

Der Pharma Chemica, 2021, 13(10): 10-15
(http://www.derpharmachemica.com/archive.html)

Synthesis and Biological Activity of Cycloocta[b]pyridine Derivatives

Mahmoud NM Yousif*, Nabil M. Yousif
Photochemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
*Corresponding author: Mahmoud NM Yousif, Photochemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt, E-mail: mahmoud_nabil18@yahoo.com

Abstract

Cyclooctanone reacts with arylidene malononitrile to afford cycloocta[b]pyridine-3-carbonitrile derivatives 2a-b. 2-Amino-4-(4-chlorophenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile $2 a$ reacts with benzoyl chloride and acetic anhydride to afford compounds 3 and 4 respectively. N-(4-(4-Chlorophenyl)-3-cyano-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2-yl)benzamide 3 and N-(4-(4-Chlorophenyl)-3-cyano-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2-yl)acetamide 4 reacts with hydrazine hydrate to afford compounds 5a,b. 5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine $5 a$ and 5-(4-Chlorophenyl)-4-imino-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine 5b reacts with D-glucose and D-ribose to produce compounds 6 a-d. Compounds $6 a, b$ react with acetic anhydride to afford acetylated derivative $7 a, b$. Anticancer profile of the prepared compounds were tested against three cell lines namely A-549, CaCo-2, and HT-29.

Keywords: Cycloacta[b]pyridine; cycloocta[5,6]pyrido[2,3-d]pyrimidine; synthesis

INTRODUCTION

Pyridine derivatives have attracted many researchers due to its biological importance. They have antimicrobial profileagainst gram negative bacteria, gram positive bacteria, and Escherichia Coli [1]. Pyridine derivatives have herbicidal activity against against T. procumbens, E. indica, C. argentia, E. hirta, E. crusgalli, C. rotundus, and C. dactylon [1]. Also, pyridine derivatives has antifungal activity, antiviral activity, antioxidant activity, antidiabetic and anticancer activity. In addition, pyridine derivatives have antimalarial, analgesic activity, antiamoebic activity. Pyridine derivatives containing benzimidazole moiety have gastric $\mathrm{H}^{+} / \mathrm{K}^{+}$-ATPase inhibitory activity [1]. Imidazo[1,2-a]pyridine derivatives 1-6 inhibit acylCOA (cholesterol acyltransferase) [1] (Figure 1).

Cycloocta[b]pyridine derivatives have many applications. The 4-arylcycloocta [b]pyridine is the main skeleton of antipsychotic drug blonanserin which is used in the treatment of schizophrenia [2].

4

Figure 1: Imidazo[1,2-a]pyridine derivatives 1-6 inhibit acyl-COA (cholesterol acyltransferase)
All the above mentioned information and as a continuation of our previous work [3-19] directed us to synthesize novel cycloocta [b]pyridine derivatives for biological evaluation.

RESULTS AND DISCUSSION

Chemistry

Cyclooctanone reacts with arylidene malononitrile to afford cycloocta[b]pyridine-3-carbonitrile derivatives $\mathbf{2 a} \mathbf{- b}$. Compound $\mathbf{2 b}$ was prepared according to different method than reported [20, 21]. Spectral data (mass, IR, ${ }^{1} \mathrm{H}$ NMR) are in agreement with the proposed structures. Compound 2a shows appearance of absorption band for CN and NH_{2} group at 2235 , and 3320 respectively in the IR spectrum. Compound 2a shows disappearance of absorption band for carbonyl group in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR of compound 2a show chemical shifts at 7.40 and 7.60 . corresponding to aromatic protons.

