

Scholars Research Library

Der Pharma Chemica, 2015, 7(11):318-321 (*http://derpharmachemica.com/archive.html*)

ISSN 0975-413X CODEN (USA): PCHHAX

An efficient, one-pot, solvent-free synthesis of 1-amidoalkyl-2-naphthols using uranylacetateas new recyclable catalysts

Mahmood Kamali

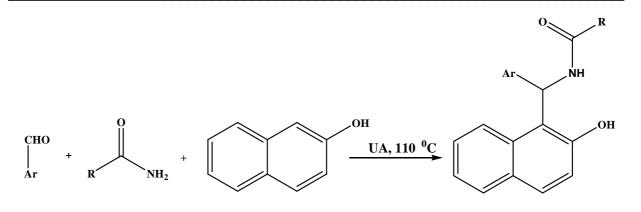
Kharazmi University, Faculty of Chemistry, 49-Mofetteh Ave. Tehran, Iran

ABSTRACT

Solvent free and one-potcondensation of an aldehyde, acetamide or benzamide, and 2-naphthol was performed to obtain the corresponding 1-amidoalkyl-2-naphthol. The 1-amidoalkyl-2-naphtholswereproduced by using $UO_2(CH_3COO)_2$ ·2H₂Oas a catalyst at 90 °C in high yield. This method has several advantages, for example excellent products yields, short times reaction, easy work up and solvent free condition. Also, the catalyst was recyclable for five consecutive runs.

Keywords: 1-amidoalkyl-2-naphthols, Uranylacetate, Multicomponent reaction, Solvent free reaction

INTRODUCTION


Amidoalkylnaphthols (**AAN**s) are synthetic building blocks for the synthesis of many important derivatives such as aminoalkylnaphthols, oxazine derivatives and the other compounds bearing1,3-amino oxygenated groups.1,3-Amino oxygenated containing compounds have great deals biological activity (in example: cardiovascular activity [1], bradycardic effects [2], antibiotic [3], antirheumatic [4], anticonvulsant [5], antitumor [6], antianginal [7], antipsychotic [8], antimalarial [9],antibacterial [10] analgesic [11] and antihypertensive [12]) and chemical applications (such as asymmetric synthesis [13] and also as a catalyst [14]).

AAN scan be prepared by the coupling of an aldehyde, the 2-naphthol and an amide. Different methods for the synthesis of **AAN**s based on the use Lewis and Bronsted acids such as H_2NSO_3H [15], Fe(HSO₄)₃ [16], Al₂O₃/H₂SO₄ [17], NaHSO₄.H₂O [18], InCl₃ [19], I₂ [20], ZrOCl₂ [21], SiO₂/H₂SO₄ [22], Al(H₂PO₄)₃ [23], FeCl₃.SiO₂ [24], Sr(OTf)₂ [25], NBS [26], nano-TiCl₄-SiO₂ [27], MoO₃/SiO₂ [28]), and varieties of other conditions such as ultrasonic irradiation [29] and ionic liquid [30],have been reported in the literature.

But there are few references for uranyl acetate (UA; $UO_2(CH_3COO)_2 \cdot 2H_2O$) as catalyst in organic reactions [31, 32]. In continuation of my investigations on catalytic effect of UA[33], here in, I report an efficient synthesis of AANs by UA in one pot and solvent free condition.

RESULTS AND DISCUSSION

In order to study the efficiency of new methods, the catalytic effect of UA,2-naphthol, benzaldehyde and acetamide was heated in the presence of UA to give AAN_1 (Scheme 1), under solvent free condition. In order to optimize the reaction conditions, several methods were tested on the same model reaction by conducting the reaction. The reactions were performed in different temperatures, times and different amount of UA. The results from this study are presented in Table 1, whereby the better yields (88%) were obtained when the temperature was at 110 °C with 3 hours reaction time and 2.5mol% of UA.

