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ABSTRACT

The detrimental missense mutations of HLA-B27 gene causing Ankylosing spondylitis were identified
computationally and the substrate binding efficiencies of these mutations were analyzed. Out of 12 variants, |-
Mutant 3.0, SSIFT and PolyPhen programs identified 1 variant (Y83H) that was less stable, deleterious as well as
damaging respectively. Modeling of this one variant was performed to understand the changes in their
conformations with respect to the native HLA-B27 protein by computing their RMSD and Total energy. Furthermore
the native and the variant were docked with beta-microglobulin to explain the binding efficiencies of those
detrimental missense mutations.
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INTRODUCTION

Ankylosing spondylitis (AS) is a chronic inflammati of the sacroiliac joints, spine and periphecahts. The
development of ankylosing spondylitis is still ueat. Genetics factors such as human leukocyte eartigA-
B27 andERAP1 have been widely reported to associate to AS gtibdéy [1]. HLA-B27 is present in 90-95 % of
patients with ankylosing spondylitis [2]. Human keayte Antigen (HLA) B27 is a class | surface aetigencoded
by the B locus in the major histocompatibility cdep(MHC) onchromosome 6 and presents
antigenic peptides (derived from self and non-seiftigens) to T cells. HLA-B27 is strongly assodiate
with ankylosing spondylitis (AS), and other asstaiainflammatory diseases referred to as spondyiagyathies.
Psoriatic arthritis is classified within the spolahrthritis. It is defined as a chronic inflammatadisease of
synovial joints associated with psoriasis and ugufleumatoid factor negative [3]. In 1977 a groafppsoriatic
patients positive for HLA-B27 who were at increasesk of developing axial and peripheral arthritigluding
distal interphalangeal involvement was describéd [2

Each individual possesses unique characteristitectieg their genotype. For example, almost akleotide bases
(99.9%) are exactly the same in all people; howetle remaining 0.1% account for ~1.4 million indival-
specific differences (single nucleotide polymorphmisSNP) that occur in humans. Single nucleotidgmolphisms
are a common type of genetic variation, descriliihgnges in a single DNA building block, called matide.
These differences may be within the coding or nudtirgy regions of DNA and may or may not resultimrzo acid
changes, which, in turn, can either be harmlesissrase causing [4]. The effects caused by nsShiPbe broadly
grouped into four distinctive categories [5] (altigh the effects may be mutually dependent) depgndinwhat
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type of system or process have been affected b{RsSL) protein folding, stability, flexibility, ahaggregation; 2)
functional sites, reaction kinetics, and dependencéhe environmental parameters, such as pHesaftentration,
and temperature; 3) protein expression and subaeliocalization; and 4) protein-small moleculeptgin-protein,
protein-DNA, and protein-membrane interactions [6].

However, the goals of our study are to computatignavestigate: 1) the possibility that diseaseisiag and
harmless nsSNPs affect protein-protein interactiifierently and 2) to reveal the basic principtéghe effects of
naturally occurring interfacial nsSNPs on proteintpin interactions. The rationale behind our apphois that any
mis-sense mutation of amino acid could somehowcaffee binding energy, stability and energy of pinetein and
even harmless nsSNPs can also cause dramatic shamgjee phenotype resulting in natural differenaesong
individuals.

MATERIALS AND METHODS

2.1 Datasets

The protein sequence and variants (single amirsh @aymorphisms/missense mutations/point mutatiofsjLA-
B27 were obtained from the Swissprot database aheailat http://www.expasy.ch/sprot/. The subsectibeach
Swissprot entry provided information on polymorphiariants, some of which polymorphic variants midpet
disease(s) - associated by causing defects ines gikotein; most of them were nsSNPs (non-synongnSNPs) in
the gene sequence and SAPs (single amino acid pghyisms) in the protein sequence [7][8][9]. The Gartesian
coordinates of HLA-B27 protein and its complex weteained from Protein Data Bank with PDB IDs 2B30]
for in silico mutation modeling and docking studiesed on detrimental point mutants.

