

**Scholars Research Library** 

Der Pharma Chemica, 2015, 7(12):315-322 (http://derpharmachemica.com/archive.html)



ISSN 0975-413X CODEN (USA): PCHHAX

# Density, viscosity and excess parameters of nicotinium dichromate in protic and aprotic solvent media

Monalisa das<sup>1</sup>, Sunil Kumar Pradhan<sup>2</sup>, Smrutiprava Das<sup>\*</sup> and Ajaya kumar Patnaik

P. G. Department of Chemistry, Ravenshaw University, Cuttack, Odisha, India

## ABSTRACT

The densities and viscosities of nicotinium dichromate with DMSO and methanol have been measured at 303.15K. The values are used to calculate the apparent molar volume  $(V_{\phi})$ , limiting molar volume  $(V_{\phi}^{0})$ , excess molar volume  $(V_{m}^{E})$ , viscosity deviation  $(\Delta \eta)$  and excess Gibb's free energy of viscous flow  $(\Delta G^{*E})$ . The viscosity results have been computed to calculate Falkenhagen coefficient (A) and Jones-Dole B coefficient. The main aim of the study is to correlate the excess properties with molecular interactions present in the solution. The strength if interaction is related to the nature of solvents.

Key words - Nicotinium dichromate, excess properties, apparent molar volume, apparent limiting molar volume, ion-solvent interaction.

## INTRODUCTION

The physicochemical properties of solute in mixed solvent are influenced by measurement of density, viscosity and hence the derived parameters will give significant information regarding solute-solvent interaction. Viscosity and density data of solutions give valuable information towards solution theory and molecular dynamics <sup>1-4</sup>. Crookes *et*  $al^5$  have reported density of solution of NaBF<sub>4</sub> in water to derive concentrative properties of NaBF<sub>4</sub> solution. The apparent molar volume and viscosities of NaCl, NH<sub>4</sub>Cl, CaCl<sub>2</sub>, CaSO<sub>4</sub>, MgSO<sub>4</sub> in pure water, aqueous urea<sup>6</sup> and sodium molybdate, tungstate in aqueous acetonitrile<sup>7</sup> and NH<sub>4</sub>Cl, NiCl<sub>2</sub>, FeCl<sub>3</sub> in DMSO<sup>8</sup> have been reported. The researchers<sup>9</sup> have measured the density and viscosity of tris(acetylacetonato)cobalt(III) solution in acetonitrile, dichloromethane, chloroform, tetrachloromethane, benzene, toluene, ethyl benzene, p-xylene at different temperatures. Parmer et al<sup>10</sup> have measured the viscosity of some metal nitrates in water and in aqueous mixture of DMF at different temperatures to explain the effect of temperature on ion-solvent interaction. The solvation behavior of metal complexes in protic and aprotic solvents is essential for many chemical and industrial application<sup>11</sup>. Thus an attempt has been made to elucidate the ion-ion interaction and ion - solvent interaction of a stable, non hygroscopic and mild oxidant nicotinium dichromate(NDC)<sup>12</sup>. But NDC acts as a reagent for the oxidative determination of amines and aminophosphonates<sup>13</sup>. Only conductance, vibration and thermal behavior of NDC have been reported<sup>14-15</sup>. But little work has been done on nicotinium dichromate (NDC). The present work aims at the solvation of NDC in aqueous solutions of DMSO and methanol at 308.25K.

## MATERIALS AND METHODS

Nicotinic acid of high purity was used. Potassium dichromate used was Anal R grade. Water used in this study was double distilled. Nicotinium dichromate was prepared by reported method<sup>16</sup>. This is characterized by elemental analysis and spectroscopic methods. The solutions are made in aquo-organic mixtures of DMSO and methanol with different compositions. The pycknometre was calibrated by measuring the densities of triple distilled water. The

density of DMSO and methanol were determined with water. The viscosities of different solutions were measured using Ostwald's viscometer at 303.15K and the efflux medium was determined using a digital stop watch. To maintain constant temperature a thermostat with accuracy of  $\pm 0.01$ K was used.

Molar concentration (c) and molal concentration (m) are related by the equation<sup>17</sup>,  $c = md(1 + 0.001mM_{2})^{-1}$ (1)

From the density data, the apparent molar volume  $(V_{\phi})$  was calculated from the relation<sup>18</sup>,

$$V_{\phi} = 1000(cd_0)^{-1}(d_0 - d) + M_2 d_0^{-1}$$
<sup>(2)</sup>

where c is the molar concentration of the solution,  $M_2$  is the molecular mass of the solute,  $d_0$  and d are the densities of pure solvent and solution respectively.

