* family, although the activity varies considerably from one species to another and even between different parts of the same plant [4-23, 24]. Al-Zanbagi studied in 2000 *E. helioscopia L.* with two other plants from *Euphorbiaceae* family, from Saudi Arabia, to identify those parts of plants that had molluscicidal activity against the snail *Biomphalaria pfeifferi*. By 2005, she found that very low concentrations of fresh leaf extracts of methanol and acetone extracts of *E. helioscopia L.* were effective for killing the snail with LC50 =8.9 ppm. The same in other study results showed that acetone extract of *E. helioscopia L.* was the most toxic extract of both *C. Pipiens* larvae and B. Alexandrina snails. In addition pellets formulated from stems and leaves of *E. helioscopia L.* showed molluscicidal activity against molluscs, A. Hortensis and T. Pisana. *E. helioscopia L.* aqueous extract severely affected the germination of wheat (*Triticum Aestivum L.*) and pea (*Pisum Sativum L.*), by reduction of plumule and radicle length, as well as their fresh and dry masses.

Therefore, for toxicity testing, it is important to determine the dose of the drug, bearing in mind the form of pharmaceutical preparation of its extract and to specify the administered amount, particularly in vivo tests, where the weight of the animal is taken in to account. In addition to the numerous pharmacological benefits and useful therapeutic indications for humans, *E. helioscopia L.* has demonstrated toxicological potential, especially as skin irritant (Table 4).

## Table 4: Euphorbia Helioscopia's toxicity

| Toxicity                          | Details of the extract                                                                                                                              | In vivo / in<br>vitro test                                                                                        | Objective                                                                                                                                                                  | Control used                                                                           | Dose tested for<br>drugs                                                                  | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref.  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Phytotoxicity                     | Aqueous extract of <i>E. helioscopia L.</i>                                                                                                         | In vivo:<br>wheat<br>( <i>Triticum</i><br><i>Aestivum</i> L.)<br>and pea<br>( <i>Pisum</i><br><i>Sativum</i> L.). | To evaluate the<br>phytotoxicity of<br><i>E. helioscopia L.</i><br>on wheat<br>( <i>Triticum</i><br><i>Aestivum L.</i> ) and<br>pea ( <i>Pisum</i><br><i>Sativum L.</i> ). | Control<br>(distilled<br>water)                                                        | (1.0%, 2.5%, 5.0% and 10%).                                                               | <i>E. helioscopia L.</i><br>aqueous extract<br>showed several<br>reduction in<br>germination,<br>plumule and radicle<br>length, as well as<br>their fresh and dry<br>masses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [21]  |