2.2 Predicting Stability Changes caused by SAPs mgj Support Vector Machine (IMutant3.0)

I-Mutant, a suite of Support Vector Machine baseedjttors integrated in an unique web server. férefl the
opportunity to predict automatically protein stélilchanges upon single- site mutations startirgmfrprotein
sequence alone or protein structure when availaldlereover it provided the possibility to predict rhan
deleterious Single Nucleotide Polymorphism starfiregn the protein sequence alone. Users could éhaasong
three different predictors:

» The first was a SVM based predictor for proteirbsity changes upon single point protein mutatiterting from
structural informations.

» The second one was a SVM based predictors for ipretability changes upon single point protein rtiota
starting from sequence informations |-MutafihG.

» The third one was a SVM based predictor for humatetrious Single Nucleotide Polymorphism starfirgn
sequence informations I-Mutant-Disease.

2.3 Analysis of Functional Consequences of Point Mations by a Sequence Homology-Based Method (SIFT)
We used the program SIFT [11] available at httpgks.fhcrc.org/sift/SIFT.html, which specificallgetected
deleterious single amino acid polymorphisms. SI&Tsequence homology-based tool presumed that iergort
amino acids would be conserved in a protein fantiyrefore, changes at well-conserved positiond tenbe
predicted as deleterious [12]. Queries were subthitt the form of protein sequences. SIFT took ergjsequence
and used multiple alignment information to predaierated and deleterious substitutions for eversitpn of the
guery sequence. SIFT being a multistep proceduse fbr given a protein sequence, (a) searchedsifoilar
sequences, (b) chooses closely related sequenaesmty share similar function, (c) obtained the tipld
alignments of these chosen sequences, and (d)latgidunormalized probabilities for all possible stitlitions at
each position from the alignment. Substitutiongath position with normalized probabilities lesartta chosen
cutoff were predicted to be deleterious and thasatgr than or equal to the cutoff were predictetid tolerated.
The cutoff value in SIFT program was a tolerancdein of > 0.05. The higher the tolerance index, the less
functional impact a particular amino acid subsiitaitwould be likely to have.

2.4 Simulation for Functional Change in a Point Muént by Structure Homology- Based Method (PolyPhen)

Analyzing the damage caused by point mutationkestructural level was considered very importaniriderstand
the functional activity of the protein. We used swver PolyPhen [13] available at http:/coot.ed@PolyPhen/.
Input options for the PolyPhen server were prosgiquence, SWALL database ID or accession numbgether
with the sequence position of two amino acid vasamhe query was submitted in the form of a prossgquence
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with a mutational position and two amino acid vatg& Sequence-based characterization of the sutixstitsite,
profile analysis of homologous sequences, and mappi the substitution site to known protein 3Dustures were
the parameters taken into account by PolyPhen sdovecalculate the score. It calculated positionesfic

independent counts (PSIC) scores for each of tbevexiants and then computed the PSIC score difeerbetween
them. The higher the PSIC score difference, théédrighe functional impact a particular amino acithstitution

would be likely to have.

2.5 Modeling Single Amino Acid Polymorphism Locati@ on Protein Structure to Compute Total Energy and
RMSD

Structural analysis was performed for computing ttital energy and evaluating the structural destathetween
native type and mutant types by means of RMSD (Rée#in square Deviation). We used the web resounateiR
Data Bank and Single Amino Acid Polymorphism dass¢SAAPdb) [14] to identify the 3D structure of AHB27

protein. We also confirmed the mutation positiord dhe mutated residue in PDB ID 2BST. The mutatias
performed by using SWISSPDB viewer and the energymization for 3D structures was performed by NOBIA
Ref server [15]. This server use Gromacs as defarde field for energy minimization based on thethods of
steepest descent, conjugate gradient and L-BFGBoue{16]. We used the conjugate gradient methaditimize
the energy of the 3D structure of HLA-B27 protélo. optimize the 3D structure of HLA-B27 protein, weed the
ifold server [17] for simulated annealing, based discrete molecular dynamics and being one of tstebt
strategies for simulating protein dynamics. Thisvee efficiently sampled the vast conformationabap of
biomolecules in both length and time scales. Digaog of the mutant structure from the native stmectould be
caused by substitutions, deletions and inserti@8$ fnd the deviation between the two structureddcalter the
functional activity [19] with respect to the bindirfficiency of the inhibitors, which was evaluatedtheir RMSD
values.

