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ABSTRACT

The field of computer aided drug design and disgoY€ADDD) is a rapidly growing area that have semany
successes in the last few years. Many giant phaeotaal companies, in addition to academia, adopDDD for
drug lead discovery. The explosion of structurdbimatics, genomics and proteomic plays a majte no leading
the efforts towards modern era drug discovery aadetbpment. This review discusses the recent adsanawo of
the major vehicles of CADDD, Molecular modeling atwtking and some of the success stories accoreglish
both academia and pharmaceutical industry usingemlar modeling and docking towards discovery af nleug
leads
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INTRODUCTION

The process of discovery of a new drug is a vefficdit task. Pharmaceutical and biotechnology camips need to
make huge investments in the discovery of a sidglg that may cure a disease or simply alleviatesgjimptoms of
another. These are businesses like any other, vgmefigs fuel their growth and provide the investrgefor future
discoveries. Most pharmaceutical or biotechnologganies claim that it costs anywhere between $8i0idn to
$900 million and a time span of twelve to fifteezays. Modern drug discovery is mainly based Iresifichemico-
biological approach where, computer plays very irtgod role in discovery of new drugs, not only é&ncsave
money but also time. Use of computational techrsgnedrug discovery and development process isliagaining
in popularity, implementation and appreciation. lBebmputational and experimental techniques haysoitant
roles in drug discovery and development and reptesamplementary approaches. CADD (Computer AidedgD
Discovery) entails:

1.Use of computing power to streamline drug discoary development process.

2.Advantage of chemical and biological informationoabligands and/or targets to identify and optimizw
drugs.

3.Design of in-silico filters to eliminate compounds with undesirableogerties (poor activity and/or poor
Absorption, Distribution, Metabolism, Excretion andxicity, (ADMET)) and select the most promisingnclidates.
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Fast expansion in this area has been made possilaldvances in software and hardware computatjpmakr and
sophistication.

4.ldentification of molecular targets and an incragsilatabase of publicly available target proterncttires like
the protein data bank www.pdb.org. CADD (Fig. 1pe&ng utilized to identify hits (active drug caddtes), select
leads (most likely candidates for further evaluatioand optimize leads i.e. transform biologicalgtive
compounds into suitable drugs by improving theiygitochemical, pharmaceutical, ADMET/PK (pharmaaoekic)
properties.

5.Virtual screening is used to discover new drug @atds from different chemical scaffolds by seamnghi
commercial, public, or private 3-dimensional chemhistructure databases. It is intended to redueesthe of
chemical space and thereby allow focus on more gingicandidates for lead discovery and optimizatithe goal
is to enrich set of molecules with desirable praper(active, drug-like, lead-like) and eliminatemgpounds with
undesirable properties (inactive, reactive, togimor ADMET/PK). In another words, the useifsilico modelling
have significantly minimize time and resource reguients of chemical synthesis and biological tgstithe rapid
growth of virtual screening is evidenced by inceeas the number of citations matching keywords ttwat
screening” from 4 in 1997 to 302 in 2004[1]. In BB03 review article, Green of GlaxoSmithKline cluted that:
“The future is bright, the future is virtual” [2]dinhparison of traditional and virtual screeningenms of expected
cost and time requirements stressed the reality gharmaceutical industry needs to find means gfraving
efficiency and effectiveness of drug discovery dedelopment in order to sustain itself. This waently echoed
in 2006 that the current business model would becdamdamentally untenable unless there is a sanifi
improvement in efficiency and effectiveness of phecess[3].
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Figure 1. The Computer-Aided Drug Discovery Process
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Estimates of time and cost of currently bringingeav drug to market vary, but seven to twelve yeard $ 1.2
billion are often cited. Furthermore, five out oftfy thousand compounds tested in animals reactahuesting and
only one of five compounds reaching clinical stgdie approved. This represents an enormous invastmeéerms
of time, money and human and other resourcescltidies chemical synthesis, purchase, curation,béwidgical
screening of hundreds of thousands of compounddetatify hits followed by their optimization to gerate leads
which requiring further synthesis. In addition, girtability of animal studies in terms of both eHty and toxicity
is frequently suboptimal. Therefore, new approacresneeded to facilitate, expedite and streanding discovery
and development, save time, money and resources.

It is estimated that computer modelling and siniokegt account for ~ 10% of pharmaceutical R&D expemd and
that they will rise to 20% by 2016 [4]. Role of cpuatational models is to increase prediction baseaxisting
Knowledge [5]. Computational methods are playingr@asingly larger and more important role in drigrovery
and development [6-12] and are believed to offeamseof improved efficiency for the industry. Theg axpected
to limit and focus chemical synthesis and biolobitesting and thereby greatly decrease traditioeaburce
requirements. Modern drug discovery and developnmotess including prominent role of computational
modelling represents a brief overview, rather thanexhaustive review, of CADD and the following caonly
used computational approaches are discussed: Matenodeling and structure (target)-based desigokidg).

1. MOLECULAR M ODELING

Molecular modeling encompasses all theoretical ougland computational techniques used to modelimiaithe
behavior of molecules. The techniques are useleri¢lds of computational chemistry, drug desiggmputational
biology and materials science for studying molecwdgstems ranging from small chemical systems tgela
biological molecules and material assemblies. Timplgst calculations can be performed by hand,itexitably,
computers are required to perform molecular modetifi any reasonably sized system. The common feaitir
molecular modeling techniques is the atomistic lleescription of the molecular systems. Most molacmodeling
studies involve three stages.

