

Scholars Research Library

Der Pharma Chemica, 2014, 6(4):367-372 (*http://derpharmachemica.com/archive.html*)

ISSN 0975-413X CODEN (USA): PCHHAX

Antibacterial activity of 1-(4-methyl sulfonylphenyl)-3-(1-phenyl-3-aryl-*1H*pyrazol-4-yl)-2- propen-1-ones and it's derivatives

J. J. Vora[#], Dharmesh M. Patel, Ketan C. Parmar*, Bhavesh M. Patel* and Sunil B. Vasava

*Department of Chemistry, Sir P. T. Sarvajanik College of Science, Surat, Gujarat # Department of Chemistry, Hemchandrachraya North Gujarat University, Patan, Gujarat, India

ABSTRACT

Various chalcone derivatives of 1-(4-methyl sulfonylphenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-propen-1-one were synthesized by condensation of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde and 4-methyl sulfonylphenyl acetophenone. Chalcone derivatives were characterized by FT-IR, ¹H-NMR, Mass spectral analysis and elemental analysis. All the synthesized compounds have been screened for their antibacterial activities by using cup-plate method.

Keywords: Pyrazole aldehyde, p-Sulfonyl Acetophenone, Antibacterial Activity

INTRODUCTION

*T*he chemistry of chalcones have generated intensive scientific studies throughout the world, especially interesting are their biological and industrial application. Chalcones are coloured compounds because of the presence of the chromophore, auxochromes. They are known as benzalacetophenones or benzylidine acetophenones.

Here we synthesized different pyrazole aldehyde [1,2] by using different acetophenone [3] and phenyl hydrazine⁴. These synthesized pyrazole aldehyde further condensed with acetophenone derivative to give different type of chalcone derivatives⁵.

Mechanism

Chalcone formation proceeds through aldol type of condensation and the process is catalyzed by the presence of alkali. Following are the steps of the reaction mechanism.

The intermediate aldol type of products formed readily undergoes dehydration even under mild condition, particularly when R and R' are aryl groups.

Importance of chalcones

In recent years an increasing number of groups have become interested in chalcones and related compounds since they are finding extensive use in several medicinal and industrial fields.

Therapeutic Interest

Chalcones are potential biocides, some naturally occurring antibiotics and aminochalcones probably owe their biological activity to the presence of α , β -unsaturated carbonyl group.

They were found to possess Insecticidal, Antiulcer, Bactericidal[6,7], Fungicidal[6,7], Antiinflammatory[8], Antiviral, Antiallergic, Carboxygenase inhibitor, Antioxident[9], Antitumor, Antimalarial, Anticancer, Antileshmanial, Cardiovascular, Anti-HIV etc. activity

MATERIALS AND METHODS

[A] Synthesis of N-Phenylamino-a-methyl-phenyl azomethine

A mixture of phenyl hydrazine (1.08gm, 0.01M) and acetophenone (1.20gm, 0.01M) in absolute ethanol was refluxed in waterbath for 4 hrs. in presence of 1ml glacial acetic acid. Product obtained after cooling was crystallized from absolute ethanol. Yield, 1.8gm (90%), M.P.: 64° C. (C₁₄H₁₄N₂; **Calculated** : C, 80.00; H, 6.66; N, 13.37%; **Found**: C, 79.92; H, 6.64; N, 13.34%).

This typical experimental procedure was followed to prepare other analogs of this series.

[B]Synthesis of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde

N-Phenylamino- α -methyl-phenyl azomethine (0.84gm, 0.004M) was added in a mixture of Vilsmeier-Haack reagent (prepared by dropwise addition of 1.2ml POCl₃ in ice cooled 10ml DMF) and refluxed for 6 hrs. The reaction mixture was poured into crushed ice followed by neutralization using sodium bicarbonate. Crude product was isolated and crystallized from methanol. Yield, 2.16gm (87%), M.P. : 125°C. (C₁₆H₁₂N₂O; **Calculated** : C, 77.42; H, 4.84; N, 11.29%; **Found** : C, 77.39; H, 4.80; N, 11.28%).

Exactly similar experimental procedure was followed to prepare other analogs of this series.