2.6 Identifying stabilizing residues in proteins (Ride)

Residues expected to play key roles in the staidim of proteins [stabilizing residues (SRs)] westected by
combining several methods based mainly on the dntiems of a given residue with its spatial, ratten its
sequential neighbourhood and by considering théudgeoary conservation of the residues. A residwas welected
as a stabilizing residue if it had high surroundiyglrophobicity, high long-range order and highsamation score
and also if it belongs to a stabilization centeneTdefinition of all these parameters and the ttolels used to
identify the SRs were discussed in detail. SRsctbel applied in protein engineering and homologylefing and
could also help to explain certain folds with sfgrant stability.

2.7 Analysis of secondary structure elements of nae and mutant

We used STRIDE web server for analysis of secondtmycture of native and mutant. STRIDE, an autimat
algorithm for protein secondary structure assigrtnfesm atomic coordinates implemented a knowledasell
algorithm that made combined use of hydrogen bametgy and statistically derived backbone torsioaradle
information and was optimized to return resultilgsignments in maximal agreement with crystallogeagh
designations. The STRIDE web server provided acteghis tool and allowed visualization of the sedary
structure, as well as contact and Ramachandran foapsy file uploaded by the user with atomic abpates in
the Protein Data Bank (PDB) format [20]. STRIDE simiered both hydrogen bonding patterns and backbone
geometry. The hydrogen bond energy was calculaeyan empirical energy function which took inteaunt the
distance between the donor and the acceptor andewations from linearity of the bond angles. Aigieed
product of hydrogen bond energy and torsion angbeabilities for a-helix and b-sheet was used tiemheine the
start and stop positions of secondary structunaetes based on empirically optimized recognitioesholds.

2.8 Identification of Binding Sites and Computationof Atomic Contact Energy (ACE) between HLA-B27
protein and its substrate

To compute the ACE between HLA-B27 protein andsitbstrate, we used the program PatchDock for dgakia

native and mutant HLA-B27 protein with beta-micmigllin to compute the ACE by using additional optiof

binding residue parameter. The underlying principiehis server was based on molecular shape repiason,
surface patch matching, filtering and scoring [2tlfound docking transformations that yield goodletular shape
complementarities. Such transformations, when agplinduced both wide interface areas and smalluatsoof

steric clashes. A wide interface ensured with time af including several matched local features e docked
molecules, which had complementary characteristib® PatchDock algorithm divided the Connolly dotface

representation [22] of the molecules into concaxgnvex and flat patches. Then, complementary patefere
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matched to generate candidate transformations. Eactlidate transformation was further evaluatea lsgoring
function that considered both geometric fit andratodesolvation energy [23] [24]. Finally, an RMSistering
was applied to the candidate solutions to discaddimdant solutions. The main reason behind Patak'®digh
efficiency was its fast transformational searchicltwas driven by local feature matching rathenthg brute force
searching of the six dimensional transformationcepalt further speeded up the computational pedegstime
using advanced data structures and spatial pattetection techniques, such as geometric hashingpaséds
clustering.

RESULTS AND DISCUSSION

3.1 The SAP Data Set from Swissprot

The HLA-B27 protein and 12 variants from A-chaintb& protein, namely, A65T, Y83H, D101N, D101S, 18I0
N121S, H138D, D140H, D140Y, S155R, V176E and A23BGstigated in this work were retrieved from the
Swissprot database.

3.2 Deleterious Single Point Mutants Identified bythe SIFT Program

The degree of conservation of a particular positioa protein was determined using sequence homddaged tool
SIFT. The protein sequences of the 12 variants webenitted to SIFT to determine their tolerancedes. As the
tolerance level increases, the functional influeat¢he amino acid substitution decreases and wézsa. Among
the 12 variants, 2 variants were found to be detais, having tolerance index scores<6t05 (Table 1). Both the
variants showed a very high deleterious tolerandex score of 0.00.