* In the first stage, a model is selected to desdtibentra- and inter- molecular interactions ia #ystem. The two
most common models that are used in molecular rmagate quantum mechanics and molecular mechanese
models enable the energy of any arrangement oditthres and molecules in the system to be calculatedl allow
the modeler to determine how the energy of theesystaries as the positions of the atoms and masaliange.

» The second stage of a molecular modeling studyéschlculation itself, such as an energy minimagtia
molecular dynamics or Monte Carlo simulation, @moaformational search.

 Finally, the calculation must be analyzed, not otdycalculate properties but also to check thdtas been
performed properly.

Computational chemistry/molecular modeling is tbiesce (or art) of representing molecular structumemerically
and simulating their behavior with the equationsgofantum and classical physics. Computational céteyni
programs allow scientists to generate and presefgaular data including geometries (bond lengtludoangles
and torsion angles), energies (heat of formatictivation energy, etc.), electronic properties (nreois, charges,
and ionization potential and electron affinity)esfroscopic properties (vibrational modes, chensbéts) and bulk
properties (volumes, surface areas, diffusion,o8iy, etc.). As with all models however, the chgtaiintuition and
training is necessary to interpret the results ayppately. One of the earliest and still one of thegest uses of
computers is to solve complex problems in the @@tsgiences and engineering disciplines and maeifsgally to
obtain solutions of mathematical models that descrchemical or physical phenomena (or processds. T
techniques used to obtain such solutions are pgafteogeneral area called Scientific Computing, #mel use of
these techniques to obtain insights into scientdic engineering problems is called Computationailergez.
Computational Science is a rapidly emerging tramshdlinary field at the intersection of the natusziences,
computer science, and mathematics because mucttiicimvestigation now involves computing as wadl theory
and experiment:

Computational Science = mathematics+ computer seierfield of application

Computational Science typically unifies three distielements:

» Modeling, algorithms and simulations

» Software developed to solve natural science, ssciahce, engineering, and medical problems

» Computer and information science that developsatitnizes advanced hardware systems, software onleivg
and data management components.
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1.1. CLASSESOF MOLECULAR MODELING
Molecular modeling applications in drug discoveay classified into two major classes

1.1.1.SMALL MOLECULE (L IGAND) MODELING

This modeling method focuses on the ligand 2D abd r8presentations, which is useful in predictin@ th
physiochemical properties of small molecule libzarintended to screening for their drug likenesperties. The
approach is old as it started in the late eighties.

2.1.1.1 SOURCESOF MOLECULAR STRUCTURES

Structures of molecules can be determined expetatigror predicted computationally. For small maless, such
as ethanol and cyclohexane, both spectroscopicatigthnd rigorous quantum chemical computationspcavide
highly accurate molecular geometries in the vag@sp. Such highly accurate methods are not reagpjicable
for most drug molecules due to their larger sizewklver, experiments can give quite accurate strestaf drugs in
the crystalline state or while bound to target roawlecules. Approximate computations can give sigffitly
accurate structures for drugs in the gas or ligghidse. Often, the effects of the medium on thecktre are not too
significant; in this case, use of experimental @&lystructures or computationally predicted gassphstructures is
permissible for description of molecules in solatidn other cases, care must be taken to use aeldanc
computational methods that account for effecthefénvironment.

2.1.1.2. DOWNLOADING MOLECULAR STRUCTURES

Databases such as Klotho provide model structucesmany common small molecules. Chemicals with
Pharmaceutical Activity from University of Oxfordfers access to many drug models and the Proteia Bank
offers access to experimentally determined strestof macromolecules and macromolecular complexes.

2.1.1.3.MOLECULAR STRUCTURESVIA SMILES SERVERS

Several web sites generate 3D molecular strucfuwasthe SMILES string-using program like CORINAORINA

uses built-in tables of standard bond lengths arglea to create a reasonable model for small @t rigplecules.
However, the model geometry for larger and flexibelecules is likely to be quite different from timeost
prevalent geometry in agueous solution. One suteh teiat generates 3D model structures is Online LERI
Translator by National Institutes of Health.

2.1.1.4. SKETCHING 2D M OLECULAR STRUCTURES

Most chemists are well familiar with drawing 2D raolilar structures and several programs allow ééfsty draw
2D representations of three-dimensional moleculeg of the most popular 2D chemical diagram editfins
Windows and Mac OS systems are ChemDraw from Calgeé8oft and MDL Draw from Elsevier MDL. Students
can download a fully functional free chemical dnagviprogram MDL Isis/Draw from Elsevier MDL websiater
registration. Some chemical drawing tools allow eyation and export of 3D coordinates of the drawsiecule.
The JME Molecular Editor allows sketching simple lewnles on-line and exporting these structures tht®
SMILES string.

2.1.2.M ACROMOLECULAR (TARGET) MODELING (HOMOLOGY M ODELING)

The prediction of the 3D structure of a proteimfriis amino acid sequence remains a basic scieptifiblem. This
can often achieved using different types of apfdreaand the first and most accurate approach impeoative” or
“homology” modeling [13]. Homology modeling methodse the fact that evolutionary related proteinasresta
similar structure [14, 15]. Determination of protestructure by means of experimental methods ssciX-eay
crystallography or NMR spectroscopy is time consignand not successful with all proteins, especiallth

membrane proteins [16]. Currently, experimentalctrre determination will continue to increases tiienber of
newly discovered sequences, which grows much fakter the number of structures solved. Currentd;356
experimental protein structures are available ia frotein Data Bank (PDBJL7] http://www.rcsbh.org/pdb
(February 2012).