Compound 2a reacts with benzoyl chloride and acetic anhydride to afford compounds $\mathbf{3}$ and $\mathbf{4}$ respectively. The structures of compounds $\mathbf{3}$, and $\mathbf{4}$ were elucidated from IR, mass, ${ }^{1}$ H NMR spectral data. The IR of compounds $\mathbf{3}$, and $\mathbf{4}$ show absorption band of carbonyl group at 1710 and 1720 cm^{-1} respectively. The ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4}$ shows chemical shift at 2.10 (singlet) corresponding to CH_{3}. The ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{3}$, and $\mathbf{4}$ show chemical shift (δ) at 165.4 and 171.2 corresponding to carbonyl group. Compounds $\mathbf{3}$ and $\mathbf{4}$ reacts with hydrazine hydrate to afford compounds 5a,b. Spectral data (IR, mass spectra, ${ }^{1} \mathrm{H}$ NMR) of compounds $\mathbf{5 a , b}$ are in agreement with the suggested structures. The IR of compounds $\mathbf{5 a}, \mathbf{b}$ show disappearance of absorption band for cyano group and carbonyl group. Mass spectra of compounds $\mathbf{5 a}, \mathbf{b}$ show molecular ion peak at $\mathrm{m} / \mathrm{z} 429.9$ and 367.8. 5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine 5a and 5-(4-Chlorophenyl)-4-imino-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine 5b reacts with D-glucose and D-ribose to produce compounds $\mathbf{6 a - d}$. Compounds $\mathbf{6 a}, \mathbf{b}$ react with acetic anhydride to afford acetylated derivative 7a,b. The structures of compounds $\mathbf{6 a - d}$ and $\mathbf{7 a}, \mathbf{b}$ were confirmed by spectral data (mass spectra, IR, ${ }^{1} \mathrm{H}$ NMR). Compounds $\mathbf{6 a - d}$ show absorption band for hydroxyl group in the IR spectra. The ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 a}$ show chemical shift at 7.80 ppm corresponding to function group $\mathrm{CH}=\mathrm{N}$. Compound $\mathbf{7 a}$ shows absorption band for carbonyl group in the IR spectrum. The IR of compound 7a shows disappearance of absorption band for hydroxyl group. The ${ }^{1} \mathrm{H}$ NMR of compound 7 a shows chemical shift at 2.16 (singlet) corresponding to methyl group of acetyl function group (Figure 2)

Figure 2: Chemicals synthesis

Anticancer evaluation

Anticancer activity of prepared compounds was done against three tumor cell lines (adenocarcinomic human alveolar basal epithelial cells A-549, human epithelial colorectal adenocarcinoma cells $\mathrm{CaCo}-2$, and human colorectal adenocarcinoma cell line HT-29) using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay [22]. The results are shown in Table 1 as anticancer activity of prepared compounds at $100 \mu \mathrm{M}$ on three cell lines. The results exhibits that compound 7a have highest activity toward A-549 cell lines. Compounds 5a, 6d, 7a have medium activity towards A-549 cell lines as compared with doxorubicin. Compounds $\mathbf{2 a}, \mathbf{b}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{b}$ have weak activity toward A-549 cell lines as compared with doxorubicin. Compound 2a has highest activity toward $\mathrm{CaCo}-2$ cell lines as compared with doxorubicin. Compounds $\mathbf{5 a}, 7 \mathrm{a}$ have medium activity toward $\mathrm{CaCo}-2$ cell lines as compared with doxorubicin. Compounds $\mathbf{5 a}, \mathbf{6 c}, \mathbf{d}, \mathbf{7 a}$ show weak activity toward $\mathrm{CaCo}-2$ cell lines as compared with doxorubicin. Compound 2a shows highest activity towards HT-29 cell lines as compared with doxorubicin. Compounds 2b, 4, 5a, b, 6a-d, 7a,b have weak activity towards HT-29 cell lines against doxorubicin. (Table 1)

Table 1: Anticancer evaluation of compounds on human tumor cell lines at $100 \mu \mathrm{M}$