3.3 Damaging Single Point Mutations identified byhe PolyPhen Server

Structural level alterations were determined byyPhen program. Protein sequence with mutationattippsand
amino acid variants associated with the 12 singliatpmutants were submitted to the PolyPhen seePSIC
score difference of 0.5 and above was considerdaetdamaging. It could be seen from Table 1 thatt,of 12
variants, 1 was considered to be damaging by PelyPhhis variant exhibited a PSIC score differeat@.998.
This variant was also found to have high tolerandex score by SIFT program.

3.4 Identification of Functional Variants by I-mutant 3.0

Of the 12 variants, 10 variants were found to I3s kable using the I-Mutant 3.0 server (TabléAfrjong these 10
variants, one variant showed\AG value > -1.0 and nine variants showetiAfs value < -1.0 as depicted in (Table
1). Of the ten variants that showed a negativés, two variants (N121S and A235G) retained theirnanacid
properties. Two variants (Y83H and S155R) changechfpolar uncharged to polar positively charged and
(T104N) from polar uncharged to polar negativelargfed. Three variants (D101N, D101S and D140Y) ghdn
from negatively charged to uncharged. One varia®5{) changed from non-polar to polar uncharged and
(V176E) from non-polar to polar negatively charg@driant H138D changed from positively charged ¢gatively
charged and D140H from negatively charged to paditi charged. Indeed, by considering only aminod aci
substitution based on physico-chemical propentiescould not be able to identify the detrimenté¢etf Rather, by
considering the sequence conservation along wittatitove said properties could have more advantagkseliable
to find out the detrimental effect of missense rtiates.

Table-1 List of functionally significant mutants predicted by SIFT, PolyPhen and I-Mutant 3.0

Variants | Tolerance index | PSIC SD| AAG
AB5T 0.18 0.000 -0.84
Y83H 0.0C 0.99¢ -0.77
D101N 1.00 0.000 -0.53
D101S 0.53 0.000 -0.52
T104N 0.39 0.000 -0.94
N121S 0.84 0.000 -0.2¢
H138D 0.36 0.000 -0.64
D140F 0.4¢ 0.002 -0.31
D140Y 1.00 0.007 +0.11
S155R 1.00 0.001 +0.18
V176E 0.50 0.000 -0.52
A235G 0.00 0.163 -1.27
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3.5 Rational Consideration of Detrimental Point Muttions

We rationally considered one most potential detritalepoint mutation (Y83H) for further course of/@stigations
because it was commonly found to be less stabletatimus, and damaging by the I-Mutant3.0, SIFdl BolyPhen
servers respectively. We considered the statisicaliracy of these three programs, I-Mutant impilabe quality
of the prediction of the free energy change causedingle point protein mutations by adopting a dtiigsis of
thermodynamic reversibility of the existing expeeimal data. The accuracy of prediction for sequamckstructure
based values were 78% and 84% with correlationfictexit of 0.56 and 0.69, respectively [25]. SIFarrectly
predicted 69% of the substitutions associated thithdisease that affect protein function. PolyPR@valuates rare
alleles at loci potentially involved in complex plogdypes, densely mapped regions identified by genande
association studies, and analyses natural seleftionsequence data, where even mildly deleteridletes must be
treated as damaging. PolyPhen-2 was reported tevach rate of true positive predictions of 92%][26][27]. To
obtain precise and accurate measures of the detianeffect of our variants, comprehensive paramseiéall these
three programs could be more significant than iiddial tool parameters. Hence, we further investigathis
detrimental missense mutation by structural anglysi