The process of homology or comparative modelingrofeins can be broken down into four sequentepsiFig.
2):

1.Identification of known 3D structure(s) of a related prothiat can serve as template

2.Sequence alignment of target and template proteins

3.Model building for the target based on the 3D strteof the template and the alignment
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4.Refining/validation/evaluation of the models. Thes@stmay be repeated until a satisfactory model i [4:8].
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Figure 2: Outline of the homology modeling process and its applicationsin drug discovery. (http://www.pymol.or g)

2.1.3.Homology Moldeing Software

1.Abalone is designed for macromolecular simulations (prgeiDNA). It supports both explicit and implicit
solvent models. In contrast to Ascalaph, tailoredtiie simulation of small molecules, Abalone isufeed on
molecular dynamics modeling of biopolymers. It soipp such effective methods as the Replica Exchamgke
hybrid Monte Carlo.

2.Ascalaph is general purpose molecular modeling softwaré peaforms quantum mechanics calculations for
initial molecular model development, molecular meetbhs and dynamics simulations in the gas or inrdeased
phase. It can interact with external molecular ntiode packages (MDynaMix, NWChem, CP2K, PC
GAMESS/Firefly and Delphi).

3.Yasara is a molecular-graphics, modeling and simulatiockpge for Linux and Windows. Yasara is powered by
PVL (Portable Vector Language), a new developmesréwork. PVL allows you to visualize even the &ty
proteins and enables true interactive real-timaikitrons with highly accurate force fields on startiPCs

4.RasMol is a molecular graphics program developed at thigddsity of Edinburgh. The software is intended for
the visualization of proteins, nucleic acids andammolecules. The program has the ability to reeBDB as well

as several other formats. Coloring schemes inctpdtom type, temperature factor and hydrophobicity.
5.MacroModel is a computer program for molecular modelling ofamic compounds and biopolymers. It features
various force fields coupled with energy miniminatialgorithms for the prediction of geometry anthtiee
conformational energies of molecules. MacroModsbdias the ability to perform molecular dynamiesudations

to model systems at finite temperatures using ststahdynamics and mixed Monte Carlo algorithms.

6.SYBYL-X provides capabilities for crucial small molecutaodeling and simulation, includng structure-activit
relationship modeling, pharmacophore hypothesiseggion, molecular alignment, conformational sesgh
homology modeling, sequence alignment, and othgrtieks required to understand and model the statit
dynamic 3D structural properties of proteins arteobiological macromolecules.

7.Amber is a suite of programs for molecular simulation aadalysis of proteins, nucleic acids, lipids,
carbohydrates. Amber" refers to two things: a demolecular mechanical force fields for the simigdat of
biomolecules (which are in the public domain, angl @sed in a variety of simulation programs); anhekage of
molecular simulation programs which includes sowage and demos.

8.MOE internal representation of organic chemical steg and flexible architecture provide a solid fdation

for molecular modeling and computational chemistry.
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9.SIMLYS s a tool to aid in the analysis of molecular dyies, Monte Carlo and other stimulations. Its psg @
twofold it is a system performing the actual analyend it serves as a shell to integrate new aisafysctions.
SIMLY Sallows one to analyse the results. from variousufations, as for example from proteins or polyméns,
using the trajectories. The program is separatedritodules performing the input/output, building tinterface to
the user, preparing the coordinates and perforthiegalculations.

In additon to standalone software suiets, severtith® servers are now avalible for automated hosnaigdleing
from sequence. These servers are very imoprtambéalicinal chemists who are not familiar with hogysoftware
as they can bulid a 3D model for any sequence witbeep knowledge of the homolgy modeling process.

2.1.4.APPLICATIONS OF HOMOLOGY M ODELING

Homology modeling is widely used in structure badea design process. The importance of homologgetiog
is increasing as the number of available crystalcttires increases. There are several other conapylications of
homology models:

1.Studying the effect of mutations [19]

2.ldentifying active and binding sites on proteindfus for ligand design) [20]
3.Searching for ligands of a given binding site (Bak®e mining) [21]
4.Designing novel ligands of a given binding site

5.Modeling substrate specificity [22]

6.Predicting antigenic epitopes [23]

7.Protein—protein docking simulations [24]

8.Molecular replacement in X-ray structure refineme{

9.Rationalizing known experimental observations [26]

10.Planning new computational experiments with thevigied models.

Typical applications of a homology model in drugddivery require a very high accuracy of the loidé¢ £hain
positions in the binding site. A very large numbéhomology models have been built over the yebasgets have
included antibodies [274nd many proteins involved in human biology and icied [28, 29]. Clearly, in the
absence of crystal structures, homology modelsttegeonly alternative to get a 3D representatiorthef target.
Although homology-modeling methods can build reasty accurate models,fieement methods are needed to get
a more accurate characterization of the binding, €ihd determine the exact side chain conformatsnminor
errors may render the model useless for HTD apijics.