Compound No.	$\mathbf{A - 5 4 9}$	$\mathbf{C a C o - 2}$	$\mathbf{H T - 2 9}$
$\mathbf{2 a}$	3.3	92.3	92.4
$\mathbf{2 b}$	15.6	0	35.1
$\mathbf{3}$	19.3	0	0
$\mathbf{4}$	29.4	0.9	12.0
$\mathbf{5 a}$	50.4	25.6	25.4
$\mathbf{5 b}$	0	0	15.1
$\mathbf{6 a}$	25.0	0	13.3
$\mathbf{6 b}$	17.2	0	18.3
$\mathbf{6 c}$	25.3	5.2	26.9
$\mathbf{6 d}$	45.9	17.5	31.5
$\mathbf{7 a}$	47.8	7.9	32.9
$\mathbf{7 b}$	88.5	71	8.7
Doxorubicin	100	100	100
$\mathrm{p} \leq 0.01, \mathrm{n}=3$			

From the results, we can conclude structure activity relationship. Acetylated sugar in compound 7a enhances greatly the anticancer activity towards adenocarcinomic human alveolar basal epithelial cells A-549. Presence of sugar moiety linked to pyrimidine ring in compound $\mathbf{6 d}$ and presence of pyrimidine ring in compound 5a give medium activity toward A-549 cell lines. Presence of amino cyano function group in compounds $\mathbf{2 a} \mathbf{a} \mathbf{b}$ and presence of benzoyl and acetyl group linked to amino cyano function group in compounds $\mathbf{3}$, and $\mathbf{4}$ give weak activity towards A-549 cell lines. Presecne of sugar moiety linked to pyrimidine ring in compound $6 a$, b give weak activity towards A-549 cell lines. Amino cyano function group in compounds 2a, b give high activity towards $\mathbf{C a C o}-2$ cell lines. Presence of 2-phenyl-diaminopyrimidine ring in compound 5a and acetylated sugar linked to 2-phenyl-pyrimidine ring in compound 7 a make medium activity towards $\mathrm{CaCo}-2$ cell lines. Sugar moiety linked to diamino-pyrimidine ring in compounds $\mathbf{6 c}$, \mathbf{d} make weak activity toward $\mathrm{CaCo}-2$ cell lines. Amino cyano function group linked to pyridine ring in compound $\mathbf{2 a}$ give high activity toward HT-29 cell lines.

EXPERIMENTAL

The instruments used were as previously reported paper [22].

General method for preparation of compounds $2 a, b$

A mixture of arylidene malononitrile (0.01 mole), cyclooctanone (0.01 mole), 4 gm anhydrous ammonium acetate in 20 mL acetic acid are heated under reflux for 3 hours. After cooling the reaction mixture to room temperature, the reaction mixture is poured into cold water. The formed solid collected and crystallized from ethanol to give compounds $\mathbf{2 a}, \mathbf{b}$.

2-Amino-4-(4-chlorophenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile 2a

Yield: 65%; m.p. $240-242{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, \mathrm{v}: 3320\left(\mathrm{NH}_{2}\right), 2235(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.25(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}$), $7.40(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar})$, $7.60(\mathrm{~d}, 2 \mathrm{H}, \quad J=7.5 \mathrm{~Hz}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}: 22.3,24.2,26.3,28.5,29.2,29.6\left(6 \mathrm{CH}_{2}\right), 115.1(\mathrm{CN}), 120.2,121.4,123.1,125.2,125.9$, 130.7, 132.6, 135.2, 137.9, 152.3, $155.3(11 \mathrm{C}=)$. MS (m/z): $311.8\left(\mathrm{M}^{+}, 31 \%\right)$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{3}: \mathrm{C}, 69.34$; H, 5.82; N, 13.48; Found: C, 69.39; H, 5.90; N, 13.53.

2-Amino-4-(phenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile 2b

Yield: 70%; m.p. $225-227{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, \mathrm{v}: 3330\left(\mathrm{NH}_{2}\right), 2250(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}$), $1.29(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.72(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}$) , $7.30(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar})$, $7.51(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}: 21.10,25.12,27.15,28.10,28.90,29.10\left(6 \mathrm{CH}_{2}\right), 112.28(\mathrm{CN}), 121.1,122.7,123.2,123.6$, $125.8,128.3,129.2,130.7,132.7,135.1,136.8(11 \mathrm{C}=)$. MS (m/z): $277.3\left(\mathrm{M}^{+}, 41 \%\right)$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}: \mathrm{C}, 77.95 ; \mathrm{H}, 6.90 ; \mathrm{N}, 15.15$; Found: C, 78.04; H, 6.98; N, 15.19.

