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ABSTRACT 
 
The field of computer aided drug design and discovery (CADDD) is a rapidly growing area that have seen many 
successes in the last few years. Many giant pharmaceutical companies, in addition to academia, adopt CADDD for 
drug lead discovery.  The explosion of structural informatics, genomics and proteomic plays a major role in leading 
the efforts towards modern era drug discovery and development. This review discusses the recent advances in two of 
the major vehicles of CADDD, Molecular modeling and docking and some of the success stories accomplished by 
both academia and pharmaceutical industry using molecular modeling and docking towards discovery of new drug 
leads. 
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INTRODUCTION 

 
The process of discovery of a new drug is a very difficult task. Pharmaceutical and biotechnology companies need to 
make huge investments in the discovery of a single drug that may cure a disease or simply alleviate the symptoms of 
another. These are businesses like any other, where profits fuel their growth and provide the investments for future 
discoveries. Most pharmaceutical or biotechnology companies claim that it costs anywhere between $800 million to 
$900 million and a time span of twelve to fifteen years. Modern drug discovery is mainly based In-silico -chemico-
biological approach where, computer plays very important role in discovery of new drugs, not only it can save 
money but also time. Use of computational techniques in drug discovery and development process is rapidly gaining 
in popularity, implementation and appreciation. Both computational and experimental techniques have important 
roles in drug discovery and development and represent complementary approaches. CADD (Computer Aided Drug 
Discovery) entails: 
 
1. Use of computing power to streamline drug discovery and development process. 
 
2. Advantage of chemical and biological information about ligands and/or targets to identify and optimize new 
drugs. 
 
3. Design of in-silico filters to eliminate compounds with undesirable properties (poor activity and/or poor 
Absorption, Distribution, Metabolism, Excretion and Toxicity, (ADMET)) and select the most promising candidates. 
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Fast expansion in this area has been made possible by advances in software and hardware computational power and 
sophistication.  
 
4. Identification of molecular targets and an increasing database of publicly available target protein structures like 
the protein data bank www.pdb.org. CADD (Fig. 1) is being utilized to identify hits (active drug candidates), select 
leads (most likely candidates for further evaluation), and optimize leads i.e. transform biologically active 
compounds into suitable drugs by improving their physicochemical, pharmaceutical, ADMET/PK (pharmacokinetic) 
properties.  
 
5. Virtual screening is used to discover new drug candidates from different chemical scaffolds by searching 
commercial, public, or private 3-dimensional chemical structure databases. It is intended to reduce the size of 
chemical space and thereby allow focus on more promising candidates for lead discovery and optimization. The goal 
is to enrich set of molecules with desirable properties (active, drug-like, lead-like) and eliminate compounds with 
undesirable properties (inactive, reactive, toxic, poor ADMET/PK). In another words, the use of in-silico modelling 
have significantly minimize time and resource requirements of chemical synthesis and biological testing. The rapid 
growth of virtual screening is evidenced by increase in the number of citations matching keywords “virtual 
screening” from 4 in 1997 to 302 in 2004[1]. In his 2003 review article, Green of GlaxoSmithKline concluded that: 
“The future is bright, the future is virtual” [2] Comparison of traditional and virtual screening in terms of expected 
cost and time requirements stressed the reality that pharmaceutical industry needs to find means of improving 
efficiency and effectiveness of drug discovery and development in order to sustain itself. This was recently echoed 
in 2006 that the current business model would become fundamentally untenable unless there is a significant 
improvement in efficiency and effectiveness of the process[3]. 
 

 
 

Figure 1: The Computer-Aided Drug Discovery Process 
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Estimates of time and cost of currently bringing a new drug to market vary, but seven to twelve years and $ 1.2 
billion are often cited. Furthermore, five out of forty thousand compounds tested in animals reach human testing and 
only one of five compounds reaching clinical studies is approved. This represents an enormous investment in terms 
of time, money and human and other resources. It includes chemical synthesis, purchase, curation, and biological 
screening of hundreds of thousands of compounds to identify hits followed by their optimization to generate leads 
which requiring further synthesis. In addition, predictability of animal studies in terms of both efficacy and toxicity 
is frequently suboptimal. Therefore, new approaches are needed to facilitate, expedite and streamline drug discovery 
and development, save time, money and resources.  
 
It is estimated that computer modelling and simulations account for ~ 10% of pharmaceutical R&D expenditure and 
that they will rise to 20% by 2016 [4]. Role of computational models is to increase prediction based on existing 
Knowledge [5]. Computational methods are playing increasingly larger and more important role in drug discovery 
and development [6-12] and are believed to offer means of improved efficiency for the industry. They are expected 
to limit and focus chemical synthesis and biological testing and thereby greatly decrease traditional resource 
requirements. Modern drug discovery and development process including prominent role of computational 
modelling represents a brief overview, rather than an exhaustive review, of CADD and the following commonly 
used computational approaches are discussed: Molecular modeling and structure (target)-based design (docking). 
 
1. MOLECULAR MODELING 
Molecular modeling encompasses all theoretical methods and computational techniques used to model or mimic the 
behavior of molecules. The techniques are used in the fields of computational chemistry, drug design, computational 
biology and materials science for studying molecular systems ranging from small chemical systems to large 
biological molecules and material assemblies. The simplest calculations can be performed by hand, but inevitably, 
computers are required to perform molecular modeling of any reasonably sized system. The common feature of 
molecular modeling techniques is the atomistic level description of the molecular systems. Most molecular modeling 
studies involve three stages.  
 