2.1.5.EXAMPLESOF HOMOLOGY MODELING APPLICATIONSIN DRUG DISCOVERY

2.1.5.1. ESTIMATION OF TARGET DRUGGABILITY FROM IN-SILICO GENERATED STRUCTURES

A druggable target has the ability to bind tighttith small molecules. As most drugs bind to sfieddinding sites
on a protein, it makes sense to identify a priositguch domains as a measure of target druggabildésearchers at
Eidogen-Sertanty developed the Target Informatitztfé*m (TIP), which contains information about o
structure/homology models and binding sites of sdverotein families [30]. It is important to notéat
complementing crystal structures with homology medes resulted in 100% structural coverage of sgere
families like Nuclear Receptors, Phosphodiestes® over 98% coverage of protein kinases and myjids
proteases [31]. Using TIP and the complex of COXia its inhibitor celecoxib, researchers were abléentify a
similar binding site in the PPAReceptor, which contained several important bigdiesidues, offering possible
clues to design novel PPAR ligands. In anotherystitirayama et al. developed an index termed prsipgfor
ligand binding (PLB) to identify druggable bindisges in homology models, which was later usedutzassfully
predict the druggable cavity in a homology moddirgbtophanyl-tRNA synthetase [32, 33].

2.1.5.2. THREE-DIMENSIONAL STRUCTURES OF G PROTEIN COUPLED RECEPTORS AS A PLATFORM FOR
COMPUTER-AIDED DRUG DISCOVERY

G protein-coupled receptors (GPCRs) is a large gfuevolutionarily related proteins that are exsed on the
plasma membrane of animal and other eukaryotics catid act as sensors for extracellular moleculeb sis
neurotransmitters, hormones and various other kignaompounds. Activated receptors trigger thevation of
intracellular proteins, which in turn initiate aobhemical-signaling cascade that dramatically gherbiology of
cells, with vast physiological and pathophysiol@gjienplications [33]. For these reasons, GPCR4la#eobject of
intense drug discovery efforts aimed at the idiatiion of not only more potent and selective mougaof the
receptors that are already validated drug tardpetsalso novel modulators of the many receptors dna not yet
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targeted by drugs [34]. A great deal of interest hlways surrounded the structural characterizatio®PCRs,
since three-dimensional structures of drug targatsserve as the basis for rational computer-ailed discovery
campaigns. However, until the end of the last agntthe structure of these membrane receptors provebe
extremely elusive: despite the fact that the hurganome comprises about 1000 different GPCRs, timgil
beginning of this century high-resolution structimere not available for any of the members ofsiygerfamily.
Finally, recent progresses in X-ray crystallographgught the number of experimentally solved GP@B zero
in 1999 to 17 different receptors in complex wiilffedent ligands, for about eighty structures, 12 [35]. All
these structures belong to the largest class @R&P known as ‘class A’, ‘family I, or ‘rhodopsifamily’, while
members of the remaining four classes of the sap®ly have yet to join the club of experimentallyhsed
receptors [36]. Moreover, as a number of ligandaiery campaigns illustrate, it can also be implet®é based on
homology models when experimental structures atewailable. For instance, novel modulators oftthgotropin
releasing hormone (TRH) receptor and the free fatig receptor 1 (FFAL1 or GPR40) were recently fidieal in
such a fashion [37, 38].

3.MOLECULAR DOCKING

In the field of molecular modeling, docking is athmad, which predicts the preferred orientation € anolecule to
a second when bound to each other to form a stalfplex. Knowledge of the preferred orientatioiim may be
used to predict the strength of association or ibhndcaffinity between two molecules using scoringhdtions

[39].The associations between biologically relevardiecules such as proteins, nucleic acids, cadralgs, and
lipids play a central role in signal transductigiurthermore, the relative orientation of the twteracting partners
may affect the type of signal produced. Therefavekéhg is useful for predicting both the strengtidaype of

signal produced. Docking is frequently used to tetthe binding orientation of small molecule dreendidates to
their protein targets in order to in turn predie @ffinity and activity of the small molecule. Hendocking plays an
important role in the rational design of drugs. Thedeling of bimolecular complexes by computatiotatking

using the known structures of their constituentsléseloping rapidly to become a powerful tool imustural

biology. It is especially useful in combination Wwieven limited experimental information describthg interface
[40].

Molecular docking involves the prediction of ligagsinall molecule) conformation and orientation,eredd as
'pose’, within the active site of the moleculagédr(Fig.3). Virtual screening based on molecalacking has
become an integral part of many modern structusedbadrug discovery efforts. Hence, it becomes dulise
endeavor to evaluate existing docking programs.clviian assist in the choice of the most suitablekidg
algorithm for any particular study [41].
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Figure 3: Molecular docking flow chart
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Molecular docking represents one of the growingliapfions in medicinal chemistry where in molecutandeling
techniques are used to predict how any macromasdtypically a protein) interact with other mole=i(may be
other proteins, nucleic acids or small drug-likelecales). Molecular docking is usually performedwsen a small
molecule and a target macromolecule. This is oftfarred to adigand— protein dockingbut there is growing
interest in protein—protein docking. In this revijetlve focus will be on ligand—protein docking. Taleility of a
protein to interact with small molecules governsignificant part of the protein’s dynamics, whictayrenhance/
inhibit its biological function. This plays an imgant role in the rational design of drugs. Thdigbio bind large
molecules such as other proteins and nucleic doiderm supra-molecular complexes is also knowmplay an
important role in controlling biological pathway&iven the biological significance of molecular dik
considerable efforts have been directed in undwilstg the process of molecular docking [42, 43].

