Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2013, 5(4):126-130 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Design, practical synthesis and biological evaluation of novel 1,3,4-oxadiazole derivatives incorporated with quinolone moiety as microbial agents

Peddakotla Venkata Ramana*, Dasampalli Nese Satyanarayana[@], Karnatakam Doraswamy and Laxmanarao Krishnarao Ravindranath

Department of Chemistry, S.K. University, Anantapur, A.P., India [®]Department of Chemistry, Government Degree College, Dharmavaram, A. P., India

ABSTRACT

A series of novel 1,3,4-oxadiazole derivatives incorporated with quinolone moiety were designed and synthesized as biological compounds. In vitro antibacterial activity of the synthesized compounds (5a-g) was performed against Gram +ve microorganisms Staphylococcus aureus (MTCC No. 96), Pseudomonas aeruginosa (MTCC No. 1688), Bacillus subtillis (MTCC No. 121) and Gram -ve microorganisms Escherichia coli (MTCC No. 521). In vitro antifungal activity of compounds was screened against Candida albicans. The structure of all new compounds was confirmed by IR, ¹H-NMR and Mass spectra.

Key words: 1,3,4-oxadiazole, 4-oxoquinoline, antibacterial and antifungal activity.

INTRODUCTION

The major drawback of current treatment of infectious diseases are challenging due to resistance to antimicrobial agents and their side effects. In order to overcome this situation, it is necessary to continue the search for new antibacterial agents. In recent scenario heterocycles plays a major role in drug synthesis. In that respect oxadiazole and quinolone derivatives play a significant role among other heterocycles. From the literature survey oxadiazole was found to be having diverse activity such as anti-inflammatory, antimicrobial, antifungal, antiviral, analgesic, anti-mycobacterial, antidepressant and anticancer [1-3]. Quinolone derivatives exhibit anti HIV [4], antitubercular [5], antiplatelet [6, 7], antichlamydial [8] and antitumor activity [9-13] along with oxadiazole activities. The incorporation of 1,3,4-oxodiazole in 4-oxoquinoline frame work through N-CH₂ as bridging group was used as the target for chemical modification. Looking at the importance of these compounds, the present work aims to synthesise and screen the antibacterial and antifungal activity of 5-phenyl 1,3,4-oxadiazole-2-yl derivatives of different substituted 4-oxoquinoline nuclia.

MATERIALS AND METHODS

Melting points of the newly synthesized compounds was determined by open capillary method and are uncorrected. Purity of the compounds was determined by TLC on silica gel coated plates obtained from Merck as stationary phase and solvent mixture of n-hexane : ethyl acetate (3:7) was used as mobile phase at room temperature. IR spectra were recorded as KBr pellet on a Perkin Elmer - FTIR spectrum-100. ¹H-NMR spectrum was recorded on

Bruker DRX 300 using $CDCl_3$ as a solvent and Mass spectra were recorded on Shimadzu GCMSQP5050A, Japan, DB-1 glass column 30, 0.25 mm, ionization energy 70 eV.

General procedure for the synthesis

Preparation of 8-chloro-1,4-dihydro-4-oxoquinoline-3-carbonitrile (2a)

1.99gm of ethyl-2-cyano-3-ethoxy acrylate (0.0117 mol) was added to 1gm of 2-chloro aniline (0.0078 moles) dissolved in diphenylether. The reaction mixture was maintained at reflux temperature for 12 hours. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled, poured on to ice water and then extracted with ethyl acetate. The organic layer was collected, dried over anhydrous sodiumsulphate and evaporated to get light brown color solid product. Yield: 80%, m.p. 2a:158-160, 2b:201-203, 2c:155-158, 2d:162-165, 2e:180-182, 2f:176-178 and 2g:161-163°C.

IR (KBr) cm⁻¹: 3090(Ar C-H str), 3310(N-H str), 2215(C=N str), 1705(C=O str), 1627(C=C str).