• In the first stage, a model is selected to describe the intra- and inter- molecular interactions in the system. The two 
most common models that are used in molecular modeling are quantum mechanics and molecular mechanics. These 
models enable the energy of any arrangement of the atoms and molecules in the system to be calculated, and allow 
the modeler to determine how the energy of the system varies as the positions of the atoms and molecules change.  
• The second stage of a molecular modeling study is the calculation itself, such as an energy minimization, a 
molecular dynamics or Monte Carlo simulation, or a conformational search.  
• Finally, the calculation must be analyzed, not only to calculate properties but also to check that it has been 
performed properly.  
Computational chemistry/molecular modeling is the science (or art) of representing molecular structures numerically 
and simulating their behavior with the equations of quantum and classical physics. Computational chemistry 
programs allow scientists to generate and present molecular data including geometries (bond lengths, bond angles 
and torsion angles), energies (heat of formation, activation energy, etc.), electronic properties (moments, charges, 
and ionization potential and electron affinity), spectroscopic properties (vibrational modes, chemical shifts) and bulk 
properties (volumes, surface areas, diffusion, viscosity, etc.). As with all models however, the chemist's intuition and 
training is necessary to interpret the results appropriately. One of the earliest and still one of the largest uses of 
computers is to solve complex problems in the natural sciences and engineering disciplines and more specifically to 
obtain solutions of mathematical models that describe chemical or physical phenomena (or processes). The 
techniques used to obtain such solutions are part of the general area called Scientific Computing, and the use of 
these techniques to obtain insights into scientific or engineering problems is called Computational Science. 
Computational Science is a rapidly emerging trans-disciplinary field at the intersection of the natural sciences, 
computer science, and mathematics because much scientific investigation now involves computing as well as theory 
and experiment: 
Computational Science = mathematics+ computer science + field of application. 
Computational Science typically unifies three distinct elements:  
• Modeling, algorithms and simulations  
• Software developed to solve natural science, social science, engineering, and medical problems  
• Computer and information science that develops and optimizes advanced hardware systems, software, networking 
and data management components.  
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1.1. CLASSES OF MOLECULAR MODELING 
Molecular modeling applications in drug discovery can classified into two major classes 
 
1.1.1.SMALL MOLECULE (LIGAND) MODELING 
This modeling method focuses on the ligand 2D and 3D representations, which is useful in predicting the 
physiochemical properties of small molecule libraries intended to screening for their drug likeness properties. The 
approach is old as it started in the late eighties. 
 
2.1.1.1 SOURCES OF MOLECULAR STRUCTURES 
Structures of molecules can be determined experimentally or predicted computationally. For small molecules, such 
as ethanol and cyclohexane, both spectroscopic methods and rigorous quantum chemical computations can provide 
highly accurate molecular geometries in the vapor phase. Such highly accurate methods are not readily applicable 
for most drug molecules due to their larger size. However, experiments can give quite accurate structures of drugs in 
the crystalline state or while bound to target macromolecules. Approximate computations can give sufficiently 
accurate structures for drugs in the gas or liquid phase. Often, the effects of the medium on the structure are not too 
significant; in this case, use of experimental crystal structures or computationally predicted gas phase structures is 
permissible for description of molecules in solution. In other cases, care must be taken to use advanced 
computational methods that account for effects of the environment.  
 
2.1.1.2.  DOWNLOADING MOLECULAR STRUCTURES 
Databases such as Klotho provide model structures for many common small molecules. Chemicals with 
Pharmaceutical Activity from University of Oxford offers access to many drug models and the Protein Data Bank 
offers access to experimentally determined structures of macromolecules and macromolecular complexes.  
 
2.1.1.3. MOLECULAR STRUCTURES VIA SMILES SERVERS 
Several web sites generate 3D molecular structures from the SMILES string-using program like CORINA. CORINA 
uses built-in tables of standard bond lengths and angles to create a reasonable model for small or rigid molecules. 
However, the model geometry for larger and flexible molecules is likely to be quite different from the most 
prevalent geometry in aqueous solution. One such site that generates 3D model structures is Online SMILES 
Translator by National Institutes of Health.  
 
2.1.1.4. SKETCHING 2D MOLECULAR STRUCTURES 
Most chemists are well familiar with drawing 2D molecular structures and several programs allow effortlessly draw 
2D representations of three-dimensional molecules. Two of the most popular 2D chemical diagram editors for 
Windows and Mac OS systems are ChemDraw from CambridgeSoft and MDL Draw from Elsevier MDL. Students 
can download a fully functional free chemical drawing program MDL Isis/Draw from Elsevier MDL website after 
registration. Some chemical drawing tools allow generation and export of 3D coordinates of the drawn molecule. 
The JME Molecular Editor allows sketching simple molecules on-line and exporting these structures into the 
SMILES string. 
 
2.1.2.MACROMOLECULAR (TARGET) MODELING (HOMOLOGY MODELING) 
The prediction of the 3D structure of a protein from its amino acid sequence remains a basic scientific problem. This 
can often achieved using different types of approaches and the first and most accurate approach is “comparative” or 
“homology” modeling [13]. Homology modeling methods use the fact that evolutionary related proteins share a 
similar structure [14, 15]. Determination of protein structure by means of experimental methods such as X-ray 
crystallography or NMR spectroscopy is time consuming and not successful with all proteins, especially with 
membrane proteins [16]. Currently, experimental structure determination will continue to increases the number of 
newly discovered sequences, which grows much faster than the number of structures solved. Currently, 79,356 
experimental protein structures are available in the Protein Data Bank (PDB) [17] http://www.rcsb.org/pdb 
(February 2012). 
 