AANs (16 cases)

Scheme 1 Synthesis of 1-amidoalkyl-2-naphthol (AAN)

Table2 Synthesis of AAN1^a under different conditions for optimization of reactions by UA as catalyst

Temp °C of React.	Catalyst (mol %)	Time (h)	<pre>ProductYield(%)</pre>
90	20	4	38
100	20	4	77
110	20	4	88
120	20	4	89
110	20	5	88
110	20	3	88
110	20	2	75
110	10	3	88
110	5	3	88
110	2.5	3	88
110	1	3	68

^aBenzaldehyede (1 mmol), 2-naphthol (1mmol), acetamide (1.5 mmol), Solvent Free

Several activated and deactivated aromatic aldehydes underwent the reaction with acetamide or benzamide to give the corresponding **AAN**s in high yields. The results are shown in Table 2. The experimental procedure was very simple, convenient, and had the ability to tolerate a variety of functional groups such as methoxy, nitro and halides under the reaction conditions (Table 3).

Table3 Details	l-aminoalkyl-2-na	nhthol synthesis
rubice Detunb.	L uninnounsyl a nu	phenor by meneors

Entre	A	D	Product product Yield (%)		mp °C		
Entry	Ar-	R-		Found	Lit.		
1	Ph-	CH ₃₋	AAN ₁	88	244-246	241-243 [25]	
2	2-Cl-Ph-	CH ₃₋	AAN ₂	92	206-208	206-207 [34]	
3	4-Cl-Ph-	CH ₃₋	AAN ₃	90	234-236	237-238 [34]	
4	4-MeO-Ph-	CH ₃₋	AAN ₄	86	187-188	184-185 [25]	
5	2-NO ₂ -Ph-	CH ₃₋	AAN ₅	91	217-219	217-220 [25]	
6	3-NO2-Ph-	CH ₃₋	AAN ₆	92	242-244	241-243 [16]	
7	4-NO2-Ph-	CH ₃₋	AAN ₇	92	238-240	237-238 [34]	
9	2-Furl-	Ph-	AAN ₉	89	219-221	218-220 [35]	
10	Ph-	Ph-	AAN ₁₀	91	234-237	234-236 [36]	
11	2-Cl-Ph-	Ph-	AAN ₁₁	93	266-268	265-267 [37]	
12	4-Cl-Ph-	Ph-	AAN ₁₂	90	187-189	187-186 [38]	
13	4-MeO-Ph-	Ph-	AAN ₁₃	88	207-209	206-208 [34]	
14	2-NO ₂ -Ph-	Ph-	AAN ₁₄	92	267-269	266-267 [34]	
15	3-NO2-Ph-	Ph-	AAN ₁₅	94	243-245	241-243 [39]	
16	4-NO2-Ph-	Ph-	AAN ₁₆	93	238-240	237-239 [37]	
18	2-furvl-	Ph-	AAN ₁₈	89	235-237	234-236 [30]	

Interestingly, the catalyst can be recycled for four consecutive runs without significant loss of activity (Table 3).For this purpose, after completion of the reaction, the reaction mixture was cooled to room temperature and then water was added. The precipitated solid was isolated by filtration; the catalyst was recovered from the filtrate by evaporation of the water, and reused for the similar reaction.

Table 3Recycled of UA in the synthesis of AAN1 reactions

Catalwat trung	Runs				
Catalyst type	1	2	3	4	5
Product yield (%)	89	88	82	76	45

Experimental

All reactions were carried out in an efficient hood. The starting materials were purchased from Merck and Fluka chemical companies. Melting points were determined with a BransteadElectrothermal model 9200 apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer RX1 Fourier transform infrared spectrometer. The ¹H and ¹³C NMR spectra were recorded in DMSO-d₆ on BrukerAvance 300 MHz spectrometers. Elemental analyses were carried out by a Perkin Elmer 2400 series II CHN/O analyzer.

