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ABSTRACT 

   

A Quantitative Structural Relationship study had been performed on Alkyl Alkoxy Pyrazole [1, 5-c] quinazoline-2-carboxylate by using multiple 

linear regression to identify descriptors, which are actually focusing towards the biological activity. The best predictive QSAR model derived and 

validated in order to Glutamate receptor models by using a combination of different physicochemical parameters such as steric, electronic and 

topological. The final QSAR model shows a good predictivity and statistical validation respectively as a NMDA receptor final model had 

Correlation Coefficient r = 0.928, Square Correlation Coefficient r2 = 0.806, Cross validation Coefficient Q2
LOO = 0.685, adjusted correlation 

coefficient R2
adj =0.821, predicted root mean squared error RMSEpred =0.352, predictive residual sum of square S press = 0.352 and standard 

deviation s= 0.31. On the other hand, the built AMPA generated model had Correlation Coefficient r = 0.927, Square Correlation Coefficient R2 = 

0.859, Cross validation Coefficient Q2
LOO =0.747, adjusted correlation coefficient R2

adj = 0.823, Predicted root mean squared error RMSE pred 

=0.344, Predictive residual sum of squares Spress =0.465and standard deviation s= 0.30. It was observed that the glutamate receptor 

(NMDA/AMPA) had a lipophilic, steric volume and electron withdrawing descriptors were crucial in imparting higher potency to NMDA Glycine 

and AMPA receptor. 

 

The obtained result reveals the good predicting the inhibitory potential of the NMDA/AMPA conjugates of new molecules with more accuracy. 

 

Keywords: Quantitative structure activity relationship (QSAR); NMDA/Gly; AMPA receptor; Multiple linear regressions (MLR) 

  
INTRODUCTION 

 

The glutamatergic system plays a very important role in the operation of the mammalian central nervous system and the pathogenesis of many 

neurological and neurodegenerative disease [1]. 

 

L-Glutamate is the major excitatory neurotransmitter in the mammalian CNS, and plays very impotant role in the neuronal communication to 

neuropathology. It is the primary mediators of excitatory synaptic transmission in the brain [2]  α- amino -3- hydroxyl-5-methyl -4-

isoxazolepropionic acid receptor (AMPARs), in conjunction with other ionotropic glutamate receptor (iGLuR) family members, N-methyl- D-

aspartate receptors and kainite receptors (NMDARs and KARs), are cation permeable receptor. The AMPARs also act as one of the ostiary of 

NMDAR-dependent synaptic plasticity by relieving their voltage-dependent channel block by Mg2+ [3,4], allowing the postsynaptic Ca2+ entry 

that initiates changes in synaptic strength [5-7]. At some synapses, AMPARs can also mediate calcium influx directly, triggering various forms of 

postsynaptic plasticity [8,9]. 

 

In this paper, NMDA and AMPA receptors is described as potential targets for neurodegenerative therapeutic intervention. A different series of 

compound with inhibitory activity toward AMPA and NMDA receptor have been elaborated. It has been reported that compound showing high 

affinity for both AMPA and NMDA binding sites are more potent antagonist than the compound having selective affinity toward AMPA/NMDA 

receptor [10-12]. Thus AMPA and NMDA receptor can be considered as the prospective target for therapeutic prevention of CNS 

neurotransmission or neuronal degeneration in neurological disorders including phenylcyclidine (PCP) and ketamine project against brain damage 

in neurological disorder such as stroke Alzheimer’s, Parkinson’s, and Huntington’s [13-16]. However, these agents have psychotomimetic  

properties in humans. Thus, it may be possible to prevent the unwanted side effect of NMDA/AMPA antagonist, thereby escalating their utility as 

neuroprotectives. 

http://www.derpharmachemica.com/
http://www.derpharmachemica.com/archive.html
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So, we proposed an approach for increasing the potency of ligands towards both receptor subtypes (AMPA and NMDA) that may help in the 

development of potential anticonvulsant agents or neurodegenerative agents. 