3.1. THEORY

Modeling the interaction of two molecules is a céempproblem. Many forces are involved in the intelecular
association, including hydrophobic, van der Waatstacking interactions between aromatic amindsadiydrogen
bonding, and electrostatic forces. Modeling thermbolecular interactions in a ligand-protein compke difficult
since there are many degrees of freedom as wétisaficient knowledge of the effect of solvent the binding
association. The process of docking a ligand tindihg site tries to mimic the natural course gémction of the
ligand and its receptor via the lowest energy pathid4]. There are simple methods for docking riggeinds with
rigid receptors and flexible ligands with rigid eptors, but general methods of docking considering
conformationally flexible ligands and receptors gmoblematic. Docking protocols can be describedaas
combination of a search algorithm, and the scatmgtions (Figure 4).

|Mo|ecu|ar Docking |

|Searching functionl |Scon‘ng functionl

I Farce field

T 7 A « Empirical
Target flexibility | Ligand sampling - Knowledge-based

Consensus scoring

= Soft docking = Shape matching
= Side-chain flexibility » Systematic search
= Molecular relaxation (eg. ||+ Stochastic algorithm

Monte Carlo and Molecular
dymamic simulations) —_—

Ensemble docking

Criteria for evaluation
Root mean square deviation (RMSD)

Figure 4: Methods used for protein-ligand docking

The protein-ligand docking procedure can be typjcdlvided into two parts: rigid body docking anXible
docking.

1.Rigid Docking. This approximation treats both the ligand andrdeeptor as rigid and explores only six degrees
of translational and rotational freedom, hence wdiclg any kind of flexibility. Most of the dockinguites employ
rigid body docking procedure as a first step.

2. Flexible Docking. A more common approach is to model the ligandilfibty while assuming having a rigid
protein receptor, considering thereby only the oomftional space of the ligand. Ideally, howevemtgn
flexibility should be taken into account, and soapproaches in this regard have been developede Ererthree
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general categories of algorithms to treat ligamdiBility: systematic methods, random or stochastathods, and
simulation methods. Due to the large size of pnateind their multiple degrees of freedom, theiifigity may be
the most challenging issue in molecular dockinge Tifethods to address the flexibility of proteina ba grouped
into, soft docking, side-chain flexibility, moleeul relaxation and protein ensemble docking. Huanh@l. [45]
described them.

3.2. EXPERIMENTAL DOCKING PROCEDURES

There are a number of excellent reviews of molecdecking methods and a large number of publication
comparing the performance of a variety of molecdlacking tools [46]. Following, we will describeeHour-step
procedure adopted in this study to perform the mdég docking.

3.1.1. TARGET SELECTION

Ideally, the target structure should be determieggerimentally by either X-ray crystallography ouctear
magnetic resonance, which can be downloaded from; Pidwever, docking has been performed successiully
comparison to homology models or threading. Theehedould have good quality. It can be tested usaiiglation
software such as Molprobity [47]. After selectidigetmodel, it must be prepared by removing the wataiecules
from the cavity, stabilizing charges, filling thassing residues, and generating the side chaihacebrding to the
available parameters. The receptor should be @pthint biologically active and in the stable state

3.1.2.LIGAND SELECTION AND PREPARATION

The type of ligands chosen for docking will dep@mdthe goal: for lead discovery, crufikers such as net charge,
molecular weight, polar surface area, solubilitymenercial availability, and price-per-compound tenapplied to
reduce the number of molecules to be docked. Fad leptimization,filters such as similarity thresholds,
pharmacophores, synthetic accessibility, and alisorp distribution, metabolism, excretion, and tmtogy
(ADME-Tox) properties are additionally applied. Focused lead optimization, a custom library oflaga that are
related to the lead compound(s) is often constdufciedocking, to inform and prioritize medicinddamistry efforts
[48]. Most docking tools treat ligand¥exibly, with the exception of ring conformations general, the more
rotatable bonds in a ligand, the morefidifit and time consuming the docking will tend to his is because the
size of the search space increases exponentidhytihé number of torsions. More highly brancheditor trees lead
to more dificult searches than do linear torsion trees. Rataifaconjugated bonds, such as in amides, carbamate
ureas, etc., should be limited.

3.1.3.DOCKING

Molecular docking involves computationally explagia search space that ifided by the molecular representation
used by the method, and ranking candidate solutiorgetermine the best binding mode. Thus, dockatgiires
both a search method and a scoring function

3.1.4.SCORING FUNCTION

The scoring function provides a way to rank placetsief ligands relative to one another. Ideally $sitore should
correspond directly to the binding affinity of thgand for the protein, so that the best scorigarids are the best
binders. Scoring functions can be empirical, knalgke based, or molecular mechanics based. In addgi@me
docking strategies use one scoring function duttiegdocking, and a different one postdocking tamk&rthe results;
such retrospective scoring, however, cannot affexteficiency and accuracy of the primary scoring funcf{i4®i.
Scoring functions are fast approximate mathematicathods used to predict the strength of the nealeat
interaction between two molecules after being ddckéost commonly one of the molecules is a snaljanic
compound such as a drug and the second dsdting's biological target such as a proteseeptor [50].
Scoring functions have also been developed to grélaé strength of other types of intermoleculderactions for
example between two proteins [51] or between pnoteid DNA [52]. Scoring is actually composed ofethr
different aspects relevant to docking and design:

» Ranking of the configurations generated by the dwgkearch for one ligand interacting with a giyeatein, this
aspect is essential to detect the binding modedmsbximating the experimentally observed situatio

» Ranking different ligands with respect to thimding to one protein, that is, prioritiziigands according
to their affinity; this aspect is essential intwal screening.
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» Ranking one or different ligands with respéat their binding affinity to different protes; this aspect is
essential for the consideration of selectivity apecificity.