The apparent molar volume thus obtained is found to vary linearly with  $c^{1/2}$ . The  $V_{\phi}$  data were fitted by a method of least squares to Masson's eqution<sup>19</sup>,

$$V_{\phi} = V_{\phi}^{0} + S_{v}c^{1/2}$$
(3)

Over the range in which the densities are determined, where  $V_{\phi}^{0}$  is the limiting apparent molar volume and  $S_{v}$  is the slope of the plot  $V_{\phi}$  verses  $c^{1/2}$ .

The viscosity data of electrolyte solutions both in aqueous and non-aqueous solutions follow the Jone-Dole $^{20}$  equation,

$$\eta_r = \frac{\eta}{\eta_0} = 1 + Ac^{1/2} + Bc \tag{4}$$

where  $\eta_r$  in the relative viscosity of the solution.  $\eta$  and  $\eta_0$  are the viscosities of solution and solvent respectively. c is the molar concentration. A is called Falkenhagen and B-coefficient is Jones-Dole coefficient.

The viscosity deviation  $(\Delta \eta)$ , excess molar volume  $(V_m^E)$  and excess molar Gibb's free energy of activation of viscous flow  $(\Delta G^{*E})$  were determined using the following equations<sup>21-22</sup>.

$$\Delta \eta = \eta - \sum_{i=1}^{n} x_i \eta_i \tag{5}$$

Where  $x_i$  is the molefraction of ith component,  $\eta_i$  and  $\eta$  refer to the viscosities of ith pure component and the mixture respectively.

$$V^E = V - \sum_{i=1}^n x_i V_i \tag{6}$$

Where  $V_i$  and V represent the molar volume of ith pure component and the mixture respectively

$$\Delta G^{*^{E}} = RT \left[ \ln \eta V - \sum_{i=1}^{n} x_{i} \ln(\eta_{i} V_{i}) \right]$$
(7)

### **RESULTS AND DISCUSSION**

The experimentally determined values of densities and viscosities of pure solvents have been compared with literature values and presented in Table 1. It is seen that experimental values compare fairly well with the literature values.

Table 1: comparison of Experimental and literature values of densities and viscosities of pure solvents at 303.15K

| Pure solvents | $\rho$ (10 <sup>-3</sup> gcm <sup>-3</sup> ) |                  | $\eta$ (mPa.S) |              |  |
|---------------|----------------------------------------------|------------------|----------------|--------------|--|
|               | Expt.                                        | Lit.             | Expt.          | Lit.         |  |
| DMSO          | 1.0907                                       | $1.0905^{23}$    | 1.8405         | $1.830^{24}$ |  |
| methanol      | 0.7839                                       | $0.7818^{25-26}$ | 0.4928         | $0.510^{27}$ |  |

The experimental values of density, viscosity, deviation in viscosity, excess molar volume, Gibb's free energy of activation of viscous flow of NDC in aqueous solutions of DMSO and methanol are listed in table 2.

Table 2: The data of density  $(\rho)$ , viscosity  $(\eta)$ , apparent molar volume  $(V_{\phi})$ , viscosity deviation  $(\Delta \eta)$ , excess molar volume  $(V_m^E)$ and excess free energy for viscous flow  $(\Delta G^{*E})$  for nicotinium dichromate in different mole fractions of DMSO and methanol at

and excess free energy for viscous flow  $(\Delta G)$  for nicotinium dichromate in different mole fractions of DMSO and methanol at 303.15K