The process of homology or comparative modeling of proteins can be broken down into four sequential steps (Fig. 
2):  
1. Identification of known 3D structure(s) of a related protein that can serve as template  
2. Sequence alignment of target and template proteins  
3. Model building for the target based on the 3D structure of the template and the alignment 
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4. Refining/validation/evaluation of the models. These steps may be repeated until a satisfactory model is built [18].  
 

 
 

Figure 2: Outline of the homology modeling process and its applications in drug discovery. (http://www.pymol.org) 
 

2.1.3.Homology Moldeing Software 
1. Abalone is designed for macromolecular simulations (proteins, DNA). It supports both explicit and implicit 
solvent models. In contrast to Ascalaph, tailored to the simulation of small molecules, Abalone is focused on 
molecular dynamics modeling of biopolymers. It supports such effective methods as the Replica Exchange and 
hybrid Monte Carlo.  
2. Ascalaph is general purpose molecular modeling software that performs quantum mechanics calculations for 
initial molecular model development, molecular mechanics and dynamics simulations in the gas or in condensed 
phase. It can interact with external molecular modeling packages (MDynaMix, NWChem, CP2K, PC 
GAMESS/Firefly and Delphi). 
3. Yasara is a molecular-graphics, modeling and simulation package for Linux and Windows. Yasara is powered by 
PVL (Portable Vector Language), a new development framework. PVL allows you to visualize even the largest 
proteins and enables true interactive real-time simulations with highly accurate force fields on standard PCs 
4. RasMol is a molecular graphics program developed at the University of Edinburgh. The software is intended for 
the visualization of proteins, nucleic acids and small molecules. The program has the ability to read in PDB as well 
as several other formats. Coloring schemes including atom type, temperature factor and hydrophobicity. 
5. MacroModel is a computer program for molecular modelling of organic compounds and biopolymers. It features 
various force fields coupled with energy minimization algorithms for the prediction of geometry and relative 
conformational energies of molecules. MacroModel also has the ability to perform molecular dynamics simulations 
to model systems at finite temperatures using stochastic dynamics and mixed Monte Carlo algorithms. 
6. SYBYL-X provides capabilities for crucial small molecular modeling and simulation, includng structure-activity 
relationship modeling, pharmacophore hypothesis generation, molecular alignment, conformational searching, 
homology modeling, sequence alignment, and other key tasks required to understand and model the static and 
dynamic 3D structural properties of proteins and other biological macromolecules. 
7. Amber is a suite of programs for molecular simulation and analysis of proteins, nucleic acids, lipids, 
carbohydrates. Amber" refers to two things: a set of molecular mechanical force fields for the simulation of 
biomolecules (which are in the public domain, and are used in a variety of simulation programs); and a package of 
molecular simulation programs which includes source code and demos. 
8. MOE internal representation of organic chemical structures and flexible architecture provide a solid foundation 
for molecular modeling and computational chemistry. 
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9. SIMLYS is a tool to aid in the analysis of molecular dynamics, Monte Carlo and other stimulations. Its purpose is 
twofold it is a system performing the actual analysis and it serves as a shell to integrate new analysis functions. 
SIMLYS allows one to analyse the results. from various simulations, as for example from proteins or polymers, by 
using the trajectories. The program is separated into modules performing the input/output, building the interface to 
the user, preparing the coordinates and performing the calculations. 
In additon to standalone software suiets, several online servers are now avalible for automated homolgy modleing 
from sequence. These servers are very imoprtant for medicinal chemists who are not familiar with homolgy software 
as they can bulid a 3D model for any sequence without deep knowledge of the homolgy modeling process.  
 
2.1.4.APPLICATIONS OF HOMOLOGY MODELING 
Homology modeling is widely used in structure based drug design process. The importance of homology modeling 
is increasing as the number of available crystal structures increases. There are several other common applications of 
homology models:  
 
1. Studying the effect of mutations [19] 
2. Identifying active and binding sites on protein (useful for ligand design) [20] 
3. Searching for ligands of a given binding site (database mining) [21] 
4. Designing novel ligands of a given binding site  
5. Modeling substrate specificity [22] 
6. Predicting antigenic epitopes [23] 
7. Protein–protein docking simulations [24] 
8. Molecular replacement in X-ray structure refinement [25] 
9. Rationalizing known experimental observations [26] 
10. Planning new computational experiments with the provided models. 
 
Typical applications of a homology model in drug discovery require a very high accuracy of the local side chain 
positions in the binding site. A very large number of homology models have been built over the years. Targets have 
included antibodies [27] and many proteins involved in human biology and medicine [28, 29]. Clearly, in the 
absence of crystal structures, homology models are the only alternative to get a 3D representation of the target. 
Although homology-modeling methods can build reasonably accurate models, refinement methods are needed to get 
a more accurate characterization of the binding site, and determine the exact side chain conformation, as minor 
errors may render the model useless for HTD applications. 
 
