Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2010, 2(6): 134-138 (http://derpharmachemica.com/archive.html)

Composition of the essential oil of *Achillea filipendulina* Lam. from Tajikistan

Farukh S. Sharopov^a and William N Setzer*^b

^aV.I.Nikitin Institute of Chemistry, Tajik Academy of Sciences, Ainy St. 299/2, Dushanbe, 734063, Tajikistan ^bDepartment of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

ABSTRACT

Achillea filipendulina Lam. was collected from two different sites in south-central Tajikistan. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. A total of 51 compounds were identified representing 99.0 and 98.8% of total oil compositions. The major components of A. filipendulina oil were santolina alcohol (43.6-46.3%), 1,8-cineole (8.8-11.4%), borneol (5.3-6.0%), isoborneol (4.8-5.4%), and cischrysanthenyl acetate (6.5-9.3%).

Keywords: Santolina alcohol, 1,8-cineole, *Achillea filipendulina*, essential oil composition, Tajikistan, GC-MS

INTRODUCTION

There are around 115 species in the genus *Achillea* (Asteraceae) distributed mainly in Eurasia [1], seven of have been recognized in Tajikistan. *Achillea filipendulina* Lam. is distributed in Central Asia, the Caucasus and Iran [2]. This plant, locally named "buimodaron", grows 40-120 cm and flowers from June to September, and has been used since ancient times in traditional herbal medicines for a variety of ailments [3,4]. Decoctions of *A. filipendulina* have been used to treat sciatica, gout, arthritis, gastrointestinal disturbances, congestion, cardiovascular diseases, and malaria, as well as a diuretic, anthelmintic and purgative. Externally, the plant has been used to treat scabies and wounds.

In previous reports, the essential oil of *A. filipendulina* from Kazakhstan was composed largely of santolina alcohol (29.0%), borneol (27.8%), 1,8-cineole (19.1%), and bornyl acetate (8.1%) [5], while samples from Iran were dominated by santolina alcohol (43.6-47.8%) with lesser amounts of 1,8-cineole (4.1-8.1%) and borneol (3.9-9.1%) [6]. Rahimmalek and co-workers have reported two samples of *A. filipendulina* essential oils to contain 2,7-dimethyl-4(*E*),6-octadien-2-ol (23.4-24.1%, but this compound is most likely santolina alcohol), borneol (7.9-8.3%), bornyl acetate (11.6-14.7%), germacrene D (11.8-23.4%), and only small amounts of 1,8-cineole (0.2-1.7%) [7]. The floral essential oil from Iran, on the other hand, was dominated by limonene (26.7%), carvacrol (9.3%), 1,8-cineole (8.7%), borneol (7.8%), and α -humulene (5.6%) [8]. In this report, we present the essential oil composition of two samples collected from different sites of south-central Tajikistan.

MATERIALS AND METHODS

Plant Material: Aerial parts of *A. filipendulina* were collected from the two regions of Tajikistan: Sample #1, the Khonaobod village, Muminobod region (38.107547 N, 69.966431 E, 1200 m above sea level), on 7 May 2010; Sample #2, the Chormaghzak village, Yovon region, (38.417502 N, 69.172175 E, 1300 m above sea level), on 25 July 2010. The plant was identified by F.S. Sharopov, and a voucher specimen (TJ2010-032) has been deposited in the herbarium of the Chemistry Institute of the Tajikistan Academy of Sciences. The air-dried samples were crushed and hydrodistilled for 3 h to give the yellow essential oils, 0.5-0.75% yield.

Gas Chromatographic-Mass Spectral Analysis: A gas chromatographic-mass spectral analysis was performed on the essential oils of A. filipendulina using an Agilent 6890 GC with Agilent 5973 mass selective detector (EIMS, electron energy = 70 eV, scan range = 45-400 amu, and scan rate = 3.99 scans/s), and a fused silica capillary column (HP 5 ms, 30 m x 0.25 mm) coated with 5% phenyl-polymethylsiloxane (0.25 µm phase thickness). The carrier gas was helium with a flow rate of 1 mL/min, and the injection temperature was 200°C. The oven temperature was programmed to initially hold for 10 minutes at 40°C, then ramp to 200°C at 3°C/min and finally to 220°C at 2°C/min. The interface temperature was 280°C. A 1% w/v solution of each sample in CH_2Cl_2 was prepared, and 1 μL was injected using a splitless injection technique. Identification of the oil components was based on their retention indices determined by reference to a homologous series of *n*-alkanes, and by comparison of their mass spectral fragmentation patterns with those reported in the literature [15], and stored on the MS library [NIST database (G1036A revision D.01.00)/ChemStation data system (G1701CA, version C.00.01.080)]. The percentages of each component are reported as raw percentages based on total ion current without standardization. The chemical compositions of the A. filipendulina oils are summarized in Table 1.