| Molluscicidal<br>activity         | Methanol and<br>chloroform extracts<br>of <i>E. helioscopia</i><br><i>L.</i> .                                                                      | In vivo:<br>Snails,<br><i>Biomphalaria</i><br><i>Pfeifferi</i> .                                                  | To evaluate<br>molluscicidal<br>activity of<br>different part<br>fresh and dried of<br>three plants from<br>the family<br><i>Euphorbiaceae</i><br>from Saudi<br>Arabia.    | Controls were<br>prepared in<br>1litre beakers<br>using<br>dechlorinated<br>tap water. | 10 different<br>concentrations<br>(10, 20, 30, 40,<br>50, 60, 70, 80, 90<br>and 100 ppm). | For fresh material,<br>the best extracts<br>were: acetone<br>extract of the fresh<br>leaves of <i>J. Glauca</i> ,<br>hexane extract of<br>fresh stems of <i>E.</i><br><i>helioscopia L.</i> and<br>chloroform extract<br>of the fresh leaves<br>of <i>E. Schimperiana</i> .<br>For the dry<br>material, the best<br>extracts were:<br>chloroform extract<br>of the dry leaves of<br><i>J. Glauca</i> , methanol<br>extract of the dry<br>leaves of <i>E.</i><br><i>helioscopia L.</i> and<br>methanol extract of<br>the dry stems of <i>E.</i><br><i>Schimperiana.</i> Dry<br>leaf and stem<br>extracts were the<br>most effective with<br>LD <sub>50</sub> values ranging<br>from 7.6 to 50.8<br>ppm and that of<br>LD <sub>90</sub> from 11.8 to<br><u>68.2 ppm.</u> | [23]  |
| Molluscicidal<br>activity         | Extracts from fresh<br>leaves of <i>E.</i><br><i>helioscopia L.</i> with:<br>Cold water, Hot<br>water, Methanol,<br>Chloroform,<br>Acetone, Hexane. | In vivo:<br>snails:<br>Bulinus<br>wrighti                                                                         | To evaluate<br>molluscicidal<br>activity of <i>E.</i><br><i>helioscopia L.</i><br>extracts against<br>the snail <i>Bulinus</i><br><i>wrighti</i>                           | Bulinus wrighti                                                                        | Without<br>treatment                                                                      | Very low<br>concentrations of<br>fresh leaf extracts<br>were effective in<br>killing the snail.<br>The $LC_{50}$ of<br>methanol and<br>acetone extracts for<br>Euphorbia<br>helioscopia was 8.9<br>ppm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [24]  |
| Allergic<br>contact<br>dermatitis | <i>E. helioscopia L.</i><br>related contact<br>dermatitis (Irritant<br>contact dermatitis<br>or allergic contact<br>dermatitis)                     | In vivo : kids                                                                                                    | To share<br>experience with<br><i>Euphorbia</i><br><i>Helioscopia</i><br>contact dermatitis<br>in emergency<br>department.                                                 | -                                                                                      | -                                                                                         | Contact surface can<br>be washed with<br>water. There is no<br>need any drugs for<br>treatment of<br><i>Euphorbia</i><br><i>Helioscopia</i> contact<br>dermatitis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [25]  |
| Skin irritant                     | Four ester of 12-<br>dioxyphorbol were<br>isolated from the<br>fresh aerial parts of<br><i>E. helioscopia L.</i>                                    | In vivo: rates                                                                                                    | Isolation of<br>diterpene esters<br>together with<br>assessments of<br>the irritant 32<br>potencies of pure<br>toxins                                                      | Without<br>treatment                                                                   | Five microlitre<br>doses were<br>applied as before<br>to mice ears.                       | 12-dioxyphorbol-<br>13-phenylacetate-<br>20-acetate was<br>found to be the<br>major component of<br>the toxic fraction<br>and was the most<br>irritant substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [111] |

