Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2015, 7(11):294-298 (*http://derpharmachemica.com/archive.html*)

ISSN 0975-413X CODEN (USA): PCHHAX

Chemical constituents of Cycas wadei

Consolacion Y. Ragasa^{1,2*}, Vincent Antonio S. Ng¹, Esperanza Maribel G. Agoo³ and Chien-Chang Shen⁴

¹Chemistry Department, De La Salle University 2401 Taft Avenue, Manila 1004, Philippines ²Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Binan City, Laguna 4024, Philippines ³Biology Department, De La Salle University 2401 Taft Avenue, Manila 1004, Philippines ⁴National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Li-Nong St., Sec. 2, Taipei

112, Taiwan

ABSTRACT

Chemical investigation of the dichloromethane extract of Cycas wadei, a plant endemic to the Philippines, led to the isolation of δ -tocopherol (1), β -sitosterol (2), β -sitosteryl fatty acid ester (3), triacylglycerol (4) from the megasporophyll lamina; 2, trilinolein (5), a mixture of linoleic acid and oleic acid, and hydrocarbons from the sarcotesta; 2, chlorophyll a (6), fatty alcohol, and hydrocarbons from the leaflets; a mixture of 2 and stigmasterol (7), squalene (8), and fatty alcohol from the petiole and rachis; 2 and 4 from the endotesta; 3 and 4 from the sclerotesta; and a mixture of 2 and 7, 8 and fatty alcohol from the roots of Cycas wadei. The structures of these compoundswereidentified by comparison of their NMR data with literature data.

Keywords: *Cycas wadei*, Cycadaceae, δ -tocopherol, β -sitosterol, β -sitosteryl fatty acid ester, triacylglycerol, trilinolein, chlorophyll a, stigmasterol, squalene

INTRODUCTION

Cycas, the only currently known genus of the Family Cycadaceae, are considered as fossil plants though they may have evolved only about 12 million years ago [1]. The cycads resemble palms in morphology and are commonly called sago palm. These are widely distributed in the Tropics, with species found in Asia, Africa, Southeast Asia, Pacific, and Australia [2]. They also grow on volcanic, limestone, ultramafic, sandy, or even water-logged soils in grassland and forest habitats [3]. Ten out of the eleven cycad species in the Philippines are endemic.

There are no reported chemical and biological activity studies on *C. wadei*. The most studied *Cycas* are *Cycas revoluta* and *C. circinalis* whichcontain the carcinogenic toxin cycasin [4, 5]. The methanolic extract of the leaflets of *C. circinalis* L. and the chloroform extract of *C. revoluta* yielded biflavonoids, lignans, flavan-3-ols, flavone-C-glucosides, nor-isoprenoids, and a flavanone. Three of the biflavonoids exhibited moderate activity against *S. aureus* and methicillin-resistant *S. aureus* [6]. Further studies on the chemical constituents of the leaves of *C. revoluta* and *C. circinalis* afforded lariciresinol, naringenin and biflavonoids which are derivatives of amentoflavone and hinokiflavone [7].

Consolacion Y. Ragasa et al

There are no reported chemical and biological activity studies on *C. wadei*. However, a number of studies have been reported on the chemical constituents of other indigenous Philippine Cycas. We earlier reported the chemical constituents of the different parts of *C. sancti-lasallei*[8-11], *C. vespertilio*[12, 13], *C. zambalensis*[14], *C. lacrimans*[15-17], *C. aenigma*[18, 19], *C. edentata*[20, 21], *C. riumimiana* [22], *C. curranii* [23], and *C. nitida*[24].

We report herein the isolation of δ -tocopherol (1), β -sitosterol (2), β -sitosteryl fatty acid ester (3), and triacylglycerol (4)from the megasporophyll lamina; 2, trilinolein (5), fatty acids, and hydrocarbons from the sarcotesta; 2, chlorophyll a (6), fatty alcohol, and hydrocarbons from the leaflets; a mixture of 2 and stigmasterol (7),squalene (8), and fatty alcohol from the petiole and rachis; 2 and 4 from the endotesta; 3 and 4 from the sclerotesta; and a mixture of 2 and 7, 8 and fatty alcohol from the roots of *Cycas wadei*. The structures of 1-8 are presented in Fig. 1. This is the first report on the isolation of these compounds from *C. wadei*.

Fig. 1. Chemical structures of δ-tocopherol (1), β-sitosterol (2), β-sitosteryl fatty acid ester (3), triacylglycerol (4), trilinolein (5), chlorophyll a (6), stigmasterol (7), andsqualene (8) from *C. wadei*

MATERIALS AND METHODS

General Isolation Procedure

NMR spectra were recorded on a Varian VNMRSspectrometer in CDCl₃ at 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR spectra. Column chromatography was performed withsilica gel 60 (70-230 mesh). Thin layer

chromatography was performed with plastic backed plates coated with silica gel F_{254} and the plates were visualized by spraying with vanillin/H₂SO₄solution followed by warming.