2.1.5.EXAMPLES OF HOMOLOGY MODELING APPLICATIONS IN DRUG DISCOVERY 
2.1.5.1.   ESTIMATION OF TARGET DRUGGABILITY FROM IN-SILICO GENERATED STRUCTURES 
A druggable target has the ability to bind tightly with small molecules. As most drugs bind to specific binding sites 
on a protein, it makes sense to identify a priority of such domains as a measure of target druggability. Researchers at 
Eidogen-Sertanty developed the Target Informatics Platform (TIP), which contains information about protein 
structure/homology models and binding sites of several protein families [30]. It is important to note that 
complementing crystal structures with homology models has resulted in 100% structural coverage of some gene 
families like Nuclear Receptors, Phosphodiesterase and over 98% coverage of protein kinases and trypsin-like 
proteases [31]. Using TIP and the complex of COX-2 with its inhibitor celecoxib, researchers were able to identify a 
similar binding site in the PPARϪ receptor, which contained several important binding residues, offering possible 
clues to design novel PPAR ligands. In another study, Hirayama et al. developed an index termed propensity for 
ligand binding (PLB) to identify druggable binding sites in homology models, which was later used to successfully 
predict the druggable cavity in a homology model of tryptophanyl-tRNA synthetase [32, 33]. 
 
2.1.5.2. THREE-DIMENSIONAL STRUCTURES OF G PROTEIN COUPLED RECEPTORS AS A PLATFORM FOR 

COMPUTER-AIDED DRUG DISCOVERY 
G protein-coupled receptors (GPCRs) is a large group of evolutionarily related proteins that are expressed on the 
plasma membrane of animal and other eukaryotic cells and act as sensors for extracellular molecules such as 
neurotransmitters, hormones and various other signaling compounds. Activated receptors trigger the activation of 
intracellular proteins, which in turn initiate a biochemical-signaling cascade that dramatically alter the biology of 
cells, with vast physiological and pathophysiological implications [33]. For these reasons, GPCRs are the object of 
intense drug discovery efforts aimed at the identification of not only more potent and selective modulators of the 
receptors that are already validated drug targets, but also novel modulators of the many receptors that are not yet 
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targeted by drugs [34]. A great deal of interest has always surrounded the structural characterization of GPCRs, 
since three-dimensional structures of drug targets can serve as the basis for rational computer-aided drug discovery 
campaigns. However, until the end of the last century, the structure of these membrane receptors proved to be 
extremely elusive: despite the fact that the human genome comprises about 1000 different GPCRs, until the 
beginning of this century high-resolution structures were not available for any of the members of the superfamily. 
Finally, recent progresses in X-ray crystallography brought the number of experimentally solved GPCRs from zero 
in 1999 to 17 different receptors in complex with different ligands, for about eighty structures, in 2012 [35]. All 
these structures belong to the largest  class of GPCRs, known as ‘class A’, ‘family I’, or ‘rhodopsin family’, while 
members of the remaining four classes of the superfamily have yet to join the club of experimentally solved 
receptors [36]. Moreover, as a number of ligand-discovery campaigns illustrate, it can also be implemented based on 
homology models when experimental structures are not available. For instance, novel modulators of the thyrotropin 
releasing hormone (TRH) receptor and the free fatty acid receptor 1 (FFA1 or GPR40) were recently identified in 
such a fashion [37, 38]. 
 
3. MOLECULAR DOCKING 
In the field of molecular modeling, docking is a method, which predicts the preferred orientation of one molecule to 
a second when bound to each other to form a stable complex. Knowledge of the preferred orientation in turn may be 
used to predict the strength of association or binding affinity between two molecules using scoring functions 
[39].The associations between biologically relevant molecules such as proteins, nucleic acids, carbohydrates, and 
lipids play a central role in signal transduction. Furthermore, the relative orientation of the two interacting partners 
may affect the type of signal produced. Therefore docking is useful for predicting both the strength and type of 
signal produced. Docking is frequently used to predict the binding orientation of small molecule drug candidates to 
their protein targets in order to in turn predict the affinity and activity of the small molecule. Hence docking plays an 
important role in the rational design of drugs. The modeling of bimolecular complexes by computational docking 
using the known structures of their constituents is developing rapidly to become a powerful tool in structural 
biology. It is especially useful in combination with even limited experimental information describing the interface 
[40]. 
 
Molecular docking involves the prediction of ligand (small molecule) conformation and orientation, referred as 
'pose', within the active site of the molecular target (Fig.3).  Virtual screening based on molecular docking has 
become an integral part of many modern structure-based drug discovery efforts. Hence, it becomes a useful 
endeavor to evaluate existing docking programs, which can assist in the choice of the most suitable docking 
algorithm for any particular study [41].   

 
 

Figure 3: Molecular docking flow chart 
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Molecular docking represents one of the growing applications in medicinal chemistry where in molecular modeling 
techniques are used to predict how any macromolecules (typically a protein) interact with other molecules (may be 
other proteins, nucleic acids or small drug-like molecules). Molecular docking is usually performed between a small 
molecule and a target macromolecule. This is often referred to as ligand– protein docking, but there is growing 
interest in protein–protein docking. In this review, the focus will be on ligand–protein docking. The ability of a 
protein to interact with small molecules governs a significant part of the protein’s dynamics, which may enhance/ 
inhibit its biological function. This plays an important role in the rational design of drugs. The ability to bind large 
molecules such as other proteins and nucleic acids to form supra-molecular complexes is also known to play an 
important role in controlling biological pathways. Given the biological significance of molecular docking, 
considerable efforts have been directed in understanding the process of molecular docking [42, 43]. 
 
3.1. THEORY  
Modeling the interaction of two molecules is a complex problem. Many forces are involved in the intermolecular 
association, including hydrophobic, van der Waals, or stacking interactions between aromatic amino acids, hydrogen 
bonding, and electrostatic forces. Modeling the intermolecular interactions in a ligand-protein complex is difficult 
since there are many degrees of freedom as well as insufficient knowledge of the effect of solvent on the binding 
association. The process of docking a ligand to a binding site tries to mimic the natural course of interaction of the 
ligand and its receptor via the lowest energy pathway [44]. There are simple methods for docking rigid ligands with 
rigid receptors and flexible ligands with rigid receptors, but general methods of docking considering 
conformationally flexible ligands and receptors are problematic. Docking protocols can be described as a 
combination of a search algorithm, and the scoring functions (Figure 4). 
 