 

Quantitative structure Activity Relationship (QSAR) is an important role rational design of drug in drug discovery to identify new inhibitors. QSAR 

study imparts fact relating structural physicochemical parameter and steric properties or certain structural feature of structurally similar drug 

molecules. It makes an effort to establish the correlation between the experimental activity of a set of compound and their chemical structure as 

defined by various molecular descriptors using various regression-based statistical method such as Multiple Linear Regressions (MLR), and Partial 

Least Squares (PLS) [17]. 

 

In this work proposed a predictive QSAR model based on data analysis method (multiple linear regressions – MLR analysis), accomplish about the 

model of interaction and to improve the activity at this receptor which is validated with cross validation method-CV, Y- Scrambling and 

spreadability. 

 

MATERIALS AND METHODS 

 

In designing new drugs, compound selection and optimization is on the basis of Biological activity estimation forms. Although various experimental 

approaches are available for screening the biological activity of compound, they are in some way very expensive and time consuming. Quantitative 

structure activity relationship (QSAR) analysis provides an essential and powerful tool for achieving the same goal with modest cost. In search of 

novel molecule of glutamate receptor antagonist (NMDA/AMPA) pertains assorted statistical method to prospect the pivotal structural properties of 

the compound that are related with their NMDA/AMPA inhibitory activities. QSAR models were designed for a combined data set of 17 

compounds having NMDA/AMPA inhibitory activity, which was explicate form the literature [18]. The predictability and validated performance of 

the proposed model were vindicate using internal (cross- validation and Y-scrambling) and statistical validations. The multiple linear regression 

analysis based self-generated QSAR software.  

 

Biological activity dataset and selection of molecules for analysis 

 

The series of compound subjected to QSAR analysis was Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylates at Glycine/NMDA and 

AMPA receptor antagonist studied by Catarzi D. et.al. The series is compound are listed in Table 1. In this table, Ki refers to the concentration of 

compound producing inhibition of [3H] glycine and AMPA binding. On this series the QSAR was performed both Glycine and AMPA receptor. 

 

Statistical Parameters and Model validation  
 

Statistical parameters are measure of the potential contribution of its group to particular properties of the parent compound and evaluation of model 

had the number of compound in Regression (n), the correction (r), square of correlation coefficient (R2), Fisher test (F), the Fischer reveals the 

ration of the variance explained by model and variance due to the error in the regression. High value of F- test indicates that the model is 

statistically significant. Validation parameter, the validity of QSAR model depends partly on its goodness- of- fit, robustness and predictivity. The 

cross validated correlation coefficient Q2cv is the most commonly used technique for internal validation. The regression coefficient R2 is a relative 

measure of fit by the regression equation. It depicts the part of the variation in observed data that is explained by the regression. Predictive R2 

(R2pred) was calculated for evaluating predictive capacity of the model [19]. The value of R2 pred > 0.5 indicates the predictive capacity of the 

QSAR model. All the squared differences between the true response and the predicted response of the compounds in the training set are expressed 

in the predictive residual sum of square (PRESS). Y randomization technique ensures the robustness of a QSAR model. 

 

Calculation of molecular descriptors 

 

The molecular descriptors were calculated for the ligand dataset using self-generated QSAR software. vander waals volume (Vw) and indicator 

parameters (I) were computed. 

 

RESULTS AND DISCUSSION 

 

Using Hansch approach, we correlated the activity of Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylates at Glycine /NMDA and AMPA 

receptor antagonists through multiple linear regressions. Following validated statistical result and equation evaluated in order to individual receptors 

e.g. AMPA and NMDA/Glycine (Figures 1-3). 

 

 
Figure 1: Alkyl and alkoxy Pyrazolo [1, 5-c] quinazoline- carboxylates. 
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Figure 2: 3D molecular structure of most potent compound. 

 

8, 9-Dichloro-5, 6-Dihydro-5-oxo-pyrazolo [1, 5-c] quinazoline-2-carboxylic Acid at glycine site compound (16) in Table 1 

 

 
 

Figure 3: 3D molecular structure of most potent compound. 

 

8-chloro-5, 6-dihydro-9-(pyrrol-1-yl) –5-oxo-pyrazolo [1, 5-c] quinazoline-2-carboxylic Acid at AMPA site compound (10) in Table 1. 