Synthesis of N-((2-Hydroxynaphthalen-1-yl)(phenyl)methyl)acetamide (AAN₁) as general procedure: A mixture of benzaldehyde (2mmol, 0.21 mL), 2-naphthol (2mmol, 0.29 gr), acetamide (2.5 mmol, 0.13 mL) and UA(2.5mol %, 0.022 gr) was heated on oil-bath with stirring at 110 °C for 3 hour (Scheme1, Tables 1 and 2). After cooling, the reaction mixture was poured in ice water and the precipitated solid was collected by filtration, washed with distilled water and dried. The crude product was recrystallized from hot ethanol to give the corresponding pure product (AAN₁). mp 244-246°C ; IR (KBr): 3385, 3243, 3058, 1630, 1575, 1509, 1331, 1096, 800, 732cm⁻¹; ¹HNMR(300 MHz, DMSO-d₆): δ 1.96 (s, 3H), 7.13 - 7.38 (m, 9H),7.78 - 7.89 (m, 3H), 8.42 (d, *J* = 8.8 Hz, 1H), 9.99 (s, 1H)ppm; ¹³C NMR(75 MHz, DMSO-d₆): δ 23.7, 41.5, 119.0, 120.4,122.3, 124.1, 125.2, 125.9, 127.8, 128.3, 128.6, 128.9, 130.1, 134.5, 144.2, 152.8, 169.7ppm; Anal. Calcd for C₁₉H₁₇NO: C, 78.33; H, 5.88 Found: C, 78.28; H, 5.79.

CONCLUSION

In conclusion, I have successfully developed a quick, convenient and efficient method for the synthesis of **AANs** under solvent-free conditions. The environmental advantages include omitting organic solvent, generality and simplicity of procedure, shorter reaction time, simple workup, reusable catalyst condition, and pure products in excellent yields.

Acknowledgements

I appreciate the Research Council of the Kharazmi University for financial support.

REFERENCES

- [1] A.Y Shen, C.T Tsai, C.L Chen, Eur. J. Med. Chem., 1999, 34(10), 877.
- [2] I. Szatmari, F. Fulop. F., Curr. Org. Synth., 2004, 1, 155.
- [3] Y. Kusakabe, J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose, S. Shirato, J. Antibiot. 1972, 25, 44.

[4] H. Matsuoka, N. Ohi, M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama, K. Tsuji, N. Kato, T.Akimoto, Y. Takeda, K. Yano, T. Kuroki, *J. Med. Chem.***1997**, 40, 105.

- [5] H.S. Mosher, M.B. Frankel, M. Gregory, J. Am. Chem. Soc., 1973, 75, 5326.
- [6] J.B. Chylińska, T. Urbański, M. Mordarski, J. Med. Chem., 1963, 6, 484.

[7] F. Benedini, G. Bertolini, R. Cereda, G. Doná, G. Gromo, S. Levi, J. Mizrahi, A. Sala, J. Med. Chem., 1995, 38, 130.

[8] J.L. Peglion, J. Vian, B. Gourment, N. Despaux, V. Audinot, M. Millan, Bioorg. Med. Chem. Lett. 1997, 881.

[9] H. Ren, S. Grady, D. Gamenara, H. Heinzen, P. Moyna, S. Croft, H. Kendrick, V. Yardley, G. Moyna, *Bioorg. Med. Chem. Lett.*, **2011**, 11, 1851.

[10] J.B. Chylińska, M, Janowiec, T. Urbański, Br. J. Pharmacol., 1971, 43, 649.

[11] G.Y. Lesher, A.R. Surrey, J. Am. Chem. Soc., 1955, 77, 636.

[12] R.D. Clark, J.M. Caroon, A.F. Kluge, D.B. Repke, A.P. Roszkowski, A.M. Strosberg, S. Baker, S.M. Bitter, M.D. Okada, *J. Med. Chem.*, **1983**, 26, 657.