 
 

Figure 4: Methods used for protein-ligand docking 
 
The protein-ligand docking procedure can be typically divided into two parts: rigid body docking and flexible 
docking. 
 
1. Rigid Docking. This approximation treats both the ligand and the receptor as rigid and explores only six degrees 
of translational and rotational freedom, hence excluding any kind of flexibility. Most of the docking suites employ 
rigid body docking procedure as a first step. 
 
2. Flexible Docking. A more common approach is to model the ligand flexibility while assuming having a rigid 
protein receptor, considering thereby only the conformational space of the ligand. Ideally, however, protein 
flexibility should be taken into account, and some approaches in this regard have been developed. There are three 
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general categories of algorithms to treat ligand flexibility: systematic methods, random or stochastic methods, and 
simulation methods. Due to the large size of proteins and their multiple degrees of freedom, their flexibility may be 
the most challenging issue in molecular docking. The methods to address the flexibility of proteins can be grouped 
into, soft docking, side-chain flexibility, molecular relaxation and protein ensemble docking. Huang et al. [45] 
described them. 
 
3.2. EXPERIMENTAL DOCKING PROCEDURES 
There are a number of excellent reviews of molecular docking methods and a large number of publications 
comparing the performance of a variety of molecular docking tools [46]. Following, we will describe the four-step 
procedure adopted in this study to perform the molecular docking. 
 
3.1.1.TARGET SELECTION 
Ideally, the target structure should be determined experimentally by either X-ray crystallography or nuclear 
magnetic resonance, which can be downloaded from PDB; however, docking has been performed successfully in 
comparison to homology models or threading. The model should have good quality. It can be tested using validation 
software such as Molprobity [47]. After selecting the model, it must be prepared by removing the water molecules 
from the cavity, stabilizing charges, filling the missing residues, and generating the side chains, all according to the 
available parameters. The receptor should be at this point biologically active and in the stable state. 
 
3.1.2.LIGAND SELECTION AND PREPARATION 
The type of ligands chosen for docking will depend on the goal: for lead discovery, crude filters such as net charge, 
molecular weight, polar surface area, solubility, commercial availability, and price-per-compound can be applied to 
reduce the number of molecules to be docked. For lead optimization, filters such as similarity thresholds, 
pharmacophores, synthetic accessibility, and absorption, distribution, metabolism, excretion, and toxicology 
(ADME-Tox) properties are additionally applied. For focused lead optimization, a custom library of analogs that are 
related to the lead compound(s) is often constructed for docking, to inform and prioritize medicinal chemistry efforts 
[48]. Most docking tools treat ligands flexibly, with the exception of ring conformations. In general, the more 
rotatable bonds in a ligand, the more difficult and time consuming the docking will tend to be. This is because the 
size of the search space increases exponentially with the number of torsions. More highly branched torsion trees lead 
to more difficult searches than do linear torsion trees. Rotation of conjugated bonds, such as in amides, carbamates, 
ureas, etc., should be limited. 
 
3.1.3.DOCKING 
Molecular docking involves computationally exploring a search space that is defined by the molecular representation 
used by the method, and ranking candidate solutions to determine the best binding mode. Thus, docking requires 
both a search method and a scoring function. 
 
3.1.4.SCORING FUNCTION 
The scoring function provides a way to rank placements of ligands relative to one another. Ideally, the score should 
correspond directly to the binding affinity of the ligand for the protein, so that the best scoring ligands are the best 
binders. Scoring functions can be empirical, knowledge based, or molecular mechanics based. In addition, some 
docking strategies use one scoring function during the docking, and a different one postdocking to rerank the results; 
such retrospective scoring, however, cannot affect the efficiency and accuracy of the primary scoring function [49]. 
Scoring functions are fast approximate mathematical methods used to predict the strength of the non-covalent 
interaction between two molecules after being docked. Most commonly one of the molecules  is  a  small  organic  
compound  such  as  a  drug  and the second  is  the  drug's  biological  target  such as  a  protein  receptor [50]. 
Scoring functions have also been developed to predict the strength of other types of intermolecular interactions for 
example between two proteins [51] or between protein and DNA [52]. Scoring is actually composed of three 
different aspects relevant to docking and design:   
 
• Ranking of the configurations generated by the docking search for one ligand interacting with a given protein, this 
aspect is essential to detect the binding mode best approximating the experimentally observed situation.   
• Ranking  different  ligands  with  respect  to  the  binding  to  one protein,  that  is, prioritizing ligands  according  
to  their affinity;  this aspect is essential in virtual screening. 
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• Ranking  one  or  different  ligands  with respect  to  their  binding affinity  to  different  proteins;  this  aspect  is 
essential  for  the consideration of selectivity and specificity.  
 
Scoring methods  can range  from molecular  mechanics  force  fields such  as  AMBER,  OPLS  or  CHARMM 
through  to  empirical  free energy scoring  functions  or  knowledge  based functions.  The currently available 
docking methods utilize the scoring functions in one of two ways. The first approach uses the full scoring function 
to rank a protein ligand conformation. The search algorithm then modifies the system, and the same scoring function 
can be reapplied to rank the new structure.         
 