 

Table 1: SAR of QSAR analysis on Alkyl and Alkoxy Pyrazolo [1, 5-c] quinazoline-2-carboxylates at Glycine/NMDA and AMPA receptor 

antagonists. 

 

Comp. 

No. 
R R8 R9 Ki(M) [

3
H] glycine Ki(M) [

3
H] AMPA 

1 Et H H 33.3   7 42  6.8 

2 H H H 1.41   0.3 12.4   2.5 

3 Et Cl H 26.5   4.4 72  2.3 

4 H Cl H 0.48  0.04 2.3 0.4 

5 Et Cl NO2 10.6  1.8 26 9 

6 H Cl NO2 1.1  0.1 8.2 2 

7 Me Cl Cl 1.3 0.2 0.74 0.04 

8 H Cl Cl 0.16 0.04 2.4 0.8 

9 Et Cl 

  

 

 - 0.87 0.18 

10 H Cl 

  

 

 8.3 2.0 0.14 0.02 

11 Et Cl 

  

 

 57 9 1.4  0.2 

12 H Cl 

  

 

 8.2  3 0.27 0.02 

13 H H H 2.0 0.4 96 8 

N

N
N

N

N
N

N

HOC

N

HOC
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At NMDA/Glycine site 

 

In following Table 2, it has been studied with various physicochemical, electrical and steric parameters. After many trials Equation 1 was found to 

be promising.  

 

-logIC50 = 2.457(2.415)R9Vw -2.603(1.619)R9I +1.198(0.440)RI -1.296(0.504) 

           n = 16  r = 0.900  s = 0.355  F = 17.040………………………….. (1) 

 

 

Table 2: Training set compounds with their physicochemical parameters values for derivation 

of QSAR equation (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

William’s Plot 

 

For detecting the outliers in the training set, applicability domain of the model was analyzed by the William plot. One data points (6) was not 

included in finalizing the model for training set in Table (2) as they were outside the cut off value of Y space (Figure 4). 

 

 
 

Figure 4: Williams plot of training set compounds h* = 0.75. 

 

 

-logIC50 = 3.352(2.363)R9Vw -3.245(1.602)R9I +1.312(0.412)RI  

    -1.424(0.471) 
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14 Me Cl H 10.6 3.9 17.3 4.1 

15 H Cl H 0.24 0.03 7.2 0.6 

16 Me Cl Cl 4.0 1.0 8.5 1.3 

17 H Cl Cl 0.19 0.02 2.65 0.48 

Com.No. R9 Vw R9I RI Obs-logIC50 

Cal 

-logIC50 

Cal. 

Resid 

Pred. 

-logIC50 Pred. resid 

Lev 

(0.75) 

1 0.056 0 0 -1.522 -1.159 -0.363 -1.051 -0.471 0.227 

2 0.056 0 1 -0.149 0.04 -0.189 0.082 -0.231 0.188 

3 0.056 0 0 -1.423 -1.159 -0.264 -1.081 -0.342 0.227 

4 0.056 0 1 0.318 0.04 0.278 -0.024 0.342 0.188 

5 0.276 0 0 -1.025 -0.618 -0.407 -0.472 -0.553 0.265 

6 *0.276 0 1 -0.041 0.58 -0.621 0.813 -0.854 0.272 

7 0.244 0 0 -0.113 -0.697 0.584 -0.854 0.741 0.212 

8 0.244 0 1 0.795 0.501 0.294 0.421 0.374 0.213 

9 0.76 1 1 -0.919 -0.834 -0.085 -0.785 -0.134 0.362 

10 0.783 1 0 -1.755 -1.976 0.221 -2.155 0.4 0.447 

11 0.783 1 1 -0.913 -0.777 -0.136 -0.699 -0.214 0.363 

12 0.056 0 1 -0.301 0.04 -0.341 0.117 -0.418 0.188 

13 0.056 0 0 -1.025 -1.159 0.134 -1.197 0.172 0.227 

14 0.056 0 1 0.619 0.04 0.579 -0.094 0.713 0.188 

15 0.244 0 0 -0.602 -0.697 0.095 -0.722 0.12 0.212 

16 0.244 0 1 0.721 0.501 0.22 0.441 0.28 0.213 
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           n = 15  r = 0.928  s = 0.312  F = 22.620...................................(2) 

 

R
2 
= 0.806, Q

2
LOO =0.685, R

2
adj = 0.821, RMSE pred =0.352 Spress =0.352 

 

The resultant equation (2) indicated good r = 0.928, low s = 0.312 and high F = 22.62 Equation (2) was checked for the importance of each parameter by 

eliminating them one at a time and generating the resultant equation. The resultant equations were checked for their statistical validity (Table 3,4).  