Scoring methods can range from molecular meckariorce fields such as AMBER, OPLS or CHARM
through to empirical free energy scoring fumes or knowledge based functions. The curresmtiyilable

docking methods utilize the scoring functions ireai two ways. The first approach uses the fulkisgpfunction

to rank a protein ligand conformation. The seatgorithm then modifies the system, and the samersgdunction

can be reapplied to rank the new structure.

3.1.5.EVALUATING DOCKING RESULTS

Regardless of the ligand—protein docking tool usedking results should be evaluated by considetiegchemical
complementarity between ligand and protein. Arepalssible hydrogen bond donors and acceptors iighad
satigied?, Are the charged groups in the ligand intamngatiith oppositely charged side chains in the remepr are
they buried in hydrophobic pockets?, Are hydropbdrioups in the ligand buried in hydrophobic poskiet the
receptor? Furthermore, the parameters chosen @rdtitking can be judged by the docking tool's &bitb
reproduce the binding mode of a ligand to proteinen the structure of the ligand—protein complekriswn. The
criterion usually used is the all-atom RMSD betwelea docked position and the crystallographicalbgerved
binding position of the ligand, and success isdglhy regarded as being less than 2 °A. If theiagdiunction were
perfect, the docked conformation with the lowesergy would always correspond to the crystallogrealhy
observed binding mode, assuming that there areadabntacts in the crystal structure. This is matgs the case,
and sometimes a different binding mode is obsesiggificantly more often than the lowest energy-bindingleno
Furthermore, current docking methods will tendinal the binding mode with the lowest possible intéoa energy
for a given ligand: this score does not necessardicate whether the ligand even binds. Thereldess growing
interest in developing methods to distinguish bisdeom nonbinders [53].

3.2. DOCKING SOFTWARE

1.Auto Dock uses Monte Carlo simulated annealing and Lamancfenetic algorithm to create a set of possible
conformations. LGA is used as a global optimizet anergy minimization as a local search method.

2.DOCK is one of the oldest and best-known ligand-protircking programs. The initial version used rigid
ligands; exibility was later incorporated via ingrental construction of the ligand in the bindingcket. As said
DOCK is a fragment-based method using shape hathical complementary methods for creating iptess
orientations for the ligand. These orientaticas be scored using three different scoring tfons; however
none of them contain explicit hydrogen-bonditgyms, solvation/ desolvation terms, or hydrophibpiterms
thus limiting serious use. DOCK seems to hamai# a polar binding site and is useful for fastking, but it is
not the most accurate software available.

3.Gold has won many new users during the last few yearause of its good results in impartial tests. ds la
good hit rate overall, however it somewhat whenlidgawith hydrophobic binding pockets. Gold usesefic
algorithm to provide docking of exible ligarahd a protein with exible hydroxyl groups. Tdevelopment of
GOLD is currently focused on improving thergmtational algorithm and adding a support foarallel
processing. GOLD has one of the most comprehensiliation test sets and is available for use o &S

4.V life has provides following functions:

* Building polypeptides using V Life MDS, MoleculBocking using V Life MDS

» Homology modeling using Biopredicta,

» Protein complex optimization using V Life MDS, Ugialignment method in V Life MDS,
» Building molecules using V Life MDS,

» Conformational search using V Life MDS

» Optimizing Molecules using V Life MDS, Using mistaieous utilities in V Life MDS

* QSAR using V Life MDS.

5.ICM (MolSoft LLC): The Internal Coordinate Mechanics (ICM) progranbased on a stochastic algorithm that
relies on global optimization of the entiiiexible ligand in the receptdield (flexible ligand/grid receptor approach
[55]. Global optimization is performed in the bindisite such that both the intramolecular ligandrgyp and the
ligand receptor interaction energy are optimizeue program combines large-scale random moves efaletypes
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with gradient local minimization and a history mantsm that both expels from the unwanted minimag@odotes

the discovery of new minima. The random moves igkelpseudo-Brownian moves, optimally biased moves of
groups of torsions, and single torsion changes. @rtexgy calculations are based on the ECEPP/3 faickwith
Merck molecular forcefield (MMFF) partial charges. Five potential mapsegsiostatic, hydrogen bond,
hydrophobic, van der Waals attractive and repu)sare calculated for the receptor. The locatiorthef receptor-
binding pocket can be spéed by the user or selected by the cavity deteetiodule implemented in the program.

6.Glide (Schrodinger, Inc.). The Glide (Grid-Based Ligand Docking with Eneiggt algorithm approximates a
systematic search of positions, orientations, amfamations of the ligand in the receptor-bindsite using a
series of hierarchicdilters. The shape and properties of the receptoregmesented on a grid by several different
sets offields that provide progressively more accurate sgoof the ligand pose. Theelds are computed prior to
docking. The binding site is fired by a rectangular box daming the translations of the mass center of thanlig

A set of initial ligand conformations is generatdstough exhaustive search of the torsional minieuad the
conformers are clustered in a combinatorial fashigach cluster, characterized by a common confoomatf the
core and an exhaustive set of side-chain confoomsitiis docked as a single object in finst stage. The search
begins with a rough positioning and scoring phdss signficantly narrows the search space and reduces the
number of poses to be further considered to a femdied. In the following stage, the selected pasesninimized

on pre computed OPLS-AA van der Waals and elegcttiosgrids for the receptor. In thal stage, the 5-10
lowest-energy poses obtained in this fashion abgested to a Monte Carlo procedure in which neddsgional
minima are examined, and the orientation of perighgroups of the ligand isfieed. The minimized poses are then
rescored using the Glide Score function, which iBae sophisticated version of ChemScore [56] Vatlce field—
based components and additional terms accountingoloation and repulsive interactions. The cha@€¢he best
pose is made using a model energy score (Emodgirtmbines the energy grid score, GlideScore flamdhternal
strain of the ligand.