[C] Synthesis of 1-(4-methyl sulfonylphenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-propen-1-one (l_a)

A mixture of 1,3-diphenyl-1*H*-pyrazole-4-carbaldehyde (2.48gm, 0.01M) and 4-methyl sulfonylphenyl acetophenone (1.98gm, 0.01M) was dissolved in 40ml ethanol. To this mixture, 40% aq. NaOH was added till the mixture became basic. The reaction mixture was stirred at room temperature for 48 hr. Then reaction mixture was poured over crushed ice and contents were acidified with concentrated HCl. Product thus obtained was crystallized from ethanol. Yield, 3.76gm (88%), M.P. : 267° C, R_f : 0.64, (C₂₅H₂₀N₂O₃S ; **Calculated** : C, 70.07; H, 4.70; N, 6.54%; **Found** : C, 70.04; H, 4.68; N, 6.51%).

The same experimental procedure was utilized to prepare other analogs of this series (l_{a-h}) . Their physical constant data are given in **Table-I**.

Reaction Scheme

Commd			0/ Viold	MD 9C	% of Carbon	% of Hydrogen	% of Nitrogen	
No.	R	Molecular Formula	(Final stan)	MI.F. C	Found	Found	Found	
110.			(Final step)		(Calcu.)	(Calcu.)	(Calcu.)	
Io	СЧ	CHNOS	00	267	70.04	4.68	<u>6.51</u>	
Ia	C6115	$C_{25}\Pi_{20}\Pi_{2}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3$	88	207	(70.07)	(4.70)	(6.54)	
Ib		CHNOS	94	252	<u>70.53</u>	4.98	<u>6.30</u>	
10	4-CH3-C6H4	$C_{26} \Pi_{22} \Pi_{2} O_{3} O_$	04	232	(70.57)	(5.01)	(6.33)	
Ia		CHNOS	96	210	<u>68.08</u>	4.81	<u>6.08</u>	
ic	$4-0CH_3-C_6H_4$	$C_{26} \Pi_{22} \Pi_{2} O_{4} S$	80	210	(68.10)	(4.84)	(6.11)	
ы		CUNCE	01	156	64.83	4.11	<u>6.03</u>	
Iu	4-CI-C $_{6}\Pi_{4}$	$C_{25}\Pi_{19}N_{2}O_{3}CIS$	04	150	(64.86)	(4.14)	(6.05)	
Ia	A Pr C H	CHNORS	97	280	<u>59.15</u>	3.74	<u>5.50</u>	
le	4-Ы-С 6П4	C25H19IN2O3BIS	07	209	(59.18)	(3.77)	(5.52)	
If		CHNOS	82	188	<u>63.37</u>	4.01	<u>8.83</u>	
11	$4 - 1 NO_2 - C_6 \Pi_4$	$C_{25}\Pi_{19}\Pi_{3}O_{5}S$			(63.41)	(4.04)	(8.87)	
Ia	2 NO. C H	CHNOS	82	191	<u>63.38</u>	4.02	<u>8.86</u>	
ıg	5-mO2-C6П4	$C_{25}\Pi_{19}\Pi_{3}O_{5}S$			(63.41)	(4.04)	(8.87)	
Ib	24 CLC H	C H NOCIS	85	234	60.35	3.62	5.60	
m	∠, 4-CI-C ₆ Π ₃	$C_{25}\Pi_{18}N_2O_3CI_2S$			(60.37)	(3.65)	(5.63)	

TABLE -I : Physical constants of 1-(4-methyl sulfonylphenyl)-3-(1-phenyl-3-aryl-1h-pyrazol-4-yl)-2- propen-1-ones (I_{a-h})

(1) Melting points are measured in open capillaries and are uncorrected
(2) TLC solvent system; Ethyl acetate : Cyclohexane = 8 : 2, TLC taken on Silica gel

SPECTRAL STUDY OF 1-(4-METHYL SULFONYL PHENYL)–3-(1–PHENYL-3-(4-METHYL PHENYL)-1H-PYRAZOL –4-YL)–2-PROPEN–1-ONE (l_b)