Preparation of ethyl 2-(8-chloro-3-cyano-4-oxoquinolin-1(4H)-yl) acetate (3a)

0.0024 mol of triethylamine was added to 250 mg of 8-chloro-1,4-dihydro-4-oxoquinoline-3-carbonitrile (0.0012 mol) formed in the first step at 15° C and maintained for 15 min at the same temperature. Then 0.18 ml of ethylchloroacetate (0.0024 moles) was added and refluxed for 2 hrs. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled, diluted with water and extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous sodium sulphate and then evaporated. Yield: 75%, m.p. 3a:175-177, 3b:218-220, 3c:173-176, 3d:160-161, 3e:195-198, 3f:183-185 and 3g:168-170°C.

IR (KBr): 3100(Ar C-H str), 2995(Ali C-H str), 2221(C=N str), 1705(C=O str), 1627(C=C str), 1210(C-O str).

Preparation of 2-(8-chloro-3-cyano-4-oxoquinolin-1(4H)-yl) acetohydrazide (4a)

Ethyl 2-(8-chloro-3-cyano-4-oxoquinolin-1(4H)-yl) acetate (0.0175 mole) and hydrazine hydrate (0.0525 mole) were dissolved in ethanol. The contents of the reaction was maintained at reflux temperature for 6 hrs. The completion of the reaction was monitored by TLC by using chloroform: methanol (9:1) as an eluent and observed under UV light. After completion of the reaction, the reaction mixture was cooled and the solid product obtained was collected by filtration. It was recrystallized from ethanol. Yield: 85%, m.p: 4a:182-185, 4b:206-208, 4c:165-168, 4d:176-178, 4e:208-210, 4f:205-207 and 4g:196-198°C.

IR(KBr): 3250(N-H str), 3090(Ar C-H str), 2230(C=N str), 1700(C=O str), 1627(C=C str), 1514(N-N str).

compound	(R)	Mol.formula	^a M.P (°C)	Mol.wt.	${}^{b}R_{\rm f}$	Elemental analysis % calculated		
						С	Н	N
5a	8-Cl	$C_{19}H_{11}ClN_4O_2$	255	362	0.60	62.80	2.98	15.32
						(62.91)	(3.06)	(15.44)
5b	7-NO ₂	$C_{19}H_{11}N_5O_4$	264	373	0.54	61.00	2.90	18.62
						(61.13)	(2.97)	(18.76)
5c	7-CH3	$C_{20}H_{14}N_4O_2$	231	342	0.60	70.04	4.23	16.24
						(70.17)	(4.12)	(16.37)
5d	7-Br	$C_{19}H_{11}BrN_4O_2$	199	406	0.61	55.90	2.63	13.59
						(56.04)	(2.72)	(13.76)
5e	8-OCH ₃	$C_{20}H_{14}N_4O_3$	261	358	0.68	66.85	3.83	15.54
						(67.03)	(3.94)	(15.63)
5f	7,8-Di	$C_{19}H_{10}Cl_2N_4O_2\\$	230	396	0.74	57.37	2.43	13.92
	chloro					(57.45)	(2.54)	(14.10)
5g	8-C ₂ H ₅	$C_{21}H_{16}N_4O_2$	226	356	0.79	70.65	4.37	15.54
						(70.77)	(4.53)	(15.72)

Table-1: Physicochemical parameters of the synthesized compounds (5a-g)

^aSolvent of crysllization-Ethanol ^bSolvent system- Ethyl acetate: n-Hexane (7:3)

Preparation of 8-chloro-1,4-dihydro-4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl) quinoline-3-carbonitrile (5a)

A mixture of 0.5 g of 2-(8-chloro-3-cyano-4-oxoquinolin-1(4H)-yl) acetohydrazide (0.0019 mol) formed in the third step and 0.35g (0.0029 mol) of benzoic acid was dissolved in 4 ml of phosphorous oxy chloride and refluxed for 20 h. The completion of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was

cooled to the room temperature and slowly poured on to crushed ice and kept overnight. The solid mass thus separated out was filtered and recrystallized from ethanol. Yield: 70%, m.p: 255-256°C.

All the compounds 2b-2g, 3b-3g, 4b-4g and 5b-5g were prepared by similar method. Compounds 5a-5g were recrystallized from alcohol. Physicochemical properties of all compounds are shown in **Table-1**.