 

Table 3: Training set compounds with their physicochemical parameters values for derivation of QSAR equation (2). 

 

S.N. R9 Vw R9I RI 

Obs-

logIC50 

Cal. 

-logIC50 

Cal. 

Resid 

Pred.-

logIC50 

Pred. 

residual 

1 0.056 0 0 -1.522 -1.236 -0.286 -1.146 -0.376 

2 0.056 0 1 -0.149 0.076 -0.225 0.128 -0.277 

3 0.056 0 0 -1.423 -1.236 -0.187 -1.117 -0.306 

4 0.056 0 1 0.318 0.076 0.242 0.018 0.3 

5 0.276 0 0 -1.025 -0.499 -0.526 -0.281 -0.744 

6 0.244 0 0 -0.113 -0.606 0.493 -0.752 0.639 

7 0.244 0 1 0.795 0.706 0.089 0.668 0.127 

8 0.76 1 1 -0.919 -0.81 -0.109 -0.022 -0.897 

9 0.783 1 0 -1.755 -2.045 0.29 -2.287 0.532 

10 0.783 1 1 -0.913 -0.733 -0.18 -0.627 -0.286 

11 0.056 0 1 -0.301 0.076 -0.377 0.163 -0.464 

12 0.056 0 0 -1.025 -1.236 0.211 -1.302 0.277 

13 0.056 0 1 0.619 0.076 0.543 -0.052 0.671 

14 0.244 0 0 -0.602 -0.606 0.004 -0.607 0.005 

15 0.244 0 1 0.721 0.706 0.015 0.698 0.023 

 

Correlation Matrix 

 

Table 4: Correlation matrix between descriptors employed for generating equation (2). 

 

 R9Vw R9I RI 

R9Vw 1.000 0.947 0.068 

R9I  1.000 0.134 

RI   1.000 

 

Following figures 5,6 shows Regression lines of the cross-validated QSAR equation (2). 

 

 
Figure 5: Plot of calculated versus observed -logIC50. 
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Figure 6:  Plot of predicted versus observed -logIC50. 

 

Randomization Test: Y- Scrambling 

 

The proposed models are also checked for reliability and robustness by Y- scrambling: new model are calculated for randomly recorded response (mean R2 

value in 10 time iteration). The robustness of the QSAR models for experimental training sets was examined by comparing these models to those derived for 

random data sets. Random set generated by rearranging biological activities of the training set molecules (Table 5). 

 

Table 5: Y-Randomization Test. 

 

Iterations R
2
 

1 0.216 

2 0.27 

3 0.023 

4 0.186 

5 0.027 

6 0.047 

7 0.228 

8 0.249 

  9 0.22 

10 0.278 

SUM 1.744 

 Mean 0.1744 

 

 

Spreadability of descriptor 

 

The descriptors selected for generating the model spread through a wide range, which is indicated in the following Figure 7. A good spreadability of the 

descriptor values of the substituents reduces bias in the QSAR equation and makes the activity prediction power of the model much more accurate (Figure 

7). 

 

 
 

Figure 7: Spreadability of the used substituent descriptor values in equation (2). 

 

At  AMPA site 

 

Moreover Multiple linear regression using Hansch analysis, we correlated the activity of Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-

carboxylates at AMPA receptor (Table 6). 
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       l = 1.914(0.878) R9 Vw + 0.412 (0.455)RI +0.626(0.575)R8I 

    -1.946(0.532) 

           n = 17  r = 0.880  s = 0.390  F = 14.931…………………..(3) 

 

Table 6: Training set compounds with their physicochemical parameters values for derivation of QSAR equation (3). 