Interpretation of IR at a glance: Aromatic C-H str. 3125.8 cm⁻¹, C=C str. 1504.8 cm⁻¹, C-H i.p. def. 1089.9 cm⁻¹, C-H o.o.p. def. 830.0 cm⁻¹; Chalcone C=O str., 1659.2 cm⁻¹, CH = CH str. 3125.8 cm⁻¹ (overl.); Pyrazole moiety, C=N str. 1585.2 cm⁻¹, C-N str. 1213.3 cm⁻¹, -SO₂-CH₃. 1310.5 cm⁻¹ (overl.), 1178.4 cm⁻¹

Internal Standard : TMS ; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (400 MHz) Interpretation of ¹H NMR at a glance

Signal No.	Signal Position (δ ppm)	No. of Protons	Multiplicity	Inference	
1	2.442	3H	singlet	Ar-C <u>H</u> _{3(a)}	
2	3.096	3H	singlet	Ar-SO ₂ CH _{3(l)}	
3	7.261 - 7.350	2H	doublet	C- <u>H</u> (e)	
4	7.369 - 7.390	1H	triplet	$C-\underline{H}_{(g)}$	
5	7.489 – 7.529	2H	triplet	$C-\underline{H}_{(f)}$	
6	7-577 – 7.597	2H	doublet	C- <u>H</u> (b)	
7	7.793 – 7.817	1H	doublet	-C <u>H</u> (h)=CH-	
8	7.913 - 7.952	1H	doublet	-CH=C <u>H</u> (i)-	
9	8.048 - 8.070	2H	doublet	C- <u>H</u> (j)	
10	8.091 - 8.112	2H	doublet	C- <u>H</u> (k)	
11	8.381	1H	singlet	C-H _(d)	

Mass Spectrum : m/z = 442.13

RESULTS AND DISCUSSION

The characterized heterocyclic compounds containing pyrazole ring were subjected for antibacterial screening with gram +ve ; gram –ve bacteria. The results suggested that as far as antibacterial activity is concerned, the synthesized heterocyclic compounds were uneffective at low concentrations unlike standard drugs. At higher concentrations,

antibacterial action was observed. When halogens replaced alkyl or alkoxyl group at 4 aryl position, the activity decreased. Out of nitro phenyl derivatives, nitro group at 3 position has slight higher activity. Dihalogenation in the aromatic ring only slightly increased antibacterial activity. In comparison to phenyl substitution, 4-methyl phenyl and 4-methoxy phenyl substituted derivatives were slightly more effective as antibacterial.

$Comparative antimicrobial activity of 1-(4-methyl sulfonylphenyl)-3-(1-phenyl-3-aryl 1h-pyrazol-4-yl)-2-propen-1-ones \ I_{a-h} \ (Minimum inhibition \ Concentration in \ \mu g/ml)$

Antibacterial activity (Zones of inhibition in mm)																
Compd.	ъ	S. pyogens MTCC-442							S. aureus MTCC-96							
No.	ĸ	5	10	25	50	100	250	500	5	10	25	50	100	250	500	
Ia	C ₆ H ₅	-	-	10	12	14	16	18	1	1	13	14	16	18	19	
Ib	$4-CH_3-C_6H_4$	-	-	11	13	15	17	18	1	1	13	15	15	16	18	
Ic	4-OCH ₃ -C ₆ H ₄	-	-	12	13	16	17	17	1	1	12	14	18	18	19	
Id	4-Cl-C ₆ H ₄	-	-	10	11	14	15	16	I	I	12	13	16	17	18	
Ie	4-Br-C ₆ H ₄	-	-	10	12	14	14	16	I	I	13	14	16	17	18	
If	$4-NO_2-C_6H_4$	-	-	11	13	14	15	17	1	1	12	13	15	16	17	
Ig	$3-NO_2-C_6H_4$	-	-	12	14	15	15	17	I	I	12	13	15	17	18	
Ih	2,4-Cl-C ₆ H ₃	-	-	10	12	14	14	15	-	-	11	14	16	17	19	
	Comparative activity of $(I_{a,b})$ with known chosen standard drugs															
Standard	drug	Antibacterial activity														
Ampicillin		11	13	14	16	18	19	20	10	12	13	14	16	18	21	
Chloramphenicol		10	12	13	19	20	20	22	12	13	14	19	20	21	22	
Ciprofloxacin		10	18	19	21	21	22	22	17	18	19	21	22	22	23	
Norfloxacin		18	18	19	20	21	21	23	19	20	22	25	26	28	28	