N-(4-(4-Chlorophenyl)-3-cyano-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2-yl)benzamide 3

A mixture of compound $\mathbf{2 a}(0.01$ mole $)$ and benzoyl chloride (0.01 mole) in 20 mL pyridine was refluxed for 3 hours. Then, the reaction mixture is acidified with $10 \% \mathrm{HCl}$. The precipitate formed was collected, dried a recrystallized from ethanol to give compound 3.

Yield: 65%; m.p. $105-107{ }^{\circ} \mathrm{C}$; IR (KBr) cm ${ }^{-1}$, v: $3350(\mathrm{NH}), 2230(\mathrm{CN}), 1710(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.30$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}$), $7.40-7.60(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta /$ ppm: 21.1, 23.2, 24.1, 25.4, 26.7, $27.9\left(6 \mathrm{CH}_{2}\right), 118.5(\mathrm{CN}), 125.1,125.9,127.1,128.2,128.9,129.3,129.9,130.1,130.8$, $132.4,135.1,136.8,137.4,138.2,140.2,143.7,145.9(17 \mathrm{C}=), 165.4(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 415.9 .7\left(\mathrm{M}^{+}, 51 \%\right)$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}$, 72.20 ; H, 5.33; N, 10.10; Found: C, 72.28 ; H, 5.39 ; N, 10.18 .

N-(4-(4-Chlorophenyl)-3-cyano-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2-yl)acetamide 4

A mixture of compound $\mathbf{2 a}(0.01$ mole) and 20 mL acetic anhydride is heated under reflux for 2 hours. The reaction mixture is poured into cold water. The formed solid collected and crystallized from ethanol to give compound 4.

Yield: 55%; m.p. $150-152{ }^{\circ} \mathrm{C}$; IR (KBr$) \mathrm{cm}^{-1}$, v: $3410(\mathrm{NH}), 2230(\mathrm{CN}), 1720(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH} 2), 1.34$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52($ brs, $1 \mathrm{H}, \mathrm{NH}), 1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.34-$ $7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}: 19.2\left(\mathrm{CH}_{3}\right), 22.3,23.9,24.2,26.1,26.9,29.1\left(6 \mathrm{CH}_{2}\right), 116.1(\mathrm{CN}), 121.2,122.3,124.5,125.1,127.2$, $129.1,129.5,131.2,133.1,151.2,153.4(11 \mathrm{C}=), 171.2(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 353.8\left(\mathrm{M}^{+}, 33 \%\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 67.89 ; \mathrm{H}, 5.70 ; \mathrm{N}$, 11.88; Found: C, 67.93; H, 5.78; N, 11.93.

General method for preparation of compounds 5a,b

A mixture of compounds 3 and $\mathbf{4}$ (0.01 mole), and 50 mL ethanol containing 3 mL hydrazine hydrate was refluxed for 3 hours. The reaction mixture was cooled to room temperature. Then, the reaction mixture is poured to cold water. The formed solid is recrystallized from ethanol to give compounds 5a,b.

5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine 5a

Yield: 45%; m.p. $251-253{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, v: 3340,3410\left(\mathrm{NH}, \mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\left.\delta / \mathrm{ppm}: 1.30\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})_{2}\right)$, $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80(\mathrm{brs}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{NH}), 7.31-7.60(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO) $\delta /$ ppm: $22.5,22.8,24.5,25.1,25.9,26.1\left(6 \mathrm{CH}_{2}\right), 121.7,122.7,122.9,124.1,126.1,126.8,128.1,128.9,129.1,130.3,134.5,137.5,138.4$, $138.9,139.1,142.4,145.9,147.3(18 \mathrm{C}=), 155.2(\mathrm{C}=\mathrm{N})$. MS (m/z): $429.9\left(\mathrm{M}^{+}, 51 \%\right)$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{5}: \mathrm{C}, 69.84 ; \mathrm{H}, 5.63 ; \mathrm{N}, 16.29$; Found: C, 69.89; H, 5.69; N, 16.34.