Spectral data:

8-chloro-1,4-dihydro-4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile (5a) IR(KBr) υ_{max} cm⁻¹: 3010(Ar C-H str), 2120(C≡N str), 1719(C=O str), 1615(C=N str), 1140(C-O-C str), 735(C-Cl str).; Mass m/z (M⁺) 362; ¹HNMR(300MHz,CDCl₃)δ: 4.30(s, 2H, N-CH₂), 6.75, 7.56, 7.63(m, 4H, Quinoline-H), 7.20, 7.36, 7.43(m, 5H, Aromatic-H).

7-nitro-1,4-dihydro -4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile(5b) IR(KBr) υ_{max} cm⁻¹: 3090(Ar C-H str), 2120(C=N str), 2060(NO₂ str), 1715(C=O str), 1621(C=N str), 1120(C-O-C str).; Mass m/z (M⁺) 373; ¹HNMR(300MHz,CDCl₃)δ: 4.30(s, 2H, N-CH₂), 7.10, 7.64, 7.76(m, 4H, Quinoline-H), 7.20, 7.35, 7.42(m, 5H, Aromatic-H).

7-methyl-1,4-dihydro -4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile (5c) IR(KBr) v_{max} cm⁻¹: 3095(Ar C-H str), 2987(C-H str CH₃), 2115(C=N str), 1715(C=O str), 1621 (C=N str), 1125(C-O-C str).; Mass m/z (M⁺) 342; ¹HNMR(300MHz,CDCl₃)\delta: 4.35(s, 2H, N-CH₂), 2.32(s, 3H, CH₃), 6.54, 7.68, 7.76(m, 4H, Quinoline-H), 7.21, 7.34, 7.41(m, 5H, Aromatic-H).

7-bromo-1,4-dihydro-4-oxo-1-((**5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile** (**5d**) **IR(KBr)** v_{max} cm⁻¹: 3095(Ar C-H str), 2115(C=N str), 1715(C=O str), 1621(C=N str), 1145(C-O-C str), 559(C-Br str); Mass m/z (M⁺) 406; ¹HNMR(300MHz,CDCl₃)\delta: 4.33(s,2H, N-CH₂), 6.75, 7.52, 7.78(m, 4H, Quinoline-H), 7.20, 7.35, 7.42(m, 5H, Aromatic-H).

8-methoxy-1,4-dihydro-4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile (5e) IR(KBr) v_{max} cm⁻¹: 3095(Ar C-H str), 2115(C=N str), 1715(C=O str), 1621(C=N str), 1154(C-O-C str). ; Mass m/z (M⁺) 358; ¹HNMR(300MHz,CDCl₃) δ : 4.33(s, 2H, N-CH₂), 3.60(s, 3H, OCH₃), 6.60, 7.62, 7.72(m, 4H, Quinoline-H), 7.21, 7.32, 7.40(m, 5H, Aromatic-H).

7,8-dichloro-1,4-dihydro-4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile (5f) IR(KBr) υ_{max} cm⁻¹: 3010(Ar C-H str), 2124(C≡N str), 1719(C=O str), 1632(C=N str), 1140(C-O-C str), 772(C-Cl str).; Mass m/z (M⁺) 396; ¹HNMR(300MHz,CDCl₃)δ: 4.30(s,2H, N-CH₂), 6.60, 7.56, 7.68(m, 3H, Quinoline-H), 7.20, 7.36, 7.43(m, 5H, Aromatic-H).

8-ethyl-1,4-dihydro-4-oxo-1-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)quinoline-3-carbonitrile (5g) IR(KBr) υ_{max} cm⁻¹: 3095(Ar C-H str), 2987(C-H str CH₃), 2115(C=N str), 1715(C=O str), 1621 (C=N str), 1135(C-O-C str).; Mass m/z (M⁺) 356; ¹HNMR(300MHz,CDCl₃)δ: 4.35(s,2H, N-CH₂), 1.26(t, 3H, CH₃), 2.64(q, 2H,

O-C str).; Mass m/z (M⁻) 356; ⁻HNMR(300MHz,CDCl₃)6: 4.35(s,2H, N-CH₂), 1.26(t, 3H, CCH₂), 6.54, 7.60, 7.70(m, 4H, Quinoline-H), 7.22, 7.35, 7.42(m, 5H, Aromatic-H).