N.B. (-): No Activity

Comparative antimicrobial activity of 1-(4-methyl sulfonylphenyl)-3-(1-phenyl-3-aryl 1h-pyrazol-4-yl)-2-propen-1-ones I _{a-h} (Minimum
inhibition Concentration in µg/ml)

Antibacterial activity (Zones of inhibition in mm)																
Compd.	р	E. coli MTCC-443							P. areuginosa MTCC-1688							
No.	ĸ	5	10	25	50	100	250	500	5	10	25	50	100	250	500	
Ia	C ₆ H ₅	-	I	11	13	17	17	18	I	I	12	13	16	18	21	
Ib	$4-CH_3-C_6H_4$	-	1	14	15	16	18	19	1	1	11	12	14	17	20	
Ic	4-OCH ₃ -C ₆ H ₄	-	I	12	13	15	17	18	I	I	11	13	15	19	22	
Id	$4-Cl-C_6H_4$	-	I	13	14	15	17	19	I	I	12	13	14	18	21	
Ie	4-Br-C ₆ H ₄	-	I	14	15	17	18	19	I	I	13	13	14	17	20	
If	$4-NO_2-C_6H_4$	-	I	14	15	17	18	19	I	I	13	14	14	17	19	
Ig	3-NO2-C6H4	-	I	14	15	17	18	19	I	I	12	13	14	18	20	
Ih	2,4-Cl-C ₆ H ₃	-	-	13	14	17	19	20	-	-	12	14	15	19	21	
Comparative activity of (I _{a-b}) with known chosen standard drugs																
Standard	Antibacterial activity															
Ampicillin		14	14	15	16	19	20	22	14	14	15	15	18	20	23	
Chloramphenicol		14	15	17	23	23	23	23	14	16	17	18	19	21	22	
Ciprofloxacin		20	21	23	28	28	28	28	20	21	23	24	26	27	27	
Norfloxacin		22	23	25	26	27	29	29	18	19	19	21	23	23	25	

N.B. (-): No Activity

CONCLUSION

Eight pyrazole derivatives were synthesized and characterized for their possible structure. Spectra and chemical analyses supported the expected structural formula. These compounds were subjected to antibacterial screening. Overall, the antibacterial activities were less compared to the standard drugs. However, there are certain points which indicate that proper structure modification may lead to increased antibacterial activity.

REFERENCES

[1] K. C. Parmar, J. J Vora and S. B. Vasava, *Journal of Chemical and Pharmaceutical Reaserch*, **2014**, Vol-6, Issue-4, page-1259-1263.

[2] K. C. Parmar, J. J Vora and S. B. Vasava, *Journal of Chemical and Pharmaceutical Reaserch*, 2013, Vol-5, Issue-9, page-222-226.

[3] J. J Vora and S. B. Vasava, K. C. Parmar, S. K. Chauhan, S. S. Sharma, *E- Journal Of Chemistry*, 2009, 6(4), 1205-1210

[4] J. J. Vora, S. B. Vasava, S. K. Chauhan, K.C.Parmar, J. A. Patel and M.P. Brahmbhatt., *International Juornal of Chemical Science*, **7(1)**, **2009**, 405-414.

[5] D. M. Patel, Ph.D., Thesis-2009, Hem. North Gujarat University, Patan, Gujarat, India.

[6] Kulathooran S., Selvakumar B., and Dhamodaran M., Der Pharma Chemica, 2014, 6(3):240-249

[7] N.V Kavitha, Kalpana Divekar, Brahmani Priyadarsh, S. Gajanan. M. Manjunath, *Der Pharma Chemica*, **2011**, 3 (4):55-62

[8] Monica Kachroo, Rakesh Panda and Yadavendra Yadav, Der Pharma Chemica, 2014, 6(2):352-359

[9] C. G.Darshan Raj, B. K.Sarojini, E. S. Sindhu Priya, M T. H. Khan, *Der Pharma Chemica*, **2013**, 5(3):305-317 [10]