3.1.5.EVALUATING DOCKING RESULTS  
Regardless of the ligand–protein docking tool used, docking results should be evaluated by considering the chemical 
complementarity between ligand and protein. Are all possible hydrogen bond donors and acceptors in the ligand 
satisfied?, Are the charged groups in the ligand interacting with oppositely charged side chains in the receptor, or are 
they buried in hydrophobic pockets?, Are hydrophobic groups in the ligand buried in hydrophobic pockets in the 
receptor? Furthermore, the parameters chosen for the docking can be judged by the docking tool’s ability to 
reproduce the binding mode of a ligand to protein, when the structure of the ligand–protein complex is known. The 
criterion usually used is the all-atom RMSD between the docked position and the crystallographically observed 
binding position of the ligand, and success is typically regarded as being less than 2 °A. If the scoring function were 
perfect, the docked conformation with the lowest energy would always correspond to the crystallographically 
observed binding mode, assuming that there are no bad contacts in the crystal structure. This is not always the case, 
and sometimes a different binding mode is observed significantly more often than the lowest energy-binding mode. 
Furthermore, current docking methods will tend to find the binding mode with the lowest possible interaction energy 
for a given ligand: this score does not necessarily indicate whether the ligand even binds. There has been growing 
interest in developing methods to distinguish binders from nonbinders [53]. 
 
3.2. DOCKING SOFTWARE  
1. Auto Dock uses Monte Carlo simulated annealing and Lamarckian genetic algorithm to create a set of possible 
conformations. LGA is used as a global optimizer and energy minimization as a local search method. 
2. DOCK is one of the oldest and best-known ligand-protein docking programs. The initial version used rigid 
ligands; exibility was later incorporated via incremental construction of the ligand in the binding pocket. As said  
DOCK is a fragment-based method  using shape  and chemical  complementary  methods  for  creating possible 
orientations  for  the  ligand.  These orientations can be scored using three different  scoring  functions;  however  
none  of them  contain explicit  hydrogen-bonding  terms, solvation/ desolvation terms,  or hydrophobicity terms  
thus  limiting  serious  use.  DOCK seems to handle well a polar binding site and is useful for fast docking, but it is 
not the most accurate software available. 
 
3. Gold has won many new users during the last few years because of its good results in impartial tests.  It has a 
good hit rate overall, however it somewhat when dealing with hydrophobic binding pockets. Gold uses genetic 
algorithm to  provide  docking  of  exible ligand  and  a protein  with  exible  hydroxyl  groups. The development  of  
GOLD  is  currently  focused  on  improving  the computational  algorithm  and adding  a  support  for  parallel 
processing. GOLD has one of the most comprehensive validation test sets and is available for use at CSC [54]. 
 
4. V life has provides following functions:  
• Building polypeptides using V Life  MDS,  Molecular Docking  using  V Life  MDS 
• Homology modeling using Biopredicta,  
• Protein complex optimization using V Life MDS, Using alignment method  in  V  Life  MDS,   
• Building  molecules  using  V Life  MDS,  
• Conformational search  using  V Life  MDS  
• Optimizing Molecules using V Life MDS, Using miscellaneous utilities in V Life MDS 
• QSAR using V Life MDS.   
 
5. ICM (MolSoft LLC): The Internal Coordinate Mechanics (ICM) program is based on a stochastic algorithm that 
relies on global optimization of the entire flexible ligand in the receptor field (flexible ligand/grid receptor approach 
[55]. Global optimization is performed in the binding site such that both the intramolecular ligand energy and the 
ligand receptor interaction energy are optimized. The program combines large-scale random moves of several types 
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with gradient local minimization and a history mechanism that both expels from the unwanted minima and promotes 
the discovery of new minima. The random moves include pseudo-Brownian moves, optimally biased moves of 
groups of torsions, and single torsion changes. The energy calculations are based on the ECEPP/3 force field with 
Merck molecular force field (MMFF) partial charges. Five potential maps (electrostatic, hydrogen bond, 
hydrophobic, van der Waals attractive and repulsive) are calculated for the receptor. The location of the receptor-
binding pocket can be specified by the user or selected by the cavity detection module implemented in the program. 
 
6. Glide (Schrodinger, Inc.). The Glide (Grid-Based Ligand Docking with Energetics) algorithm approximates a 
systematic search of positions, orientations, and conformations of the ligand in the receptor-binding site using a 
series of hierarchical filters. The shape and properties of the receptor are represented on a grid by several different 
sets of fields that provide progressively more accurate scoring of the ligand pose. The fields are computed prior to 
docking. The binding site is defined by a rectangular box confining the translations of the mass center of the ligand. 
A set of initial ligand conformations is generated through exhaustive search of the torsional minima, and the 
conformers are clustered in a combinatorial fashion. Each cluster, characterized by a common conformation of the 
core and an exhaustive set of side-chain conformations, is docked as a single object in the first stage. The search 
begins with a rough positioning and scoring phase that significantly narrows the search space and reduces the 
number of poses to be further considered to a few hundred. In the following stage, the selected poses are minimized 
on pre computed OPLS-AA van der Waals and electrostatic grids for the receptor. In the final stage, the 5–10 
lowest-energy poses obtained in this fashion are subjected to a Monte Carlo procedure in which nearby torsional 
minima are examined, and the orientation of peripheral groups of the ligand is refined. The minimized poses are then 
rescored using the Glide Score function, which is a more sophisticated version of ChemScore [56] with force field–
based components and additional terms accounting for solvation and repulsive interactions. The choice of the best 
pose is made using a model energy score (Emodel) that combines the energy grid score, GlideScore, and the internal 
strain of the ligand. 
 