| Mole                            | Concentration               | Density            | viscosity                      | apparent molar                 | viscosity                | Excess molar                | Excess free energy             |
|---------------------------------|-----------------------------|--------------------|--------------------------------|--------------------------------|--------------------------|-----------------------------|--------------------------------|
| Fraction                        | (c)                         | ( ho)              | $(\eta)$                       | volume $\left(V_{\phi}\right)$ | deviation $(\Delta\eta)$ | volume $\left(V_m^E\right)$ | $\left(\!\Delta G^{*^E} ight)$ |
| $X_{\text{org}}$                | (mole dm <sup>-3</sup> ) (g | cm <sup>-3</sup> ) | (x10 <sup>-1</sup> centipoise) | $(x10^3 m^3 mol^{-1})$         | (mPa.s)                  | $(x10^2 cm^3 mol^{-1})$     | $(x10^{3} J mol^{-1})$         |
| NDC in aqueous solution of DMSO |                             |                    |                                |                                |                          |                             |                                |
|                                 | .02                         | 1.0254             | 1.2406                         | - 1.1877                       | 0.2163                   | 3.5906                      | 880.37                         |
|                                 | .04                         | 1.0292             | 1.2582                         | - 0.4932                       | 0.4491                   | 3.5766                      | 885.59                         |
|                                 | .06                         | 1.0326             | 1.2730                         | - 0.2551                       | 0.4639                   | 3.5641                      | 887.75                         |
| .059                            | .08                         | 1.0363             | 1.3019                         | - 0.1405                       | 0.4927                   | 3.5506                      | 892.58                         |
|                                 | 02                          | 1 0381             | 1 5068                         | - 1 8265                       | 0.6577                   | 3 6783                      | 902.86                         |
|                                 | .02                         | 1.0413             | 1.5557                         | - 0.7977                       | 0.7066                   | 3 6668                      | 910.26                         |
|                                 | .06                         | 1.0451             | 1.5810                         | - 0.4646                       | 0.7319                   | 3.6536                      | 913.46                         |
| .097                            | .08                         | 1.0496             | 1.6518                         | - 0.3070                       | 0.8027                   | 3.6372                      | 923.43                         |
|                                 | .02                         | 1.0512             | 1.6934                         | - 2.4855                       | 0.7948                   | 3.4549                      | 895.17                         |
|                                 | .04                         | 1.0549             | 1.8606                         | - 1.1396                       | 0.9620                   | 3.4389                      | 918.38                         |
|                                 | .06                         | 1.0579             | 1.8456                         | - 0.6793                       | 0.9470                   | 3.4283                      | 915.58                         |
| .144                            | .08                         | 1.0611             | 1.9593                         | - 0.4516                       | 1.0607                   | 3.4173                      | 913.32                         |
|                                 |                             |                    |                                | NDC in aqueous so              | lution of methanol       |                             |                                |
|                                 | 02                          | 0 9797             | 1 1853                         | 1 1112                         | 0 3776                   | 3 7768                      | 873 96                         |
|                                 | .04                         | 0.9815             | 1.1937                         | 0.7065                         | 0.3860                   | 3.7694                      | 875.29                         |
|                                 | .06                         | 0.9853             | 1.2422                         | 0.5380                         | 0.4345                   | 3.7542                      | 884.51                         |
| .099                            | .08                         | 0.9863             | 1.2622                         | 0.4890                         | 0.4545                   | 3.7502                      | 888.34                         |
|                                 | .02                         | 0.9617             | 1.3004                         | 2.0116                         | 0.4329                   | 3.8373                      | 876.15                         |
|                                 | .04                         | 0.9642             | 1.3593                         | 1.1416                         | 0.4918                   | 3.8268                      | 885.91                         |
| 1.50                            | .06                         | 0.9718             | 1.3997                         | 0.7464                         | 0.5322                   | 3.7952                      | 892.33                         |
| .160                            | .08                         | 0.9763             | 1.4079                         | 0.6148                         | 0.5404                   | 3.7767                      | 892.65                         |
|                                 |                             |                    |                                |                                |                          |                             |                                |
|                                 | .02                         | 0.9557             | 1.4179                         | 2.3184                         | 0.4673                   | 3.8471                      | 868.36                         |
|                                 | .04                         | 0.9564             | 1.4859                         | 1.3378                         | 0.5353                   | 3.8442                      | 880.17                         |
|                                 | .06                         | 0.9592             | 1.4964                         | 0.9757                         | 0.5458                   | 3.8323                      | 881.22                         |
| .228                            | .08                         | 0.9621             | 1.5070                         | 0.7934                         | 0.5570                   | 3.8201                      | 882.26                         |

Figure 1 and 2 represent the linear plot of apparent molar volume  $(V_{\phi})$  with  $c^{1/2}$  for DMSO and methanol systems respectively.



Figure 1: Variation of apparent molar volume  $\left(V_{\phi}
ight)$  with C<sup>1/2</sup> for NDC in aqueous solution of DMSO at 303.15K



Figure 2: Variation of apparent molar volume  $\left(V_{\phi}
ight)$  with C<sup>1/2</sup> for NDC in aqueous solution of methanol at 303.15K

The linear plots of  $\eta_r - 1/c^{1/2}$  with  $c^{1/2}$  for DMSO and methanol systems are given in Figure 3 and 4 respectively.