 

Comp.no. R9Vw RI R8I 

Obs-

logIC50 

Cal. 

-logIC50 

Cal. 

Residual 

Pred-

logIC50 

Pred 

residual 

leverage 

(0.70) 

1 0.056 0 0 -1.623 -1.839 0.216 -1.937 0.314 0.313992 

2 0.056 1 0 -1.093 -1.428 0.335 -1.577 0.484 0.310207 

3 0.056 0 1 -1.857 -1.213 -0.644 -1.016 -0.841 0.235035 

4 0.056 1 1 -0.361 -0.802 0.441 -0.909 0.548 0.196284 

5 0.276 0 0 -1.414 -1.418 0.004 -1.419 0.005 0.327813 

6 0.276 1 1 -0.913 -0.381 -0.532 -0.3 -0.613 0.130393 

7* 0.276 0 1 0.13 -0.792 0.922 -0.96 1.09 0.154004 

8 0.244 1 1 -0.38 -0.442 0.062 -0.451 0.071 0.13466 

9 0.76 0 1 0.06 0.134 -0.074 0.162 -0.102 0.27692 

10 0.76 1 1 0.853 0.546 0.307 0.422 0.431 0.286617 

11 0.783 0 1 -0.146 0.178 -0.324 0.312 -0.458 0.293068 

12 0.783 1 1 0.568 0.59 -0.022 0.598 -0.03 0.304348 

13 0.056 1 0 -1.982 -1.428 -0.554 -1.178 -0.804 0.310207 

14 0.056 0 1 -1.238 -1.213 -0.025 -1.206 -0.032 0.235035 

15 0.056 1 1 -0.857 -0.802 -0.055 -0.788 -0.069 0.196284 

16 0.244 0 1 -0.929 -0.854 -0.075 -0.839 -0.09 0.160472 

17 0.244 1 1 -0.423 -0.442 0.019 -0.444 0.021 0.13466 

 

William’s Plot 

 

For detecting the outliers in the training set, applicability domain of the model was analyzed by the William plot.  One data point (7) in Table 6 

were not included in finalizing the model for training set in Table 6 as they were outside the cut off value of Y space (Figure 8). 

 

 
 

Figure 8: Williams plot of training set compounds h* = 0.70. 

 

-logIC50 = 2.009(0.709)R9v +0.554(0.381)RI +0.513(0.470)R8I -2.028(0.431) 

           n = 16  r = 0.927  s = 0.308  F = 24.381....................................(4) 

R
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= 0.859, Q

2
LOO =0.747, R

2
adj = 0.823 RMSE pred. =0.344 Spress =0.465 (Tables 7,8) 
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Table 7: Compounds with their physicochemical parameters values for derivation of QSAR equation 4. 

 

Comp. 

No. R9Vw RI R8I 

Obs-

logIC50 

Cal. 

-logIC50 

Cal. 

Residual 

Pred-

logIC50 

Pred 

residual 

1 0.056 0 0 -1.623 -1.915 0.292 -2.052 0.429 

2 0.056 1 0 -1.093 -1.362 0.269 -1.484 0.391 

3 0.056 0 1 -1.857 -1.402 -0.455 -1.233 -0.624 

4 0.056 1 1 -0.361 -0.848 0.487 -0.969 0.608 

5 0.276 0 0 -1.414 -1.473 0.059 -1.502 0.088 

6 0.276 1 1 -0.913 -0.406 -0.507 -0.33 -0.583 

7 0.244 1 1 -0.38 -0.47 0.09 -0.485 0.105 

8 0.76 0 1 0.06 0.012 0.048 -0.007 0.067 

9 0.76 1 1 0.853 0.566 0.287 0.45 0.403 

10 0.783 0 1 -0.146 0.058 -0.204 0.148 -0.294 

11 0.783 1 1 0.568 0.612 -0.044 0.632 -0.064 

12 0.056 1 0 -1.982 -1.362 -0.62 -1.076 -0.906 

13 0.056 0 1 -1.238 -1.402 0.164 -1.462 0.224 

14 0.056 1 1 -0.857 -0.848 -0.009 -0.845 -0.012 

15 0.244 0 1 -0.929 -1.024 0.095 -1.046 0.117 

16 0.244 1 1 -0.423 -0.47 0.047 -0.478 0.055 

 

Table 8: Correlation matrix between descriptors employed for generating equation 4. 