Affected variants

W SIFT
H PolyPhen

I-Mutant3.0

Figure 1. Functionally significant mutations

3.6 Computing Total Energy and RMSD by Modelling ofMutant Structures

Mapping the one variant namely, Y83H into HLA-B2ibtin structure information was obtained from SAlhP
The available structure for HLA-B27 protein got ABID 2BST. The mutational position and amino acadiants
were mapped in the native structure. Mutation atcdigd position was performed by SWISSPDB viewer
independently to get modeled structures. Then,gyrmainimization was performed by the NOMAD - Ref\ar for
both the native structure (PDB 2BST) and mutant efexti structures. In order to find out the strualtstability of
HLA-B27 protein of native and mutant, we computbd total energy, which included bonds, angles,tarsions,
non-bonded and electro-static constraints from GRX3VR6 force field implemented in DeepView to chéwir
stability. It could be seen from Table 2 that tb&alk energy of the native protein had -19285.05Kal/Mhereas all
the mutants had the total energy lower than ngtieéein. The lower the total energy, greater wasstiability of the
protein structure. In order to find out the dewviatbetween the two structures, we superimposedatige structure
(PDB 2BST) with all the mutant modeled structuregét the RMSD. The higher was the RMSD value, ntoee
deviation between the native and mutant structutech in turn change the binding efficiency with interacting
partners due to deviation in the 3D space of tindibg residues of HLA-B27 protein. Table 2 showkd RMSD
for native structure with all the mutant modeledistures. Figure 2 showed the superimposed striatfinative
HLA-B27 protein (green) with mutant Y83H (Blue).
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Figure 2.Structure of native HLA-B27 protein (gree), mutant Y83H (Blue) and superimposed structure bnative HLA-B27 with

mutant Y83H structure showing RMSD of 5.97A.

Table 2 Total energy, RMSD (&) and Stabilizing Resiues

No. of
Variants ENERGY | RMSD Stabilizing Residues Stabilizing
(KJ/mol) A Residues
Native -19285.0 0 GLY112, LEU168, GLY207, PHE208U215, GLN242, ALA245, CYS259 8
AB5T -19484.6 2.16 SER38, GLY112, LEU168, GLY20AHE208, LEU215, GLN242, ALA245, CYS259 9
Y83H -18413.1 3.97 PHE33, CYS101, GLY112, ALA20%,AR45, CYS259 6
D101N -19640. 2.11 GLY112, PHE208, LEU215, GLN242, ALA245, CYSZ 6
D101< -19118.¢ 2.6 SER38, GLY112, LEU168, GLY207, PHE208, LEU215, GI422ALA245, CYS25 9
T104N -19647.2 2.65 VAL28, SER38, LEU168, PHE20BJ215, GLN242, ALA245, CYS259 8
N121S -19713.6 2.61 ARG6, ASP30, SER38, GLY112, FO8-LEU215, GLN242, LYS243, ALA245, CYS259 10
H138D -19888.5 2.97 ASP30, PHE208, LEU215, LYS243A245, CYS259 6
D140H -19592.6 2.52 ASP30, ALA205, PHE208, LEU2GEN242, ALA245, CYS249 7
D140Y -19710.¢ 2.94 ASP30, CYS101, GLY112, PHE208, LEU215,GLN242, LYS2ALA245, CYS25! 9
S155F -20074.¢ 2.9t ARGS6, VAL28, ASP29, CYS101, GLY112, GLY207, PHE20EU215, ALA245, CYS25 10
V176E -19521.5 251 SER38, CYS101, GLY207, PHE2BR)215, GLN242, ALA245, CYS259 8
A235G -20031.2 2.78 ASP30, SER38, GLY112, GLY2(HERO8, LEU215, LYS243, ALA245, CYS259 9

3.7 Computing the Stabilizing residues in HLA-B27 potein
We further evaluated the stability of protein stue by using the SRide server to identify the namdf stabilizing
residues for both native and mutant structurese pgéwrameters used for identifying the Stabiliziegidues were
surrounding hydrophobicity, long-range order, diagiion center and conservation score. Based @nathalysis,
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we found that a total number of stabilizing resslirethe native structure of HLA-B27 protein werel$ the other
hand, the mutant structure (Y83H) of HLA-B27 pratbiad 6 stabilizing residues as shown in Table 2.

This clearly indicated that the mutant changedtitscture with increased energy and decreasedistadpiresidues
as compared to native. We further evaluated thecefdf this detrimental missense mutation by stuglyihe
secondary structure elements of both native anémhyorotein in order to understand the alteratiboomformation
of mutant structure as compared to native.

3.8 Analysis of secondary structure elements of nae and mutant using STRIDE web server

We further evaluated the distribution of secondstrycture elements in native and mutant protein3(¥)8 Using

the STRIDE web server we calculated the numbeeobisdary structure elements for native and mutanttsires.