| Toxic<br>phytodermatitis                        | A 6-year-old<br>patient presented                                                                                                                                                                                                               | In vivo                                                                                                        | To sensitize that<br>The sun spurge                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | The exact determination of the                                                                                                                                                                                                                                                 | [112] |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| phytodermatidis                                 | with linear<br>erythema and<br>bullae on the face.<br>The lesions<br>developed after<br>playing with plants<br>the day before. The<br>plant was identified<br>as <i>Euphorbia</i><br><i>Helioscopia</i> .                                       |                                                                                                                | belongs to the<br><i>Euphorbiaceae</i><br>plant family.<br>These plants<br>produce a typical<br>milky juice that<br>causes toxic<br>reactions<br>following contact<br>with skin and<br>mucous<br>membranes.                                                                                                     | -                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                            | causative plants is a<br>prerequisite for the<br>diagnosis of<br>phytodermatitis.                                                                                                                                                                                              |       |
| Molluscicidal<br>activity                       | Pellets containing<br>leaves, flowers,<br>stems and roots of<br><i>E. helioscopia L.</i> .                                                                                                                                                      | In vivo:<br>snails: <i>Theba</i><br><i>Pisana</i> and<br>slugs <i>Arion</i><br><i>Hortensis</i>                | To test and<br>evaluate pellets<br>toxicity<br>containing roots,<br>stems, leaves or<br>flowers of <i>E.</i><br><i>helioscopia L.</i><br>against adults of<br><i>Theba Pisana</i><br>and <i>Arion</i><br><i>Hortensis.</i>                                                                                      | Positive<br>control:<br>Ariotox (5%<br>metaldehyde)<br>as granules<br>used at the<br>recommended<br>rate (20 kg /<br>ha);<br>Negative<br>control:<br>Contained<br>sucrose, 10mM<br>starch and<br>amino acids<br>(20mM<br>arginine) in a<br>100ml solution<br>of 2% agar<br>formed as<br>pellets. | Concentrations<br>of 0.25; 0.5; 0.7;<br>1 or 2 g per 100<br>ml of 2% agar of<br>each organ of the<br>plant were mixed<br>with sucrose, 10<br>mM starch and<br>amino acids (20<br>mM arginine) in<br>a 100 ml solution<br>of agar 2%<br>formed as<br>pellets. | Formulated pellets<br>from stems and<br>leaves of <i>E</i> .<br><i>helioscopia L</i> .<br>showed<br>molluscicidal<br>activity against the<br>tested molluscs, <i>A</i> .<br><i>Hortensis</i> and <i>T</i> .<br><i>Pisana</i> .                                                 | [4]   |
| Insecticidal and<br>molluscicidal<br>activities | Extract of E.<br>helioscopia L.<br>(Euphorbiaceae),<br>Calendula<br>Micrantha<br>(Compositae) and<br>Azadriachta Indica<br>(Meliaceae) with<br>petroleum ether,<br>benzene, acetone,<br>chloroform, ether,<br>acetate of ethyl and<br>methanol. | In vivo: larvae<br>of <i>Culex</i><br><i>Pipiens</i> and<br>snail<br><i>Biomphalaria</i><br><i>Alexandrina</i> | To evaluate the<br>effect of a few<br>extracts of three<br>plants: <i>E.</i><br><i>helioscopia L.,</i><br><i>Calendula</i><br><i>Micrantha</i> and<br><i>Azadriachta</i><br><i>Indica</i> on both<br>snails of<br><i>Biomphalaria</i><br><i>Alexandrina</i> and<br><i>Culex Pipiens</i><br>first instar larvae. | Control :<br>0.05% of<br>ethanol                                                                                                                                                                                                                                                                 | 10 - 500 ppm                                                                                                                                                                                                                                                 | Acetone extracts of<br>the three tested<br>plants were the<br>most active. The<br>similarity of the<br>data of all the<br>fractions tested on<br>both species<br>revealed that these<br>plant extracts<br>probably have the<br>same mode of<br>action against tested<br>pests. | [22]  |
| Contact<br>dermatitis                           | The whole <i>E</i> . <i>helioscppia</i> plant.                                                                                                                                                                                                  | In vivo: Two<br>girls, aged 4<br>years and 5<br>years.                                                         | To report<br>blistering lesions<br>and toxic<br>reactions after<br>contact with the<br>skin and mucous<br>membranes<br>caused by <i>E.</i><br><i>helioscppia</i>                                                                                                                                                | _                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                            | <i>E. helioscppia</i><br>constitute a risk to<br>children, who may<br>be exposed to the<br>sap during play, and<br>to those who may<br>be exposed when<br>the plants are used<br>in traditional<br>medicine.                                                                   | [113] |
| Irritant contact<br>dermatitis                  | The whole plant of <i>E. helioscopia L.</i>                                                                                                                                                                                                     | In vivo: three<br>patient                                                                                      | To examine the<br>phytodermatitis<br>cases caused by<br>plants                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                            | 12-deoxyphorbol-<br>13-<br>phenylacetal-20-<br>acetate is compound<br>responsible of<br>irritant contact<br>dermatits                                                                                                                                                          | [114] |