5-(4-Chlorophenyl)-4-imino-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-amine 5b

Yield: 42%; m.p. $240-242{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, \mathrm{v}: 3350,3426\left(\mathrm{NH}, \mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\left.\delta / \mathrm{ppm}: 1.34\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})_{2}\right)$, $1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.28\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.73(\mathrm{brs}, 3 \mathrm{H}, \mathrm{NH} 2, \mathrm{NH}), 7.30(\mathrm{~d}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}: 20.3\left(\mathrm{CH}_{3}\right), 21.3,22.9,24.6,26.2,26.1,26.9\left(6 \mathrm{CH}_{2}\right), 124.1,126.2,127.1$, $129.3,130.2,133.1,135.4,137.9,141.3,145.4(10 \mathrm{C}=), 149.6,153.7,155.2(3 \mathrm{C}=\mathrm{N}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 367.8\left(\mathrm{M}^{+}, 43 \%\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{5}: \mathrm{C}^{2}$, 65.30; H, 6.03; N, 19.04; Found: C, 65.38; H, 6.09; N, 19.09.

General method for preparation of compounds 6a-d

To a well stirred solution of compounds $\mathbf{5 a} \mathbf{a} \mathbf{b}(0.01 \mathrm{~mole})$ in 50 mL ethanol containing 3 drops of glacial acetic acid, D-glucose and D-ribose (0.015 mole) dissolved in distilled water was added. The reaction mixture was headed under reflux for 5 hours, and then the half of the solvent was evaporated under reduced pressure. The precipitated solid was filtered, washed with water and recrystalized from ethanol to give compounds $\mathbf{6 a - d}$.

5-((5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)pentane-1,2,3,4tetraol 6a

Yield: 60%; m.p. $261-263{ }^{\circ} \mathrm{C}$; IR (KBr) cm-1, v: $3360(\mathrm{NH}), 3420(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.10(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}$), $1.27(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60(\mathrm{brs}, 4 \mathrm{H}, \mathrm{OH}), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{CHOH}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 7.30 (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.34-7.65(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 7.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}: 21.2,22.2$, 23.1, 23.9, 24.1, 25.6 (6 CH), $61.2,63.2,65.4,70.1(4 \mathrm{COH}), 121.3121 .9,122.1,123.4,124.1,124.9,126.1,128.8,129.1,131.0,132.9,134.2,135.8,137.3,138.2,139.0(16$ $\mathrm{C}=), 153.1,154.4,156.1,157.1(4 \mathrm{C}=\mathrm{N}) . \mathrm{MS}(\mathrm{m} / \mathrm{z})$: $562.07\left(\mathrm{M}^{+}, 47 \%\right)$. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{4}$: C, 64.11; H, 5.74; N, 12.46; Found: C, 64.18; H, 5.79; N, 12.52.

6-((5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)hexane-1,2,3,4,5pentaol 6b

Yield: 55%; m.p. $256-258{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, v: 3410(\mathrm{NH}), 3530(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\left.\delta / \mathrm{ppm}: 1.24\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})_{2}\right)$, $1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.50(\mathrm{brs}, 6 \mathrm{H}, 5 \mathrm{OH}, \mathrm{NH}), 3.64(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{CHOH}, \mathrm{CH} 2 \mathrm{OH})$, 7.41-7.56 (m, $9 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N})$. $\mathrm{MS}(\mathrm{m} / \mathrm{z})$: $592.09\left(\mathrm{M}^{+}, 51 \%\right)$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{ClN}_{5} \mathrm{O}_{5}$: C, 62.89; H, 5.79; N, 11.83; Found: C, 62.93; H, 5.84; N, 11.89.