3.3. APPLICATIONS OF M OLECULAR DOCKING

A binding interaction between a small molecule figand an enzyme protein may result in activatiomlibition
of the enzyme. If the protein is a receptor, ligdtding may result in agonism or antagonism. Dogknay be
applied to:

1.Hit Identification — docking combined with scoring function can be used to quickly screegdatatabases
of potential drugsn-silico, to identify molecules that are likely tdnd to protein target of interest (Virtual
Screening).

2.Lead Optimization — docking can be used to prediethere and in which relative orientation gald binds
to a protein (also referred to as the binding enod pose).This information may in turn be usedidsign more
potent and selective analogs.

3. Bioremediation— Protein ligand docking can alsaubed to predict pollutants that can be degradeenaymes.
Estimating the binding affinity.

4.Searching for lead structures for protein targets

3.3.1.APPLICATION EXAMPLES OF MOLECULAR DOCKING FOR DRUG DISCOVERY

Molecular docking has been the most widely emploggdhnique. Though the main application lies iudtre-
based virtual screening for identification of neetive compounds towards a particular target prot@rwhich it
has produced a number of success stories [58]aittually not a stand-alone technique but is nibyreenbedded in
a workflow of differentin-silico as well as experimental techniques [58]. Seveeakarch groups focus on
evaluating of the performance of various dockinggeams or on making improvements to the scoringtfans
when experimental testing has already been doneh &tforts could give meaningful guidance to chotse
methodology for a particular target system.

3.3.1.1 HUMAN G PROTEIN-COUPLED RECEPTORS (GPCRS)

With at least 800 unique full-length members, GPECBsprise the largest family of cell surface reoep59].
They are ubiquitous biological control points oétbell. This membrane protein family translatesedl signals
into readable stimuli resulting in precise cell &abrs [60]. Examples of physiological responsestmdled by
GPCRs are cell growth and differentiation, cardgmdar function, metabolism, immune responses, and
neurotransmission. They also represent the largesily of drug targets with about 50% of the exigtidrugs
currently targeting GPCRs for their béical action [61], and their therapeutic potentiaght be even larger [62,
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63].The breakthroughs in GPCR crystallography impraramatically the potential of GPCRs structuredol
ligand design approaches. Virtual screening studgsinst the adenosine receptg®Aesulted in very high hit
rates. Four million “drug-like and lead-like” comyads virtual screening using GOLD resulted inde®d hit rate
of 41% [63]. Out of 56 compounds experimentallyteds 23 showed antagonist activity under 10 mM, ragrthem
11 had submicromolar activity and two compounds h#fohity under 60 nM. Nine novel chemotypes were
identified supporting high diversity of the hits generatedugh structure-based virtual screening (Fig. 5).
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Figure 5. Binding mode of the cocrystallized ligand 6 (A) and the predicted binding modes of the seven ligands discovered in the docking
screen

In another study [64], 1.4 million compounds haeeib screeneih-silico against the same,A X-ray structure, 20
high-ranking novel compounds have been selectedtestdd experimentally resulting in a hit rate 68 The
activity range was between 200 nM and 9 mM. Thas#ies suggest practical applicability of recefdiased virtual
screening in GPCR drug discovery (Fig. 6). Furthmamextraordinary high hit rates and high activigve been
identified suggesting the high potential of the X-ray diftron crystals compared to the earlier homologdets

3.3.1.2. ANTIVIRAL DRUG DISCOVERY

The reverse transcriptase (RT) of HIV-1 is onehaf major targets of the antiretroviral drug theeapiised for the
treatment of AIDS. RT is responsible for the redtemscription of RNA to DNA in théirst phase of the intracellular
viral replication. In an attempt to target thist@in, Bustanji et al. selected 2800 fragment-tikenpounds from the
NCI database (Fig. 7), performed a high throughgmgking and selected the four best hits for teskiaged on a
consensus docking score of which four were foundhbit RT in biological testing [65].
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Figure 6: GPCR ligandsfrom docking virtual screening

Another VS screening study was performed to idgntibvel compounds targeting RT as well as othealvir
functions associated with RNA transcription. Apédased screening was applied on the NGhbdse in a
first VS run using dihydroxy benzoyl naphthyl hydnagoa Known RT inhibitor, as query compound. Thesim
active Hits idenfied through this process was employed for a SecdBch®v using a combined ligand-based
strategy comprising 3D-, 2D-similarity searches dgdnd-based pharmacophore screening (Fig. 8).enhsted
on the RT functions, several of the selected comgsicharacterized by new scaffolds were shownhibiinboth
RT-associated ribonuclease H and RT activitieslowamicro molar range [66].
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Figure 8: Average conformations of Molecular docking of best-hit compounds
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3.3.1.3. ANTICANCER DRUG DISCOVERY (KINASES)