### CONCLUSION

Plus than one haundred references were used to prepare this work that gather as well recent and old conducted studies that aim to determine the different possible uses/proprieties of *E. helioscopia L.* These proprieties can be classified as chemical, pharmacological and toxic ones. A resume of objectives, used methodologies and main results is presented by type of propriety. Various biological and therapeutic activities of *E. helioscopia L.* have been reported in the literature. Effectiveness of the different classes of secondary metabolites isolated from this plant was confirmed by a wide range of experiments referred in this review. The use of this plant in certain biological and therapeutic applications requires determination of relevant concentrations and economic gains via biological reactor tests. Although a large number of studies were conducted on the determination of *E. helioscopia L.* different proprieties, series of assessments are needed to establish the limits of their environmental safety. Extracts from *E. helioscopia L.* have shown sufficient activity to warrant further investigation as possible biomolluscicides. The study of natural products of this plant could lead to the discovery of new structures that could serve as a basis for different future products.

#### Acknowledgements

We would like particularly to thank the Department of Plant Protection and Environment of the National School of Agriculture - Meknes, Morocco. This work was part of the Ph.D. thesis of Mrs. Anjoud HARMOUZI.

#### REFERENCES

- [1] Uzair M, Loothar BA and Choudhary BA. Pak J Pharm Sci. 2009, 22(2): p. 184-186.
- [2] Steinmann VW, Porter JM. Ann Mo Bot Gard. 2002, 89: p. 453-490.
- [3] Barla A, Birman H, Kultur S, et al., Turk J Chem. 2006, 30: p. 325-332.
- [4] Harmouzi A, Boughdad A, El Ammari Y, et al., A Res Chem Intermed. 2018, 42: p. 7185.
- [5] Surmaghi SMH, Amin GH. J Sch of Pharm Teran Unive. 1993.
- [6] Papp N. 2004. Acta Botanica Hungarica. 46: p.363-371.
- [7] Ramezani M, Behravan J, Arab M. J Biol Sci. 2008, 8(4): p. 809-813.
- [8] Li W, Tang Y, Chen SX, et al., J Nat Prod. 2019, 82: p. 412-416.
- [9] Cai Y, Wang J, Liang B. J of Chinese medicinal materials. 1999, 22(2): p. 85-87.
- [10] Tao HW, Hao XJ, Liu PP. Arch Pharm Res. 2008, 31(12): p. 1547-1551.
- [11] Lu ZQ, Guan SH and Li XN. J Nat Prod. 2008, 71: p. 873-876. https://doi.org/10.1021/np0706163
- [12] Wang ZY, Liu HP, Zhang YC, et al., Anat Rec. 2012, 295: p. 223-233.
- [13] Nikolova M, Evstatieva L and Nguyen TD. Botanica Serbica. 2002, 35(1): p. 43-48.
- [14] Maoulainine BM, Jelassi L, Hassen A, et al., Int Food Res J. 2012, 19(3): p. 1125-1130.
- [15] Uzma S, Bashir A, Mobasher A, et al., Asian Pac J Trop Med. 2014, 7: p. \$369-\$375.
- [16] Shunyi Y, Dongyan G, Huimin S. Plant protection. 2006, 32(3): p. 1-5.
- [17] Dzhanova ANG, Mavlyanov SM, Dalimov DN. Chem Nat Compd. 2003, 39(4): p. 399-400.
- [18] Lai XZ, Yang YB, Shan XL. Economic Botany. 2004, 58 (1): p. 307-320.
- [19] Pieroni A, Quave CL, Santorio RF. J Ethnopharmacol. 2004, 95: p. 373-384.
- [20] Qureshi RA, Ahmed M, Ghufran MA. Elec J Env Agricult Food Chem. 2007, 6(11): p. 2500-2511.
- [21] Madany MMY, Saleh AM. Ann Agric Sci. 2015, 60(1): p.141-151.
- [22] Elyassaki WM, El-Sayed MM. Proceedings of the second international conference on Urban Pests. p. 171-176.
- [23] Al-Zanbagi NA, Banaja AA, Barrett J. J Ethnopharmacology. 2000, 70: p.119-125.
- [24] Al-Zanbagi NA. JKAU Sci.17: p.11-19.
- [25] Bucak IH, Almis H, Tepe B, et al. Turk J Emerg Med. 16(3): p. 121–122.
- [26] Leland JC, Ara K, Peter B, et al. Natural products from plants. p.10.
- [27] Hargreaves BJ. Soc Malawi J. 34: p. 56-71.
- [28] Dunne M, Green W. MidCont J Archaeol. 23(1): p. 45-88.
- [29] Pauketat TR, Kelly LS, Fritz GJ, et al. Am Antiqu. 67: p. 257-279.
- [30] Govaerts R, Frodin DG, Radcliffe-Smith A. Royal Botanic Gardens.
- [31] Rizk AFM. Bot J Linn Soc. **1987**, 94(2): p. 293–326.
- [32] Halleux-Opsomer C. Hist Phil Life Sci. 4: p. 65-97.
- [33] Stannard J. Suddhoffs Archiv für Geschichte der Medizin und der Naturwissenschaften. 48: p. 27-53.
- [34] Levey M. Trans Amer Philos Soc. 56: p. 1-130.
- [35] Shi QW, Su XH, Kiyota H. Chem Rev. 108: p. 4295-4327.
- [36] Vasas A, Hohmann J. Chem Rev. 114: p. 8579-8612.
- [37] Linnaeus CV, Wiman J. Harvard University Library.
- [38] Ernst M, Grace OM, Saslis-Lagoudakis CH, et al., J Ethnopharmacol. 176: p. 90-101.
- [39] Pliny. Naturalis historia.
- [40]Corea G, Di Pietro A, Dumontet C. Phytochem Rev. 2009, 8: p. 431-447.
- [41] James W, Horn, Benjamin W, et al. Mol Phylogenet Evol. 2012, 63(2): p. 305-326.
- [42] Rahman AM, Akter M. Res Plant Sci. 2013, 1(3): p. 74-80.
- [43] Brown LC. The Flora and Fauna of St Helena: 1-88. Land Resources Development Centre, Surbiton, England.
- [44] MacKee HS. Museum national d'histoire naturelle. **1993**, 2: p.1-164
- [45] Broughton DA, McAdam JH. Bot J Scotl. 2002, 54: p.153-190.