 

 R9Vw RI R8I 

R9Vw 1.000 -0.065 0.376 

RI  1.000 0.073 

R8I   1.000 

 

Regression lines of the cross-validated QSAR equation (15) (Figures 9,10). 

 

 
 

Figure 9: Plot of calculated versus observed -logIC50. 

 

 
Figure 10:  Plot of predicted versus observed logIC50. 

 

Table 3 &7 gives the observed, calculated and LOO biological activities of compounds in Table 1. Moreover Table 4 & 8 gives the inter 

correlation matrix of the descriptors used in equation 2 & 4. 
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Fig 5, 6 & 9, 10 indicates the closeness of the observed with calculated and predicted -logIC50 respectively (obtained from equation 2 & 4), which 

indicates the accuracy of the model. 

 

Y – Randomization test (Y- Scrambling test): It was performed 10 times iterations. Finally R2 values are observed 0.150 (Table 9). 

 

 

Table 9: Y- randomization. 

 

iteration R
2
 

1 0.16 

2 0.112 

3 0.315 

4 0.157 

5 0.089 

6 0.064 

7 0.35 

8 0.176 

9 0.131 

10 0.141 

SUM 1.695 

Mean 0.1695 

 

Spreadability of descriptor 

 

 

The descriptors selected for generating the model spread through a wide range, which is indicated in Figure11. A good spreadability of the 

descriptor values of the substituents reduces bias in the QSAR equation and makes the activity prediction power of the model much more accurate. 

  

 

The descriptor selected for generating the model spread through a wide range, which is indicated in Figure 11. 

 

 
 

Figure 11: Spreadability of the used substituent descriptor values in equation 4. 

 

Receptor Mapping 

 

Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylates at Glycine\NMDA receptor and AMPA receptor (Figures 12,13). 

 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

R9 Vw



14 

 Neelam Khan, et al 

   

Der Pharma Chemica, 2023, 15(3): 5-15 

 

 
 

Figure 12: A model interaction of Alkyl and alkoxy Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline NMDA/Gly receptor   

 

 

 
Figure 13: A model interaction of Alkyl and alkoxy Pyrazolo Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylate at carboxylate at AMPA 

receptor 

 

Proposed model shows interaction of Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylate with NMDA/Glycine receptor. L2 is small 

lipophilic pocket and indicates a steric site in the receptor. D1H+ and D2H+ are proton donors. 

 

Furthermore Receptor mapping of the model Alkyl Alkoxy Pyrazolo [1, 5- c] quinazoline-2-carboxylate at AMPA shows presence of lipophilic 

pocket L1 and L2 and D1H+ and D2H+ indicate proton donor sites in the receptor. 

 

CONCLUSION 

 

The QSAR studied on the series of alkyl alkoxy pyrazole quinazoline carboxylate compounds revealed that the presence of functional group that 

balance the electron donar and  liphophilicity would lead to accelerate in the activity of alkyl alkoxy pyrazole quinazoline carboxylate derivatives 

against dual NMDA/Gly and AMPA receptor. The final model depicted that the presence of electron withdrawing group at pyrazole quinazolines 

enhances the activity. Steric parameter vander waals volume and lipophilic element L1 and L2 parameters contributing towards biological activity 

and good affinity predictability with respect to both receptors. These models could give reasonably good prediction of binding affinity and 

robustness of model rather than individual model. 

 

The cross validated method, Y randomization techniques indicated that the model and statistically significant and has good internal and external 

predictability.   

 

Finally it concluded that to develop a good and predicted QSAR analysis, MLR is carried out using two or more descriptors depending on the 

number of observation in the dual activity data set (NMDA/AMPA) in order to obtain a better predictive model avoiding chance of counterfeit 

correlation. Both NMDA and AMPA receptors were screen out which may potential lead for the neurodegenerative disorder. 
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