3.3. APPLICATIONS OF MOLECULAR DOCKING 
A binding interaction between a small molecule ligand and an enzyme protein may result in activation or inhibition 
of the enzyme. If the protein is a receptor, ligand binding may result in agonism or antagonism. Docking may be 
applied to: 
1. Hit  Identification  –  docking  combined with  a  scoring  function can be used to quickly screen large databases 
of potential drugs in-silico,  to  identify  molecules  that are  likely  to  bind  to protein target of interest (Virtual 
Screening). 
2. Lead Optimization – docking can be used to predict in where and in  which  relative orientation  a  ligand  binds  
to  a  protein (also referred to as the binding mode or pose).This information may in turn be used to design more 
potent and selective analogs.  
3.  Bioremediation– Protein ligand docking can also be used to predict pollutants that can be degraded by enzymes. 
Estimating the binding affinity. 
4. Searching for lead structures for protein targets     
 
3.3.1.APPLICATION EXAMPLES OF MOLECULAR DOCKING FOR DRUG DISCOVERY 
Molecular docking has been the most widely employed technique. Though the main application lies in structure-
based virtual screening for identification of new active compounds towards a particular target protein, in which it 
has produced a number of success stories [57], it is actually not a stand-alone technique but is normally embedded in 
a workflow of different in-silico as well as experimental techniques [58]. Several research groups focus on 
evaluating of the performance of various docking programs or on making improvements to the scoring functions 
when experimental testing has already been done. Such efforts could give meaningful guidance to choose the 
methodology for a particular target system.  
 
3.3.1.1 HUMAN G PROTEIN-COUPLED RECEPTORS (GPCRS)  
With at least 800 unique full-length members, GPCRs comprise the largest family of cell surface receptors [59]. 
They are ubiquitous biological control points of the cell. This membrane protein family translates external signals 
into readable stimuli resulting in precise cell behaviors [60]. Examples of physiological responses controlled by 
GPCRs are cell growth and differentiation, cardiovascular function, metabolism, immune responses, and 
neurotransmission. They also represent the largest family of drug targets with about 50% of the existing drugs 
currently targeting GPCRs for their beneficial action [61], and their therapeutic potential might be even larger [62, 
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63].The breakthroughs in GPCR crystallography improve dramatically the potential of GPCRs structure-based 
ligand design approaches. Virtual screening studies against the adenosine receptor A2A resulted in very high hit 
rates. Four million “drug-like and lead-like” compounds virtual screening using GOLD resulted indeed in a hit rate 
of 41% [63]. Out of 56 compounds experimentally tested, 23 showed antagonist activity under 10 mM, among them 
11 had submicromolar activity and two compounds had affinity under 60 nM. Nine novel chemotypes were 
identified supporting high diversity of the hits generated through structure-based virtual screening (Fig. 5). 

 
 

Figure 5. Binding mode of the cocrystallized ligand 6 (A) and the predicted binding modes of the seven ligands discovered in the docking 
screen 

 
In another study [64], 1.4 million compounds have been screened in-silico against the same A2A X-ray structure, 20 
high-ranking novel compounds have been selected and tested experimentally resulting in a hit rate of 35%. The 
activity range was between 200 nM and 9 mM. These studies suggest practical applicability of receptor-based virtual 
screening in GPCR drug discovery (Fig. 6). Furthermore extraordinary high hit rates and high activity have been 
identified suggesting the high potential of the X-ray diffraction crystals compared to the earlier homology models. 
 
3.3.1.2. ANTIVIRAL DRUG DISCOVERY 
The reverse transcriptase (RT) of HIV-1 is one of the major targets of the antiretroviral drug therapies used for the 
treatment of AIDS. RT is responsible for the retro transcription of RNA to DNA in the first phase of the intracellular 
viral replication.  In an attempt to target this protein, Bustanji et al. selected 2800 fragment-like compounds from the 
NCI database (Fig. 7), performed a high throughput docking and selected the four best hits for testing based on a 
consensus docking score of which four were found to inhibit RT in biological testing [65]. 
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Figure 6: GPCR ligands from docking virtual screening 
 

Another VS screening study was performed to identify novel compounds targeting RT as well as other viral 
functions associated with RNA transcription.  A shape-based  screening  was  applied  on  the  NCI  database  in  a 
first VS run using dihydroxy benzoyl naphthyl hydrazone, a Known RT inhibitor, as query compound.  The most 
active Hits identified through this process was employed for a Second VS now using a combined ligand-based 
strategy comprising 3D-, 2D-similarity searches and ligand-based pharmacophore screening (Fig. 8).  When tested 
on the RT functions, several of the selected compounds characterized by new scaffolds were shown to inhibit both 
RT-associated ribonuclease H and RT activities in a low micro molar range [66]. 
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Figure 7: The top-ranking consensus pose of the active captured lead compounds docked inside the allosteric site of HIV-1 R 

 
Figure 8: Average conformations of Molecular docking of best-hit compounds 
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3.3.1.3. ANTICANCER DRUG DISCOVERY (KINASES) 
Protein tyrosine kinases (tks) are enzymes that catalyze the transfer of phosphate from ATP to tyrosine residues in 
polypeptides. The human genome contains about 90 TK and 43 TK-like genes, the products of which regulate 
cellular proliferation, survival, differentiation, function, and motility. Protein kinases represent attractive targets in 
oncology drug discovery[67]. An interesting class of targets is the erythropoietin-producing human hepatocellular 
carcinoma receptors (Eph), the largest family of receptor tyrosine kinases. The Eph receptors have been implicated 
in sprouting angiogenesis and blood vessel remodeling during vascular development. In a recent, study Caflisch et 
al. have identified three potential tyrosine kinase inhibitors after sequence of virtual screening and docking steps 
starting with a library of  9 million compounds in the ZINC library. The docked library consisted of about 175 000 
compounds derived from nearly 9 million molecules using two-dimensional chemical descriptors and three-
dimensional geometric constraints (i.e., relative distance and orientation of pairs of functional groups). Using this 
procedure, they have identified a series of 5-(piperazine-1-yl)isoquinoline derivatives that exhibited low micromolar 
affinities for unphosphorylated Abl1 in a competition binding assay [68].  
 