[46] Baikov, K.S. Synopsis of the genus Euphorbia (Euphorbiaceae) in the Northern Asia Botanicheskii Zhurnal. Moscow & Leningrad 92(1): 135-159.

- [47] Kral R, Diamond AR, Ginzbarg SL, et al. J Bot Res Inst Texas. 2010, 99: p. 1-112.
- [48] Mostaph MK, Uddin SB. Dictionary of plant names of Bangladesh, Vasc. p. 1-434.
- [49] Mohlenbrock RH. Vascular Flora of Illinois. A Field Guide, ed. 4: p. 1-536.
- [50] Bailey C. Guide to the Vascular Plants of Tennessee: p. 1-813.
- [51] Gilman AV. Rhodora. 2016, 118 (974): p. 247–250

- [52] Hua J, Luo SH, Liu Y, et al. Chem Biodivers. 2017, 14(10).
- [53] Yamamura S, Shizljri YYS, Ohtsuka J, et al. Fitoterapia. 1989, 28(12): p. 3421-3436.
- [54] Lee SH, Tanaka T, Nonaka GI, et al. Chem Pharm Bull. 1990, 38(6): p. 1518-1523.
- [55] Chen Y, Tang Z, Jiang F, et al. 1979, 14: p. 91.
- [56] Zhang W, Guo YW. Chem Pharm Bull (Tokyo). 2006, 54(7): p. 1037-1039.
- [57] Wu QC, Tang YP, Ding AW, et al. Molecules. 2009, 14(11): p. 4454-4475.
- [58] Cateni F, Zilic J, Altieri T, et al. Chem Phys Lipids. 2014, 181: p. 90-98.
- [59] Yamamura S, Kosemura S, Ohba S, et al. Tetrahedron Lett. 1981, 22 (52): p. 5315-5318.
- [60] Kosemura S, Shizuri Y, Yamamura S. Bull Chem Soc Jpn. 1985, 58(11): p. 3112-3117.
- [61] Li J, Hui-hui Li, Wang W, et al., Fitoterapia. 2018, 128: p.102-111.
- [62] Chen H, Wang H, Yang B, et al., Fitoterapia.2014, 95: p.133-138.
- [63] Mai Z, Ni G, Liu Y, et al., Acta Pharm Sin B. 2018, 8(5): p. 805-817.
- [64] Sharapov NI. Maslichnye rasteniya i masloobrazovatel'nyi protsess. p. 322-326.
- [65] Geng D, Shi Y, Min Z, et al., Chin Chem Lett . 2010, 21: p. 73-75.
- [66] Di G, Li-tao YI, Yao SHI et al., Chin J of Nat Med. 2015, 13(9): p. 704-706.
- [67] Jun Li, Wen-giong Wang, et al., Fitoterapia. 2018, 125: p. 24-32.
- [68] Zhou J, Xie G, Yan X. Encyclopedia of Traditional Chinese Medicines . 2011.
- [69] Kawase A, Katani N. Agr Biol Chem. 32: p. 121.
- [70] Wang J. et al., Handbook of Effective Components in Vegetal Medicines, People Health Press, Beijing, 1986.
- [71] Nahrstedt, A. Planta Med **1975**, 27(4):p.301-303, 4-7.
- [72] Sheng W, Gao L, Ke X, et al., Chin chem lett. 2010, 21: p. 191-193.
- [73] Peng H, Xiao L, Shi F, et al., Cell Biochem Biophys **2011**, 61(1):p.59-64.
- [74] Soboleva VA, Chagovets RK. Chem Nat Comp. 1971, 7: p. 509.
- [75] Park KH, Dongsoo K, Seungho L. et al., J Micro Bio. 2001, 11(1): p. 138-142.
- [76] Barla Di, YI Li-Tao, SHI Yao, et al., Chin J of Nat Med. 2015, 13(9): p.704-706.
- [77] Li J, Wang W, Tang S, et al., Fitoterapia. 2018, 127: p.138-145,
- [78] Zhang W, Guo YW. Pla med. 2005, 71:p. 283-386.
- [79] Mai Z, Gang N, Liu Y, et al., Org Lett. 2018, 20(10):p. 3124-3127.