From table 3 we could see that the distributiosexfondary structure elements in native was dig&ibas 27 coils,
49 turns, 116 strands, 71 alpha helixes ,;31 3

-helixes and 2 bridges where as for variant (Y88td)secondary structure elements were distributdezbacoils, 52
turns, 116 strands, 69 alpha helixes , 1gth&lixes and 2 bridges. Since the distribution @fosdary structure
elements were altered in native and mutant spadlifién coil, turn and alpha helix, this could Hdeetreason for
alteration of conformation of mutant structure (lEaB®). We further analyzed the effect of this oeémtal missense
by performing binding analysis between HLA-B27 gintand beta-microglobulin through docking studiesrder

to understand the functional activity of HLA-B27opin.

Table 3 No. of different secondary structure elemes in native and mutant

Secondary Structure Element | Native | Mutant(Y83H)
Cail 27 26
Strand 116 116
Turn 49 52
Alpha helix 71 69

31 helix 11 11
Bridge 2 2

3.9 Investigating the Rationale of Binding Efficiesy for Native and Mutant HLA-B27 protein with beta-
microglobulin

In order to find out the binding efficiency of nagiand mutant HLA-B27 protein with its interactipgrtner beta-
microglobulin, we implemented molecular modellingpeoach for rationalizing the functional activity this
mutant Y83H. In this analysis, we modeled a miseanstation (Y83H) in the chain A of the PDB ID 2B®%Y
swisspdb viewer and energy minimization was peréatrfor the entire complex (both native and mutamhslex)

by GROMACS (Nomad-ref) followed by simulated anieglto get the optimized structures using a digcret
molecular dynamics approach (ifold).

Docking was performed using the PatchDock servewmdzn HLA-B27 protein and beta-microglobulin witbth
native and mutant modeled structures of HLA-B27giroto find out the binding efficiency in the forofi Atomic
Contact Energy (ACE). By this analysis, we foundttthe ACE between beta-microglobulin and native\HB27

protein was found to be —1.38 kcal/mol, wherea$ wiutant, the ACE was found to be -0.52 kcal/mafFe 3).
Also, Figure 3 showed the docked complex of nagivd mutant (Y83H) HLA-B27 protein with beta-microgulin.

This data clearly portrayed that the maximum bigdiffect of beta-microglobulin with the native HLB27 protein
might be due to the 3D conformation of beta-micobglin which exclusively made a comfortable fit kviess ACE
into the 3D space of the binding residues of tegive as compared to the mutant.
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Figure 3. Docked complexes of Native and Mutant TARNA Binding protein 43 with RNA
(a)Docked complex of native HLA-B27 Protein (greenand beta-microglobulin(grey) having the ACE scoref -1.38. (b) Docked complex
of Mutant Y83H HLA-B27 Protein (blue) and beta-microglobulin (grey) having the ACE score of -0.52

CONCLUSION

In this study, the HLA-B27 protein which has beemrfd to be associated with Ankylosing spondylitiasw
investigated by computational analysis for deletgsimissense mutations. Out of the 12 mutantsaralpha chain
of HLA-B27 protein one was found to be damagingRmjyPhen server, two were predicted to be deletsrhy
SIFT and eight were found to be more stable thaiwenarotein by I-mutant3.0. Out of these one vatr/d83H was
common in all three programs. Thus, conversionyadsine to histidine at the 83position was found to be the
major mutation in alpha chain of HLA-B27 proteinialin has also been showed in earlier wet lab stualjesther
group [28][29]. This variant was found to be letabe than the native protein which could be duehanges in
secondary structure pattern of the protein as &tdit by STRIDE results. The changes in secondaugtate
pattern may lead to misfolding of protein and logprotein function. Docking analysis between beiiaroglobulin
and the native and mutant modeled structures geteAgtomic Contact Energy scores -1.38 and -0.5peetively
which confirmed that the mutation was deleteriod%® thus concluded that mutation of tyrosine toidiise at
position 83 of alpha chain of HLA-B27 could be @mfdahe causes of Ankylosing spondylitis associatét HLA-
B27 protein.
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