Figure 3: Variation of  $\eta_r - 1/\sqrt{c}$  with C<sup>1/2</sup> for NDC in aqueous solution of DMSO at 303.15K



Figure 4: Variation of  $\eta_r - 1/\sqrt{c}$  with C<sup>1/2</sup> for NDC in aqueous solution of methanol at 303.15K

The plots are drawn using least square fitting. The Masson parameters  $(V_{\phi}^{0}, S_{\nu})$  and viscosity parameters (A, B) are tabulated in Table 3.

| Mole      | Concentration                   | limiting apparent molar | $S_{v}$                      | Α                       | В                                    |  |  |  |
|-----------|---------------------------------|-------------------------|------------------------------|-------------------------|--------------------------------------|--|--|--|
| Fraction  | (c)                             | volume $(V_{\phi})$     |                              |                         |                                      |  |  |  |
| $X_{org}$ | (mole dm <sup>-3</sup> )        | $(m^3 mol^{-1})$        | $(m^{3}kg^{1/2}mol^{-3/2})$  | $(dm^{3/2} mol^{-1/2})$ | (dm <sup>3</sup> mol <sup>-1</sup> ) |  |  |  |
| -         | NDC in aqueous solution of DMSO |                         |                              |                         |                                      |  |  |  |
|           | 02                              |                         |                              |                         |                                      |  |  |  |
|           | .02                             |                         |                              |                         |                                      |  |  |  |
|           | .06                             | -0.9166                 | 0.2309                       | 1.7617                  | -0.1584                              |  |  |  |
| .059      | .08                             |                         |                              |                         |                                      |  |  |  |
|           |                                 |                         |                              |                         |                                      |  |  |  |
|           | 02                              |                         |                              |                         |                                      |  |  |  |
|           | .02                             | -1 2713                 | 0 2493                       | 3 7718                  | -0.4663                              |  |  |  |
|           | .04                             | 1.2713                  | 0.2493                       | 5.7710                  | 0.4005                               |  |  |  |
| .097      | .08                             |                         |                              |                         |                                      |  |  |  |
|           |                                 |                         |                              |                         |                                      |  |  |  |
|           | .02                             |                         |                              |                         |                                      |  |  |  |
|           | .04                             | -1.6710                 | 0.3640                       | 5.0642                  | -0.3443                              |  |  |  |
| 144       | .06                             |                         |                              |                         |                                      |  |  |  |
| .144      | .08                             |                         |                              |                         |                                      |  |  |  |
|           |                                 |                         | NDC in aqueous solution of m | nethanol                |                                      |  |  |  |
|           |                                 |                         |                              |                         |                                      |  |  |  |
|           | 02                              |                         |                              |                         |                                      |  |  |  |
|           | .02                             |                         |                              |                         |                                      |  |  |  |
|           | .04                             | 0.8739                  | -0.5095                      | 1.0724                  | -0.0699                              |  |  |  |
| .099      | .08                             |                         |                              |                         |                                      |  |  |  |
|           |                                 |                         |                              |                         |                                      |  |  |  |
|           | .02                             |                         |                              |                         |                                      |  |  |  |
|           | .04                             | 1.5745                  | -0.3443                      | 2.0874                  | -0.2493                              |  |  |  |
| 1.00      | .06                             |                         |                              |                         |                                      |  |  |  |
| .160      | .08                             |                         |                              |                         |                                      |  |  |  |
|           | .02                             |                         |                              |                         |                                      |  |  |  |
|           | .04                             | 2.1276                  | -0.1405                      | 3.0342                  | -0.5543                              |  |  |  |
|           | .06                             |                         |                              |                         |                                      |  |  |  |
| .228      | .08                             |                         |                              |                         |                                      |  |  |  |
|           |                                 |                         |                              |                         |                                      |  |  |  |

Table 3: The data of limiting apparent molar volume  $(V_{\phi}^{0})$  and experimental slope  $(S_{\nu})$ , viscosity coefficients (A, B) for nicotinium dichromate in different mole fractions of DMSO and methanol at 303.15K

In both the systems the values of density increase with increasing molar conc. of NDC. This increase is due to the attraction of nicotinium dichromate ion with DMSO and methanol. This increasing trend suggests a moderate electrostatic nature. Molecular interaction is thus responsible for observed increase in density<sup>28</sup>.