5-((5-(4-Chlorophenyl)-4-imino-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)pentane-1,2,3,4tetraol 6c

Yield: 50%; m.p. $265-267{ }^{\circ} \mathrm{C}$; IR (KBr) cm ${ }^{-1}$, v: $3430(\mathrm{NH}), 3510(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.13\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$), $1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52(\mathrm{brs}, 5 \mathrm{H}, 4 \mathrm{OH}, \mathrm{NH}), 3.79(\mathrm{~m}, 5 \mathrm{H}$, $\left.3 \mathrm{CHOH}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 500.0\left(\mathrm{M}^{+}, 61 \%\right) . \mathrm{Anal} . \mathrm{Calcd}$. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4}$: C, 60.06; H, 6.05; N, 14.01; Found: C, 60.13; H, 6.14; N, 14.09.

6-((5-(4-Chlorophenyl)-4-imino-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)hexane-1,2,3,4,5pentaol 6d

Yield: 40%; m.p. $270-272{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}, v: 3390(\mathrm{NH}), 3510(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.23(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH} 2), 1.40(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03(\mathrm{brs}, 6 \mathrm{H}, 5 \mathrm{OH}, \mathrm{NH}), 2.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.42(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{CHOH}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.57(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 8.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 530.02\left(\mathrm{M}^{+}, 71 \%\right)$. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{5}$: C, 58.92; H, 6.09; N, 13.21; Found: C, 59.01; H, 6.15; N, 13.28.

General method for preparation of compounds 7a,b

A solution of compound $\mathbf{6 a , b}(0.01$ mole) in 15 ml acetic anhydride was heated under reflux for 4 hours. The reaction mixture was then cooled to room temperature and was poured into cold water. The formed solid was collected and crystallized from ethanol to give compounds $\mathbf{7 a , b}$.

5-((5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)pentane-1,2,3,4-

 tetrayl tetraacetate 7aYield: 40%; m.p. $150-152{ }^{\circ} \mathrm{C}$; IR (KBr) cm ${ }^{-1}$, v: $3410(\mathrm{NH}), 1740(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.15\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.31(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.16(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH} 3), 3.42(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{CHOAc}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 4.21 (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.32-7.51(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 8.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta / \mathrm{ppm}^{2} 20.1,21.2,21.9,22.2\left(4 \mathrm{CH}_{3}\right)$, $23.2,24.1,24.8,26.2,27.2,28.6\left(6 \mathrm{CH}_{2}\right), 120.1,120.9,122.3,123.1,124.6,126.3,128.1,130.8,132.2,136.1,137.0,139.1,141.4,142.5,143.1$, $145.6(16 \mathrm{C}=), 153.1,154.3,155.9,158.1(4 \mathrm{C}=\mathrm{N}), 170.1(4 \mathrm{C}=\mathrm{O})$. $\mathrm{MS}(\mathrm{m} / \mathrm{z}): 730.22\left(\mathrm{M}^{+}, 52 \%\right)$. Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{ClN}_{5} \mathrm{O}_{8}: \mathrm{C}, 62.50 ; \mathrm{H}, 5.52$; N, 9.59; Found: C, 62.58; H, 5.59; N, 9.64.

6-((5-(4-Chlorophenyl)-4-imino-2-phenyl-6,7,8,9,10,11-hexahydrocycloocta[5,6]pyrido[2,3-d]pyrimidin-3(4H)-yl)imino)hexane-1,2,3,4,5pentayl pentaacetate 7b
Yield: 45%; m.p. $145-147{ }^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1}, \mathrm{v}: 3350(\mathrm{NH}), 1745(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta / \mathrm{ppm}: 1.23\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.41(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.34\left(\mathrm{~s}, 15 \mathrm{H}, 5 \mathrm{CH}_{3}\right), 3.72(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{CHOAc}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 5.14 (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.32-7.56(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 8.21(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 802.28\left(\mathrm{M}^{+}, 33 \%\right)$. Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{ClN}_{5} \mathrm{O}_{10}$: C, $61.38 ; \mathrm{H}, 5.53$; N, 8.73; Found: C, $61.43 ; \mathrm{H}, 5.61$; N, 8.79.