Protein tyrosine kinases (tks) are enzymes thalyz the transfer of phosphate from ATP to tyresiesidues in
polypeptides. The human genome contains about 9k 43 TK-like genes, the products of which retgla
cellular proliferation, survival, differentiatiofiinction, and motility. Protein kinases represdiraative targets in
oncology drug discovery[67]. An interesting claggargets is the erythropoietin-producing humanatepellular
carcinoma receptors (Eph), the largest family aeptor tyrosine kinases. The Eph receptors have imeglicated
in sprouting angiogenesis and blood vessel remogleluring vascular development. In a recent, stdiffischet
al. have identified three potential tyrosine kinaskibitors after sequence of virtual screening andkam steps
starting with a library of 9 million compoundstime ZINC library. The docked library consisted bbat 175 000
compounds derived from nearly 9 million moleculesing two-dimensional chemical descriptors and three
dimensional geometric constraints (i.e., relatiigahce and orientation of pairs of functional greu Using this
procedure, they have identified a series of 5-(@ip@e-1-yl)isoquinoline derivatives that exhibitesv micromolar
affinities for unphosphorylated Abll in a competitibinding assay [68].

3.3.1.4.NUCLEAR RECEPTORS (RETINOIC ACID RECEPTOR).

Nuclear receptors are a class of proteins foundiimvitells that are responsible for sensing steesid thyroid
hormones and certain other molecules. In respotiese receptors work with other proteins to reguldie
expression of specific genes, thereby controllimg development, homeostasis, and metabolism obitienism.
The retinoic acid receptor (RAR) is a type of nacleeceptor which can also act as a transcripaotof [69] that is
activated by both all-trans retinoic acid and 9+ei$noic acid.There are three retinoic acid receptors (RAR), RAR
alpha, RAR-beta, and RAR-gamma, encoded byRBBRA RARB RARGgenes, respectively. Each receptor isoform
has several splice variants: two- for alpha, féar-beta, and two- for gamma. A 3D structural moofethe inactive
conformation of the retinoic acid receptor (RA&RyuUbtype (RAR) was developed from the RARD structure,
bound to the agonist dtansretinoic acid, and the estrogen receptesubtype (ER), bound to an antagonist.
After validation of the method with known agoniatsd antagonists, 153,000 ACD compounds were dockedhe
RAR binding site with full flexibility of the ligad and the amino acid side chains of the gmotusing the
Molsoft Internal Coordinates Mechanics (ICM )2.grogram. Two novel RAR antagonists werecali®gred,
for example, compountl8 (55% inhibition at 20 uM) [70]. Comparable uks were obtained with all three
human isoforms: RAR RARR, and RAR In a similar investigation [71], a model of thetise RARx
conformation was developed from the agonist-bouddRR conformation. Docking of the ACD compounds as
above but with a refined procedure, consideriall atoms of the binding site, resulted i6&3igh-scoring
hits. The 300 compounds with the lowest bindemergy (i.e., highest predicted affinity) wersually inspected
for shape complementarity, hydrogen bonding netwiigend conformations, and possible van der Wekdshes.
Finally, 30 compounds were selected for biologteating. Despite the fact that an RARD model was useéor
the docking, the two most active hits have a higher affinity to RARB than to RARa, for example,
compoundl9 (EG,RARB = 200 nM, EGoRARa = 4 uM) [72].

3.3.1.5. TNF INHIBITORS

Tumor necrosis factor a (TN&)is a multifunctional cytokine that acts as a calnbiological mediator for critical
immune functions, including inflammation, infectioand antitumor responses [73]. Dysregulation ofFfl\Nhas
been implicated in cases of tumorigenesis, diabates especially in autoinflammatory diseases sisctheumatoid
arthritis, psoriatic arthritis, and Crohn’s disg&4¢. In a recent study Over 20 000 compounds femhemical
library of natural-product and natural-product-likuctures were screened in-silico. The continlyotlexible
ligands were docked to a grid representation of rtdmeptor and assigned a score reflecting the tguali the
complex according to the internal coordinate memsaflCM) method [ICM-Pro 3.6-1d molecular docking
software (Molsoft)]. The highest scoring 16 compadsirfrom the virtual screening results were testedai
preliminary ELISA to assess their ability to intiibhe binding of TNFe to TNFR-1. Two chemically distinct
structures, the pyrazole-linked quinuclidine ahne indolo[2,3-a]quinolizidine, emerged as the tapdidates [75].
The binding poses of these two compounds overldpwith the crystallographic pose of SPD304 to ThFFigure
13). Like SPD304, compounds 1 and 2 are large dntugteract with the residues from both subuoftthe TNF-
a dimer, thereby occupying and blocking the bindiitg for the third TNF-a subunit.
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CONCLUSION

Virtual chemical library screening by docking hacbme a method routinely used in chemoinformatidglentify
ligands for targets of therapeutic interest. Witle tdevelopment of significantly more sophisticatadlecular
modeling, tools and a growth in the use of higlotighput X-ray crystallography of the target alonénocomplex
with small molecules, structure-based drug desigohriiques have become an indispensable tool for the
development of target-based therapies. ImportatiiBse newly appreciated approaches are being gedpend/or
driven by rapidly improving computational platforrieat are more reproducibly docking, scoring ankirag drug-
like compounds, which has allowed many drug dispp@eientists to carry out more focused, hypothdsigen
discovery initiatives limiting the number of compuls that are synthesized. It is important to nioé the adoption
of early stage PK and PD studies has also congéibgteatly to the significantly reduced late-staggtion rate of
clinical candidates. In the particular case of @dragting as inhibitors of specific target proteititese advances
together with a more careful attention to the comfation, mechanism of action, and drug-like propet the
inhibitor are expected to result in novel therapeagents that are more potent, selective and hitzbte.
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