- [13] R. Hulst, H. Heres, N.C.M.W. Peper, R.M. Kellogg, Tetrahedron: Asymmetry, 1996, 7, 1373.
- [14] X. Li, C.H. Yeung, A.S.C. Chan, T.K. Yang, *Tetrahedron: Asymmetry*, **1999**, 10, 759.
- [15] R.R. Nagawade, D.B. Shinde, Chin. J. Chem., 2007, 25, 1710.
- [16] H.R. Shaterian, H. Yarahmadi, M. Ghashang, Bioorg. Med. Chem. Lett., 2008, 18,788.
- [17] H.R. Shaterian, H. Asghar, Y. Hossein, G. Majid, Lett.Org. Chem., 2008, 5, 290.
- [18] H.R. Shaterian, H. Yarahmadi, ARKIVOC, 2008, 105.
- [19] N.L. Chavan, P.N. Naik, S.K. Nayak, R.S. Kusurkar, Synth. Commun., 2010, 40, 2941.
- [20] B. Das, K. Laxminarayana, B. Ravikanth, B.R. Rao, J. Mol. Catal. A: Chem., 2007, 261, 180.
- [21] R.R. Nagawade, D.B. Shinde, ActaChim. Slov. 2007, 54, 642.

[22] G. Srihari, M. Nagaraju, M.M. Murthy, Helv. Chim. Acta., 2007, 90, 1497.

- [23] H.R. Shaterian, A. Amirzadeh, F. Khorami, M. Ghashang, Synth. Commun., 2008, 38, 2983.
- [24] H.R. Shaterian, H. Yarahmadi, Tetrahedron Lett., 2008, 49, 1297.
- [25] W. Su, W. Tang, J. Li, J. Chem. Res., 2008, 3, 123.
- [26] H.R. Shaterian, H. Yarahmadi, M. Ghashang, M.M. Safari, Chin. J. Chem., 2008, 26, 2093.
- [27] L. Zamani, K. Zomorodian, B.B.F. Mirjalili, S.Khabnadideh, J. Pharma Sci. Innov., 2014,3, 208.
- [28] F. Moeinpour, N. Dorostkar-Ahmadi, A. SardashtiBirjandi, A. Khojastehnezhad, M. Vafaei, *Res. Chem. Intermed.*, **2014**, 40, 3145.
- [29] S.B. Patil, P.R. Singh, M.P. Surpur, S.D. Samant, Ultrason. Sonochem., 2007, 4, 515.
- [30] V.J. Rani, M. Suresh, P. Lavanya, V.K. Vani, B.Nagarjuna, C.V. Rao, Der. Pharma Chem., 2010, 2, 224.
- [31] P. K.Jha, G. P.Halada, Chem. Cent. J., 2011, 5, 12.
- [32] Y. Wang, X. Zhao, F. Li, S. Wang, J. Zhang, J. Chem. Tech & Biotech., 2001, 76 (8), 857.
- [33] M. Kamali, A. Shockravi, M. SaghafiDoost, S. E. Hooshmand, Cogent Chem., 2015, 1, 1081667.
- [34] H.R.Shateria, H.Yarahmadi, Tetrahedron. Lett., 2008, 49(8), 1297.
- [35] V. J. Rani, M. Suresh, P. Lavanya, K. V. Vani, B. Nagarjuna, C. V. Rao, Der PharmaChemica, 2010, 2(6), 224.
- [36] L.Nagarapu, M.Baseeruddin, S.Apuri, S.Kantevari, Catal. Commun., 2007, 8(11), 1729.
- [37] G.Vaghei, S.M.Malaekehpour, Cent. Eur. J. Chem., 2010, 8(5), 1086.
- [38] H. R. Shateria, H. Yarahmadi, Tetrahedron. Lett., 2008, 49(8), 1297.
- [39] G. C. Nandi, S. Samai, R. Kumar, and M. S. Singh, Tetrahedron Letters, 2009, 50, 7220.