- [80] Su J, Wen C, Song J-G, et al., J Nat Prod. 2019, 82(10): p. 2818-2827.
- [81] Yin ZX, Xing-L, Yuan J, et al., J Asian Nat Prod Res. 2020, 22(7): p.632-638.
- [82] Mai Z, Gang N, Liu Y, et al., Sci Rep. 2017, 7(1): p. 49-22.
- [83] Mai ZP, Gang N, Liu YF, et al., J Org Chem. 2018, 83(1):p. 167–17.
- [84] Wang WP, Jiang K, Zhang P, et al., Phytochemistry. 2018, 145: p. 93-102.
- [85] Pohl R, Janistyu B, Nahrstedt A, et al., Springer Science Business. 2013, 27: p.302.
- [86] Valobuyeva MA, Springer Science Business. 2013, 27: p. 601.
- [87] Miller KR Pohl. Planta Med. 1970, 18: p.114.
- [88] Shakhnoza S, Azimova Valentina I. Springer Science. 2013.
- [89] Bilal M, Rasheed T, Hafiz M, et al., International Journal of Biological Macromolecules, 2017, 105(1): p. 393-400.
- [90] Cheng J, Wei H, Zheyuan W, et al., BioMed Research International. 2015, 35: p. 1-9.
- [91] Awaad AS, Alothman MR, Zain YM, et al., Saudi Pharm J. 2017, 25: p. 1226-1230.
- [92] Tong J, Zhang XX, Wang XH, et al., Mol Med Rep. **2018**, 17: p. 5320-5327.
- [93]Henam SD, Farooq A, Muhammad A, et al., Spectrochim Acta A Mol Biomol. 2019, 213:p. 337-341.
- [94] Lone BA, Bandh SA, Chishti MZ, et al., Trop Anim Health Prod. 2013, 45:p. 743-749.
- [95] Lone BA, Chishti MZ, Bhat FA, et al., Vet Parasitol. 2012, 189:p. 317-321.
- [96] Tanveer A, Rehman A, Mansoor M. Turk J Agric For. 2010, 34:p. 75-81.
- [97] Rehman HA, Zubaida Y, Rashid M, et al., Nat Prod Res.2014, 28:p.1725-1731.
- [98] Saeed S Al-Sokari, Nasser Awadh A, Lianet Monzote, et al., Biomed Res Int. 2015, 2015: p.938747.
- [99] Nasrollahzadeh M, Sajadi SM, Ferydon B, et al., J Colloid Interface Sci .2015, 450:p.374-380.
- [100] Carlini EA. Pharmac Biochem Behav. 2003, 75: p. 501-512.
- [101] Bhatia H, Manhas RK, Kewal K, et al. J Ethnopharmacol. 2014, 152(1): p. 207-216.
- [102] Andersen T, Fogh J. J Hum Nutr Dietet. 2022, 14: p. 243-250.
- [103] Boozer CN, Nasser JA, Heymsfield SB, et al., Int J Obes. 2001, 25: p. 316-324.
- [104] Opala T, Rzymski P, Pischel I. Eur J Med Res . 2006, 11: p. 343-350.
- [105] Baghkhani L, Jafari M. J Herb Pharmacother.2001, 2: p. 57-61.
- [106] Lude S, Vecchio S, Sinno-Tellier S et al. Phytother Res. 2016, 30: p. 988-996.
- [107] Moaddeb J, Tofade TS, Bevins MB. J Pharm Pract. 2011, 24: p. 400-403.
- [108] Wilken K, Schempp CM, Hautarzt.56: p. 955-958.
- [109] Schmidt R J, Evans FJ. Contact dermatitis. 1980, 6: p. 204-210.
- [110] Wilken K, Schempp CM. Die Dermatologie. 2005, 56: p. 955-958.
- [111] Almis H, Ibrahim H Bucak, Tekin M, et al., Contact Dermatitis. 2015, 72(3): p. 184-185.
- [112] An I, Ozturk M. Cutan Ocul Toxicol. 2019, 38(2): p. 176-181.
- [113] Chen H, Zhaoshuai W, Li Y. Nat Prod Res. 2012, 26(22): p. 2112-2116.