Sample Collection

The megasporophyll lamina, sarcotesta, leaflets, of *Cycas wadei*were collected in 2014. Voucher specimens were collected and authenticated by one of the authors (EMGA) and deposited in the De La Salle University-Manila Herbarium (DLSUH 3115).

Isolation of the Chemical Constituents of the Megasporophyll Lamina

The air-dried megasporophyll lamina of *C. wadei*(70 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (0.5 g) which was chromatographed using increasing proportionsofacetone in CH₂Cl₂ at 10% increment. The CH₂Cl₂ fraction was rechromatographed using 1% EtOAc in petroleum ether to yield **3** (3 mg). The 20% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 2.5% EtOAc in petroleum ether. The less polar fractions were combined and rechromatographed (3 ×) using 7.5% EtOAc in petroleum ether to yield **1**(2 mg) after washing with petroleum ether. The 30% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 7.5% EtOAc in petroleum ether to yield **1**(2 mg) after washing with petroleum ether.

Isolation of the Chemical Constituents of the Sarcotesta

The air-dried sarcotesta of *C. wadei*(164.2 g) were ground in a blender, soaked in CH_2Cl_2 for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (2.1 g) which was chromatographed using increasing proportionsofacetone in CH_2Cl_2 at 10% increment. The CH_2Cl_2 fraction was rechromatographed (2 ×) using petroleum ether to afford hydrocarbons (10 mg) after washing with petroleum ether. The 10% acetone in CH_2Cl_2 fraction was rechromatographed (3 ×) in 2.5% EtOAc in petroleum ether to yield **5** (8 mg). The 40% acetone in CH_2Cl_2 fraction was rechromatographed in 15% EtOAc in petroleum ether to afford **2** (4 mg) after washing with petroleum ether. The 60% acetone in CH_2Cl_2 fraction was rechromatographed using $CH_3CN:Et_2O:CH_2Cl_2$ (2.5:2.5:5 by volume) to afford a mixture of linoleic acid and oleic acid (6 mg) after washing with petroleum ether.

Isolation of the Chemical Constituents of the Leaflets

The air-dried leaflets of *C. wadei*(210 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (3.3 g) which was chromatographed using increasing proportionsofacetone in CH₂Cl₂ at 10% increment. The CH₂Cl₂ fraction was rechromatographed (2 ×) using petroleum ether to afford hydrocarbons(10 mg) after washing with petroleum ether. The 10% acetone in CH₂Cl₂ fraction was rechromatographed in 5% EtOAc in petroleum ether to yield fatty alcohol (7 mg). The 30% acetone in CH₂Cl₂ fraction was rechromatographed using 15% EtOAc in petroleum ether. The less polar fractions were combined and rechromatographed (3 ×) using 15% EtOAc in petroleum ether to yield **2** (5 mg) after washing with petroleum ether. The more polar fractions were combined and rechromatographed (2 ×) using CH₂Cl₂toafford **6**(6 mg) after washing with petroleum ether, followed by Et₂O.

Isolation of the Chemical Constituents of the Petiole and Rachis

The air-dried petiole and rachis of *C. wadei*(50.5 g) were ground in a blender, soaked in CH_2Cl_2 for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (0.35 g) which was chromatographed using increasing proportionsofacetone in CH_2Cl_2 at 10% increment. The CH_2Cl_2 fraction was rechromatographed (2 ×) using petroleum ether to afford **8** (3 mg). The 20% acetone in CH_2Cl_2 fraction was rechromatographed (2 ×) using 5% EtOAc in petroleum ether to yield fatty alcohol (5 mg). The 40% acetone in CH_2Cl_2 fraction was rechromatographed in 15% EtOAc in petroleum ether to afford a mixture of **2** and **7** (7 mg) after washing with petroleum ether.

Isolation of the Chemical Constituents of the Endotesta

The air-dried endotesta of *C. wadei*(141 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (0.3 g) which was chromatographed using increasing proportionsofacetone in CH₂Cl₂ at 10% increment. The 20% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 2.5% EtOAc in petroleum ether to afford **4**(5 mg). The 40% acetone in CH₂Cl₂fraction was rechromatographed (2 ×) using 15% EtOAc in petroleum ether to afford **2** (4 mg) after washing with petroleum ether.

Consolacion Y. Ragasa et al

Isolation of the Chemical Constituents of the Sclerotesta

The air-dried sclerotesta of *C. wadei*(159.3 g) were ground in a blender, soaked in CH_2Cl_2 for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (0.15 g) which was chromatographed using increasing proportionsofacetone in CH_2Cl_2 at 10% increment. The CH_2Cl_2 fraction was rechromatographed (2 ×) using 1% EtOAc in petroleum ether to afford **3**(2 mg). The 20% acetone in CH_2Cl_2 fraction was rechromatographed (3 ×) using 2.5% EtOAc in petroleum ether to afford **4**(4 mg).