RESULTS AND DISCUSSION

A. filipendulina Lam. was collected from two different areas in south-central Tajikistan, and the essential oils obtained by hydrodistillation. The chemical compositions of the oils were determined by GC-MS (see Table 1). A total of 51 compounds were identified representing 99.0% and 98.8% of the two samples, respectively. The major components of *A. filipendulina* oil from this present work were santolina alcohol (46.3% and 43.6%), 1,8-cineole (8.8% and

William N Setzer *et al*

11.4%), borneol (5.3% and 6.0%), isoborneol (4.8% and 5.4%), *cis*-chrysanthenyl acetate (6.5% and 9.3%), camphor (3.6% and 0.6%), and ascaridole (1.6% and 2.5%). These results are qualitatively consistent with those previously reported by Sadyrbekov *et al.* [5], Mosayebi *et al.* [6], and, probably, Rahimmalek *et al.* [7].

RI^{a}	Compound	Percent Co	Percent Composition		
	Compound	Sample #1	Sample #2		
906	Santolina triene	1.3	0.9		
941	α-Pinene	1.0	0.8		
953	Camphene	0.9	1.1		
976	Sabinene	0.3	0.1		
978	β-Pinene	0.5	0.7		
992	Myrcene	0.9	0.2		
1002	Yomogi alcohol	0.2	0.3		
1004	α-Phellandrene	0.2			
1016	α-Terpinene	1.0	0.3		
1024	<i>p</i> -Cymene	1.3	1.8		
1032	1,8-Cineole	8.8	11.4		
1040	Santolina alcohol	46.3	43.6		
1059	γ-Terpinene	0.6			
1060	Bergamal		0.6		
1067	cis-Sabinene hydrate	0.5	0.2		
1071	Unidentified	0.4	0.5		
1084	Artemisia alcohol	0.3	0.4		
1088	Terpinolene	0.1	0.1		
1097	trans-Sabinene hydrate	0.6	0.4		
1101	Isopentyl 2-methylbutanoate		0.1		
1105	α-Thujone	1.0	1.1		
1116	β-Thujone	1.1	0.2		
1121	cis-p-Menth-2-en-1-ol	0.2	0.2		
1126	α-Campholenal	0.1	0.4		
1137	trans-Pinocarveol	0.3	0.6		
1140	trans-p-Menth-2-en-1-ol	0.1	0.1		
1143	Camphor	3.6	0.6		
1153	Menthone	0.1			
1161	Pinocarvone		0.8		
1165	Isoborneol	4.8	5.4		
1167	Borneol	5.3	6.0		
1174	cis-Pinocamphone	0.4	0.6		
1177	Terpinen-4-ol	1.6	1.0		
1184	<i>p</i> -Cymen-8-ol	0.1	0.1		
1190	α-Terpineol	0.7	0.2		
1195	Myrtenol	0.2	0.4		
1206	trans-Piperitol	0.1	0.1		
1217	trans-Carveol	0.1	0.1		
1225	Isobornyl formate		0.1		
1227	Nerol		0.1		
1236	Ascaridole	1.6	2.5		
1240	Unidentified	0.6	0.7		