3.3.1.4. NUCLEAR RECEPTORS (RETINOIC ACID RECEPTOR). 
Nuclear receptors are a class of proteins found within cells that are responsible for sensing steroid and thyroid 
hormones and certain other molecules. In response, these receptors work with other proteins to regulate the 
expression of specific genes, thereby controlling the development, homeostasis, and metabolism of the organism. 
The retinoic acid receptor (RAR) is a type of nuclear receptor which can also act as a transcription factor [69] that is 
activated by both all-trans retinoic acid and 9-cis retinoic acid.  There are three retinoic acid receptors (RAR), RAR-
alpha, RAR-beta, and RAR-gamma, encoded by the RARA, RARB, RARG genes, respectively. Each receptor isoform 
has several splice variants: two- for alpha, four- for beta, and two- for gamma. A 3D structural model of the inactive 
conformation of the retinoic acid receptor (RAR) α subtype (RARα) was developed from the RARγ 3D structure, 
bound to the agonist all-trans-retinoic acid, and the estrogen receptor α-subtype (ERα), bound to an antagonist. 
After validation of the method with known agonists and antagonists, 153,000 ACD compounds were docked into the 
RAR binding site with full flexibility of the ligand and the  amino  acid  side  chains  of  the  protein,  using  the  
Molsoft  Internal Coordinates  Mechanics  (ICM  2.7)  program.  Two  novel  RAR  antagonists were  discovered,  
for  example,  compound 18  (55%  inhibition  at  20 µM) [70]. Comparable results were obtained with all three 
human isoforms: RARα, RARß, and RARγ. In a similar investigation [71], a model of the active RARα 
conformation was developed from the agonist-bound RARγ conformation. Docking of the ACD compounds  as  
above  but  with  a  refined  procedure,  considering  all  atoms  of the binding site, resulted in 5364 high-scoring 
hits. The 300 compounds with the  lowest  binding  energy  (i.e., highest  predicted affinity) were visually inspected 
for shape complementarity, hydrogen bonding network, ligand conformations, and possible van der Waals clashes. 
Finally, 30 compounds were selected for biological testing. Despite the fact that an RARα 3D model was used for 
the docking, the two most active hits have a higher affinity to RARβ than  to  RARα,  for  example,  
compound 19  (EC50 RARβ  =  200 nM,  EC50 RARα = 4 µM) [72]. 
 
3.3.1.5. TNF INHIBITORS 
Tumor necrosis factor a (TNF-α) is a multifunctional cytokine that acts as a central biological mediator for critical 
immune functions, including inflammation, infection, and antitumor responses [73]. Dysregulation of TNF-α has 
been implicated in cases of tumorigenesis, diabetes, and especially in autoinflammatory diseases such as rheumatoid 
arthritis, psoriatic arthritis, and Crohn’s disease[74]. In a recent study Over 20 000 compounds from a chemical 
library of natural-product and natural-product-like structures were screened in-silico. The continuously flexible 
ligands were docked to a grid representation of the receptor and assigned a score reflecting the quality of the 
complex according to the internal coordinate mechanics (ICM) method [ICM-Pro 3.6-1d molecular docking 
software (Molsoft)]. The highest scoring 16 compounds from the virtual screening results were tested in a 
preliminary ELISA to assess their ability to inhibit the binding of TNF-α to TNFR-1. Two chemically distinct 
structures, the pyrazole-linked quinuclidine  and the indolo[2,3-a]quinolizidine, emerged as the top candidates [75]. 
The binding poses of these two compounds overlap well with the crystallographic pose of SPD304 to TNF-a (Figure 
13). Like SPD304, compounds 1 and 2 are large enough to interact with the residues from both subunits of the TNF-
a dimer, thereby occupying and blocking the binding site for the third TNF-a subunit. 
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CONCLUSION 
 

Virtual chemical library screening by docking has become a method routinely used in chemoinformatics to identify 
ligands for targets of therapeutic interest. With the development of significantly more sophisticated molecular 
modeling, tools and a growth in the use of high throughput X-ray crystallography of the target alone or in complex 
with small molecules, structure-based drug design techniques have become an indispensable tool for the 
development of target-based therapies. Importantly, these newly appreciated approaches are being supported and/or 
driven by rapidly improving computational platforms that are more reproducibly docking, scoring and ranking drug-
like compounds, which has allowed many drug discovery scientists to carry out more focused, hypothesis-driven 
discovery initiatives limiting the number of compounds that are synthesized. It is important to note that the adoption 
of early stage PK and PD studies has also contributed greatly to the significantly reduced late-stage attrition rate of 
clinical candidates. In the particular case of drugs acting as inhibitors of specific target proteins, these advances 
together with a more careful attention to the conformation, mechanism of action, and drug-like property of the 
inhibitor are expected to result in novel therapeutic agents that are more potent, selective and bioavailable. 
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