Isolation of the Chemical Constituents of the Roots

The air-dried roots of *C. wadei*(15.5 g) were ground in a blender, soaked in CH_2Cl_2 for 3 days and then filtered. Thesolvent was evaporated under vacuum to afford a crude extract (0.45 g) which was chromatographed using increasing proportionsofacetone in CH_2Cl_2 at 10% increment. The CH_2Cl_2 fraction was rechromatographed (2 ×) using petroleum ether to afford **8** (4 mg). The 20% acetone in CH_2Cl_2 fraction was rechromatographed (3 ×) using 5% EtOAc in petroleum ether to yield fatty alcohol (2 mg). The 40% acetone in CH_2Cl_2 fraction was rechromatographed (3 ×) in 15% EtOAc in petroleum ether to afford a mixture of **2** and **7** (5 mg) after washing with petroleum ether.

δ-Tocopherol (1): ¹H NMR (600 MHz, CDCl₃): δ 6.36 (d, *J* = 3 Hz, H-3), 6.45 (d, *J* =2.4 Hz, H-5), 2.10 (s, 6-CH₃), 2.67 (dd, J = 6.6, 12 Hz, H₂-1'), 1.76, 1.70(H₂-2'), 0.85 (d, *J* = 6.6 Hz, CH₃-16'), 1.25 (s, CH₃-17'),0.83 (d, *J* = 6.6 Hz, CH₃-18'), 0.82 (d, *J* = 6.6 Hz, CH₃-19'), 0.87 (d, *J* = 6.6 Hz, CH₃-20'), 4.19 (s, 4-OH); ¹³C NMR (150 MHz, CDCl₃): δ 146.06 (C-1), 121.29 (C-2), 112.54 (C-3), 147.64 (C-4), 115.57 (C-5), 127.35 (C-6), 16.05 (6-CH₃), 22.51 (C-1'), 31.31 (C-2'), 75.56 (C-3'), 39.93 (C-4'),20.97 (C-5'), 37.44 (C-6'), 32.68 (C-7'), 37.44 (C-8'), 24.43 (C-9'), 37.27 (C-10'), 32.79 (C-11'), 37.41 (C-12'), 24.79 (C-13'), 39.36 (C-14'), 27.97 (C-15'), 22.62 (C-16'), 24.10 (C-17'), 19.64, 19.74 (C-18', C-19'), 22.71 (C-20').

RESULTS AND DISCUSSION

Silica gel chromatography of the dichloromethane extract of of *Cycas wadei*, a plant endemic to the Philippines, led to the isolation of δ -tocopherol (1) [25], β -sitosterol (2) [26], β -sitosteryl fatty acid ester (3) [27], triacylglycerol (4) [28] from the megasporophyll lamina; 2, trilinolein (5) [29], a mixture of linoleic acid [30] and oleic acid [31], and hydrocarbons [32] from the sarcotesta; 2, chlorophyll a (6) [33], fatty alcohol [34], and hydrocarbons from the leaflets; a mixture of 2 and stigmasterol (7) [26],squalene (8) [35], and fatty alcohol from the petiole and rachis; 2 and 4 from the endotesta; 3 and 4 from the sclerotesta; and a mixture of 2 and 7, 8 and fatty alcohol from the roots of *Cycas wadei*. The structures of these compoundswere identified by comparison of their NMR data with those reported in the literature.

The major chemical constituent of the different parts of *C. wadei* is β -sitosterol (2) which is found in the megasporophyll lamina, sarcotesta, leaflets, petiole and rachis, endotesta, and roots of *C. wadei*, while δ -tocopherol (1) was found only in the megasporophyll lamina. Sterol 2 is also the major chemical constituent of the different parts of *C. sancti-lasallei* [8-11], *C. vespertilio* [12, 13], *C. zambalensis* [14], *C. lacrimans* [15-17], *C. aenigma* [18, 19], and *C. edentata* [20, 21], *C. riumimiana* [22], *C. curranii* [23], and *C. nitida* [24].On the other hand, 1 was found only in *C. wadei*, while α -tocopherol, an analogue of 1 was isolated only from *C. ruminiana* [22]. Both δ -and α -tocopherols are natural tocopherols which are components of vitamin E with strong antioxidant property [36].

Acknowledgement

A research grant from the Commission on Higher Education–Philippine Higher Education Research Network (CHED–PHERNet) of the Philippines is gratefully acknowledged.