Table 1.	Composition	of Achillea	filipendulina	Lam.	essential	oil from	Tajikistan.
----------	-------------	-------------	---------------	------	-----------	----------	-------------

www.scholarsresearchlibrary.com

William N Setzer et al

1254	in Dimenitence energiale	0.3	0.2
1254	cis-Piperitone epoxide	0.3	0.2
1257	trans-Piperitone epoxide		0.2
1263	cis-Chrysanthenyl acetate	6.5	9.3
1268	trans-Ascaridol glycol	0.3	0.2
1285	Isobornyl acetate	3.0	2.9
1291	Thymol	0.3	0.1
1300	Carvacrol	0.3	0.2
1365	Neryl acetate	0.2	0.5
1392	β-Elemene	0.1	
1418	(E)-Caryophyllene	0.1	
1481	Germacrene D	0.2	0.2
	Total identified	99.0	98.8
	Monoterpene hydrocarbons	8.0	6.0
	Oxygenated monoterpenoids	89.2	91.2
	Sesquiterpene hydrocarbons	0.3	0.2
	Others	1.5	1.2

^{*a}</sup>RI = "Retention Index", determined in reference to a homologous series of n-alkanes on an HP-5ms column.*</sup>

The high concentrations of santolina alcohol, 1,8-cineole, and borneol in *A. filipendulina* as revealed in this study and previous works likely account for the traditional uses of this plant for treatment of infections, inflammation, etc. Santolina alcohol [9], 1,8-cineole [10], and borneol [11,12] have shown antimicrobial effects. Additionally, 1,8-cineole [13] and borneol [14] have shown synergistic effects, likely due to penetration enhancement.

Acknowledgments

FSS is grateful to the Fulbright Program for a generous research travel grant. WNS is grateful to an anonymous private donor for the gift of the GC-MS instrumentation. We thank Bernhard Vogler for technical assistance with GC-MS measurements.

REFERENCES

[1] D.J. Mabberly; The Plant-Book, 2nd Ed, Cambridge University Press, UK, **1987**, pp 6-7.

[2] L.N. Abdusalyamova, E.P. Djogoleva, V.I. Zapryagaeva, V.V. Karimov, G.K. Kinzkaeva,

T.F. Kochkareva, M.R. Rasulova, N.S. Filatova, A.P. Chukavina, B.G. Sharipova, S.Y.

Yunusov; Flora of SSR of Tajikistan, part IX, Nauka, Leningrad, USSR, **1988**, pp 342-351.

[3] M. Hojimatov; Wild Medicinal Plants in Tajikistan, Irfon, Dushanbe, Tajikistan, 1989, p 368.

[4] N. Kobilov; Medicinal Plants of Tajikistan, Tajik State Press, Dushanbe, Tajikistan, **1962**, p.50.

[5] D.T. Sadyrbekov, E.M. Suleimenov, E.V. Tikhonova, G.A. Atazhanova, A.V. Tkachev, S.M. Adekenov; *Chem. Nat. Comp.*, **2006**, 42, 294-297.

[6] M. Mosayebi, G. Amin, H. Arzani, H. Azarnivand, M. Maleki, A. Shafaghat; *Asian J. Plant Sci.*, **2008**, 7, 779-781.

[7] M. Rahimmalek, B.E.S. Tabatabaei, N. Etemadi, S.A.H. Goli, A. Arzani, H. Zeinali; *Ind. Crops Prod.*, **2009**, 29, 348-355.

[8] K. Jaimand, M.B. Rezaee; J. Essent. Oil Res., 2001, 13, 354–356.

[9] J. Yashphe, R. Segal, A. Breuer, G. Erdreich-Naftali; J. Pharm. Sci., 1979, 68, 924-925.

[10] S. Pattnaik, V.R. Subramanyam, M. Bapaji, C.R. Kole; *Microbios*, 1997, 89, 39-46.

[11] N. Tabanca, N. Kirimer, B. Demirci, F. Demirci, K.H.C. Başer; *J. Agric. Food Chem.*, **2001**, 49, 4300-4303.

[12] A. Mourey, N. Canillac; Food Control, 2002, 13, 289-292.

[13] A. Viljoen, S. van Vuuren, E. Ernst, M. Klepser, B. Demirci, H. Başer, B.E. van Wyk; J. *Ethnopharmacol.*, **2003**, 88, 137-143.

[14] J.P. Dai, J. Chen, Y.F. Bei, B.X. Han, S. Wang; *J. Oral Pathol. Med.*, 2009, 38, 276-281.
[15] R.P. Adams; Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed., Allured Publishing, Carol Stream, Illinois, 2007.