It is found from Table 1 that the values of excess molar volume  $(V_m^E)$  in respect to both the systems are positive over the entire range of composition of NDC. The positive values of  $V_m^E$  may be attributed to the existence of dispersive interactions between NDC and solvent molecules.  $V_m^E$  values decrease with increasing molar concentration of NDC but increase with mole fractions of solvents.

The following observations have been made on  $V_{\phi}$  values of NDC in aqueous solutions of DMSO and methanol.

i. The  $V_{\phi}$  values are negative for DMSO system over the entire range of composition.

ii. For methanol system the  $V_{\phi}$  values are positive for DMSO system.

iii. The magnitude of  $V_{\phi}$  values in different mole fractions of solvents are in the order

For DMSO system,  $NDC_{0.059} > NDC_{0.097} > NDC_{0.144}$ For methanol system,  $NDC_{0.228} > NDC_{0.160} > NDC_{0.099}$  From Figure 2 it is seen that limiting apparent molar volume  $(V_{\phi}^{0})$  values for NDC in DMSO are negative where as in methanol mixture these are positive. The negative values decrease with increase in mole fractions of DMSO. The positive values of  $V_{\phi}^{0}$  for NDC in methanol indicate the presence of strong ion-solvent interactions. But a sharp decrease in  $V_{\phi}^{0}$  values suggest that the strength of ion-solvent interaction is reduced with molar concentration of NDC but increase in these values with mole fractions of methanol refers to solvation around NDC ionic moiety. The  $S_{v}$  values are negative in methanol system but positive for DMSO system. The positive values indicate the presence of ion-ion interaction whereas negative values are associated with hydrophilic effect<sup>29</sup>. This effect may be due to presence of highly polar group S=O group in DMSO. So solvent-solvent interaction seems to be sufficiently strong in DMSO system.

Viscosity is one of the important property in understanding the molecular interactions occurring in mixtures. Viscosities increases with molar concentration of NDC as observed in Table 1. The increase suggests the existence of ion-solvent interaction. The values of A coefficient are positive showing ion-ion interaction<sup>30</sup> while The B-coefficient of Jones-Dole equation indicates the ion-solvent interaction in solutions<sup>31</sup> and provides useful primary data about the solvation of ions and their effect on the structure of solvent surrounding the solute molecules and has been interpreted as a measure either of structure forming or structure breaking capacity of a solute in solution<sup>32</sup> depending on its magnitude. Positive B coefficient shows strong alignment of solvent towards solute which is an ion-solvent interaction parameter and depends upon relative size of ion and solvent molecules. The magnitude of B values is in the order,

Viscosity deviations  $(\Delta \eta)$  are positive for both systems. The positive values of  $(\Delta \eta)$  can be interpreted in terms of strong interactions between unlike molecules<sup>33</sup>. Free energy for viscous flow  $(\Delta G^{*^{E}})$  is one of the important parameter regarded as a relative criterion to detect the presence of interactions between unlike molecules<sup>34-36</sup>. The positive values of  $\Delta G^{*^{E}}$  gives an indication of strength of possible interaction between NDC and solvent which may be related to the size effect of mixing components in these solutions<sup>37</sup>.

#### CONCLUSION

The data of density, viscosity and related parameters confirm the presence of strong ion-solvent interaction in methanol system. The strength of ion-solvent interaction depends on concentration of NDC, polarity, structure and mole fraction of solvent. Stronger hydrogen bonding exists in DMSO system having highly polar group S=O group with water indicating solvent-solvent interaction. So it can be concluded that there is a weak ion-solvent interaction in aprotic solvent media but NDC ion interacts more strongly with protic solvent like methanol resulting stronger ion-solvent interaction.

#### Acknowledgement

The authors are thankful to P.G. Dept. of Chemistry, Ravenshaw University for providing facilities to carry out this work.

#### REFERENCES

[1] L. Granberg Nissan, Nature, 1946, 164, 799.

- [2] S.R. Patil, U.G. Deshpande, A.R. Hiray, Rasayan J. Chem, 2010, 3, 66-73.
- [3] P.S. Nikam, Hirey, Indian J. Pure and Appl Phys, 1991, 29, 155.
- [4] G.K. Johari, R.C. Misra, Indian J. Pure and Appl Phys, 1987, 29, 155.
- [5] W. J. Crooks, J. D. Christian, I. J. of Chemistry, 2004, 43, 1876.
- [6] M. A. Motin, J. Chem. Eng. Data, 2004, 49, 94.
- [7] B. Sarkar, B. Sinha,; M. Ray, Russian Journal of Physical Chemistry, 2008, 82, 960.