CONCLUSION

Novel cycloocta[b]pyridine derivatives have been prepared and characterized. The anticancer activity of the prepared compounds was done in comparison of doxorubicin as reference drug. Several prepared compounds show good anticancer activity.

Conflict of interest

The authors confirm that no conflict of interest.

Funding

This paper received no funding.

Acknowledgement

The authors acknowledge National Research Centre.

REFERENCES

[1] Ali Altaf A, Shahzad A, Gul Z et al., J drug des med chem. 2015, 1(1): p. 1-11.
[2] Maharani S and Kumar RR. Tetrahedron Letters. 2015, 56(1): p. 179-181.
[3] Mahmoud NM Yousif, Abdel-Rahman BA El-Gazzar, Hend N Hafez et al., Mini Rev Org Chem. 2021.
[4] Mahmoud NM Yousif. Mini Rev Org Chem. 2021.
[5] Mahmoud NM Yousif, Abdel-Rahman BA El-Gazzar and Mervat M El-Enany. Mini Rev Org Chem. 2021, 18(1): p. 43-54.
[6] Yousif MNM, Abdel-Rahman BA El-Gazzar, Fayed AA et al., J Appl Pharm Sci. 2020, 10(12): p. 35-43.
[7] Mahmoud NM Yousif, Hanan A Soliman, Makarem M Said et al., Russ J Gen Chem. 2020, 90(3): p. 460-469.
[8] Yousif MNM, Soliman HA, Said MM et al., Russ J Gen Chem. 2020, 90(4): p. 767.
[9] Ahmed A Fayed, Saleh A Bahashwan, Mahmoud NM Yousif et al., Russ J Gen Chem. 2019, 89(9): p. 1887-1895.
[10] Mahmoud NM Yousif , Ibrahim F Nassar, Nabil M Yousif et al., Russ J Gen Chem. 2019, 89(8): p. 1673-1682.
[11] Ahmed A Fayed, Mahmoud NM Yousif, Taha T Abdelgawad et al., Chem Heterocycl Compd, 2019, 55(8): p. 773-778.
[12] Mohamed TM Nemr , Mahmoud NM Yousif and Jan Barciszewski. Archiv Der Pharmazie, 2019, 352(80): p. 1-7.
[13] Mahmoud NM Yousif, Ahmed A Fayed and Nabil M Yousif. Egypt J Chem. 2019, 62(8): p. 1759-1766.
[14] Fayed AA, Bahashwan SA, Yousif MNM et al., Russ J Gen Chem. 2019, 89(6): p. 1209-1217.
[15] Mahmoud NM Yousif, Hoda AR Hussein, Nabil M Yousif et al., J Appl Pharm Sci. 2019, 9(1): p. 6-14.
[16] Mahmoud NM Yousif, Ahmed A Fayed and Nabil M Yousif. Der Pharma Chemica. 2018, 10(8): p. 105-109.
[17] Mahmoud NM Yousif, Wael A El-Sayed, Hebat-Allah S Abbas et al., J Appl Pharm Sci. 2017, 7(11): p. 21-32.
[18] Hanan A Soliman, Mahmoud NM Yousif, Makarem M Said et al., Der Pharma Chemica. 2014, 6(3): p. 394-410.
[19] Abdel-Rahman BA El-Gazzar, Mervat M El-Enany and Mahmoud N Mahmoud. Bioorg Med Chem. 2008, 16: p. 3261-3273.
[20] Konakanchi R, Kankala S and Kotha LR. Synthetic Communications. 2018, 48(14): p. 1777-1785.
[21] Kankala S, Pagadala R, Maddila S et al., RSC Advances. 2015, 5: p. 105446-105452.
[22] Mahmoud NM Yousif, Abdel-Rahman BA El-Gazzar, Ahmed A Fayed et al., J Appl Pharm Sci. 2020, 10(12): p. 35-43.