REFERENCES

[1] N. S. Nagalingum, C. R. Marshal, T. B. Quental, H. S. Tai, D. P. Little, S. Matthews, *Science*, **2011**, 334, 796–799.

[2] J. S. Donaldson, Cycads. Status survey and conservation action plan. IUCN Gland, Switzerland and Cambridge, U.K.**2003**.

[3] D. A. Madulid, E. M. G. Agoo, *Blumea*, **2009**, 54, 99–102.

[5] G. L. Laqueur, O. Mickelsen, M. G. Whiting, L. T. Kurlad, J. Natl. Cancer Inst., 1963, 31, 919–951.

^[4] K. Nishida, A. Kobayashi, T. Nagahama, Bull. Agric. Chem. Soc. Japan, 1955, 19, 77-84.

[6] A. Moawad, M.Hetta, J. K.Zjawiony, M. R.Jacob, M.Hifnawy, J. P.Marais, D.Ferreira, Planta Med., 2010,76, 796-802.

[7] D. Ferreira, J. K. Zjawiony, A. Moawad, M. Hifnawy, M. Hetta, Planta Med., 2009, 75, P-53.

[8] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, J. Appl. Pharm. Sci., 2015, 5(Suppl. 1), 12-17.

[9] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Der Pharma Chemica, 2015, 7(7), 373-376.

- [10] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Der Pharmacia Lettre, 2015, 7(9), 168-171.
- [11] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Int. J. Pharmacog. Phytochem. Res., 2015, 7(5).

[12] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Braz. J. Pharmacog., 2015, 25, 526-528.

[13] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Int. J. Pharmacog. Phytochem. Res., 2015, 7(4), 727-731.

[14] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C.Shen, Chem. Nat. Compd., 2016, 52(1),

[15] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Int. J. Pharmacog. Phytochem. Res., 2015, 7(3), 616-620.

[16] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Int. J. Pharm. Clin. Res., 2015, 7(5), 356-359.

[17] C. Y. Ragasa, V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, Int. J. Toxicol. Pharmacol. Res., 2015, 7.

[18]V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, J. Appl. Pharm. Sci., 2015, 5(9), 32-36.

[19] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Res. J. Pharm. Biol. Chem. Sci., 2015, 6(6), 267-270.

[20] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, *J. Pharm. Sci. Res.*, **2015**, 7(9),643–646.
[21] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, *Int. J. Pharm. Sci. Rev. Res.*, **2015**, 33(2), 107–109.

- [22] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Der Pharma Chemica, 2015, 7(10), 485–489.
- [23] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Int. J. Pharm. Clin. Res., 2015, 7(6).

[24] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, Res. J. Pharm. Biol. Chem. Sci., 2015, 6(6), 1305–1309.

[25] J. K. Baker, C. W. Myers, Pharm. Res., 1991, 8(6), 763-770.

[26] C. Y. Ragasa, V. Ebajo Jr., V. A. S. Ng, M. M. De Los Reyes, C.-C. Shen, Der Pharma Chemica, 2014, 6(6), 366-373.

[27] V. A. S. Ng, E. M. G. Agoo, C.-C. Shen, C. Y. Ragasa, J. Appl. Pharm. Sci., 2015, 5(Suppl 1), 12-17.

[28] C. Y. Ragasa, J. L. Caro, C.-C. Shen. J. Appl. Pharm. Sci., 2014, 4(10), 7-11.

[29] L. B. Alemany, Chem. Phys. Lipids, 2002,120, 33-44.

[30] Human Metabolome Database. Linoleic acid. Downloaded from http://www.hmdb.ca/spectra/ nmr_one_d/1471 on Nov. 27, 2013.

[31] C. Y. Ragasa, O. B. Torres, J. M. P. Gutierrez, H. P. B. C. Kristiansen, C.-C. Shen, J. Appl. Pharm. Sci., 2015, 5(4), 94–100.

[32] C. Y. Ragasa, V. D. Ebajo Jr., N. Lazaro-Llanos, R. Brkljača, S. Urban, Der Pharma Chemica, 2015. 7(10), 473-478.

[33] C. Y. Ragasa, V. D. Ebajo Jr., M. M.De Los Reyes, E. H. Mandia, M. C. S. Tan, R. Brkljača, S. Urban, J. Appl. Pharm. Sci., 2015, 5(Suppl.2), 16-21.

[34] C. Y. Ragasa, M. P. Medecilo, C.-C. Shen, Der Pharma Chemica, 2015, 7(7), 395-399.

[35] P.-W. Tsai, K. de Castro-Cruz, C.-C. Shen, C. Y. Ragasa, Pharm. Chem. J., 2012, 46(4), 225–227.

Biological and antioxidant activities of tocopherols. Downloaded from [36] www.rikenvitamin.com/foodingredients/tocopherol/property.html on November 8, 2015.