[8] M. A. Yousuf, K. M. SalimReza, Md. Moniruzzaman, M. A. Aziz,; M. A. Salam Daffodil, *International J. of Science and Technology*, **2009**, 4, 15.

[9] H. Ikeuchi, M. Kanakuba,; S. Okuno, R.K. Fukuia, M. Hamada,; N. Shoda,; K. Fukui, K. Okada,; H. Kanazawa, *Journal of Solution Chemistry*, **2010**, 39, 1428.

[10] M. L. Parmer, D. S. Banyal, J. Indian Chem. Soc., 2007, 84, 577.

- [11] B. Sathanarayana, B. RanjithKumar, T.S. Jyostna, N. Satyanarayan, J. Chem. Thermodynamics, 2007, 39, 16.
- [12] C. Lopaz, A. Gonzalez, F.P. Cossio, Palomo, Synth. Commun, 1985, 15, 1197.
- [13] S. Sobhani, S.Aryanejad, M.F. Maleki, Helvetica Chimica Acta., 2012, 95, 613.
- [14] V. Radhika, Der Chemica Sinica, 2011, 2, 136.
- [15] C.M. Palopoli, S.B. Etcheverry, E.J. Baran, *Thermochimica Acta*, 1988, 131,273.
- [16] E. J. Corey, G. Schmidt, *Tetrahedron Letters.*, **1979**, 20, 399.
- [17] R. A. Robinson, R. H. Stokes, Electrolyte solutions, Butterworth, London, 1955, 30.
- [18] H. S. Harned, B. B.Owen, The Physical chemistry of electrolyte solutions, Reinhold, Newyork, 1958, 358.
- [19] D. O. Masson, Phil. Mag., 1929, 8, 218.
- [20] G. Jones, M. Dole, J. Am. Chem. Soc., 1929, 51, 2950.
- [21] M. Domineguez, J. Santafe, M.C.Lopez, F. M. Royo, , J.S. Urieta Fluid Phase Equilib., 1998, 152, 133.
- [22] M.M. Palaiologou, J. Chem. Eng. Data, 1996, 41, 1036.
- [23] P.S. Nikam, M.C. Jadvav, M. Hasan, J. Chem. Eng. Data, 1996, 41, 1028.
- [24] N.G. Tsierkezos, A.E. Kelarakis, M.A. Palaiologou, J. Chem. Eng. Data, 2000, 45, 395.
- [25] N. Deenadayalu, I. Bahadur, T. Hoffman, J.Chem. Thermodynam, 2010, 42, 726.
- [26] M.M. Taib, A.K. ziyada, C.D. Wilfred, T. Muregasan, J. of Mol. Liq., 2011, 158, 101.
- [27] Lange's handbook of Chemistry, 10<sup>th</sup> edn, 1525-1528.
- [28] B.K. Rout, S. K. Dash, V. Chakrovortty, D. Behera, Indian. J. Tech., 1996, 31, 745.
- [29] M.J. Eqbal, Q.M. Malik, J. of Chem. Thermodyn., 2005, 37, 1347.
- [30] D.V. Jahagirdhar, B.K. Arbad, C.S. Patil, A.G. Sankar, , Ind. J. Pure and Appl. Phys, 2000, 38, 645.
- [31] R. W. Gurney, *Ionic process in solution*, (Chapter-9), McGraw Hill, New York, 1953.
- [32] D. Feakins, K. C. Lawrence, J. Chem. Soc.A, 1966, 212.
- [33] N. Swain, V. Chakrovortty, Ind. J. Chem. Sect. A, 1996, 35, 395.
- [34] R. Palepu, J. Oliver, B. Mackinnon, Can. J. Chem., 1985, 63, 1024.
- [35] T. M. Reed, T. E. Taylor, J. Phys. Chem., 1959, 63, 58.
- [36] R. Mayer, M. Meyer, J. Metzer, A. Peneloux, J. Chim. Phys. Chem., 1971, 62, 406.
- [37] S.L. Oswal, A. V. Rao, Indian J. Chem. Sect A, 1985, 24, 1025.