Antibacterial Activity

The compounds 5a-g were screened for their antibacterial activity against four different strains, viz three gram positive bacteria (*Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis*) and one gram negative bacteria (*Escherichia coli*) at 250 & 500 μ g/l concentrations by filter paper disc method [14,15]. Standard antibacterial drugs Ciprofloxacin, Ampicillin were also tested under the similar conditions for comparison. Antifungal activity was carried out against *C.albicans* and the results were compared with the standard drugs Ketoconazole, Fluconazole by the same method. The results of the antimicrobial screening reveal that some of the synthesized compounds exhibit good antibacterial and antifungal activities. The antimicrobial screening results are presented in Tables 2 and 3.

	Concentration	Zone of inhibition (mm)					
Compound code	Concentration		Gram -ve				
	µg/III	Staphylococcus aureus	Pseudomonas aeruginosa	Bacillus subtillis	Escherichia coli		
5a	250	10	10	12	08		
	500	12	12	15	10		
5b	250	11	11	14	07		
	500	12	12	17	09		
5c	250	07	13	08	06		
	500	09	15	09	07		
5d	250	11	11	14	09		
	500	12	12	16	10		
5e	250	08	14	08	06		
	500	09	15	09	08		
5f	250	11	12	13	10		
	500	12	13	14	12		
5g	250	11	07	07	07		
	500	12	08	08	08		
Ciprofloxacin	250	29	30	28	28		
	500	34	32	30	31		
Ampicillin	250	23	25	21	25		
	500	26	28	23	27		

Table 2: Antimicrobial screening of compounds 5a-g

Table 3: Antifungal screening of compounds 5a-g

Compound code	Concentration	Zone of inhibition (mm)		
Compound code	µg/ml	C.albicans		
5.	250	08		
58	500	12		
5 h	250	15		
50	500	17		
5.	250	10		
30	500	12		
54	250	09		
50	500	12		
50	250	09		
Je	500	11		
56	250	11		
51	500	12		
5 ~	250	08		
Jg	500	11		
Ketoconazola	250	26		
Retocollazole	500	30		
Elucopazolo	250	23		
Fluconazole	500	25		

RESULTS AND DISCUSSION

The antimicrobial screening revealed that all the compounds tested showed moderate to good antibacterial and antifungal activities against tested pathogenic strains. From the result it was found that compounds **5a**, **5b**, **5d** and **5f** showed maximum antibacterial activity against *P.aeruginosa*. While compounds **5c** and **5e** have maximum activity against *B. subtilis* and compound **5g** has maximum activity against *S. aureus*. Compound **5f** has maximum activity against Gram Negative bacteria i.e. *Escherichia coli*. Antibacterial activity was compared with ampicillin & ciprofloxacin. The data of bacterial activity against *C. albicans*. The remaining compounds of the entire series possess moderate to good activity. The antifungal activity was compared with fluconazole and ketoconazole. The data of antifungal activity is presented in **Table 3**. All compounds were less potent than standard drugs ampicillin, ciprofloxacin, fluconazole and ketoconazole.

Acknowledgements

The authors express their gratitude to UGC, New Delhi, INDIA for providing financial support to the work and Indian Institute of Science (IISc), Bangalore for providing ¹H-NMR and Mass spectra.

REFERENCES

[1] W. R. Tully, C. R. Gardner, R. J. Gillespie, R. Westwood, J. Med. Chem., 1991, 34, 2060–2067.

[2] K. Manjunatha, B. Poojary, P. L. Lobo, J. Fernandes, N. S. Kumari, Euro. J. Med. Chem., 2010, 45, 5225–5233.

[3] B. S. Holla, R. Gonsalves, S. Shenoy, Eur. J. Med. Chem., 2000, 35, 267–271.

[4] A. Darque, A. Dumètre, S. Hutter, G. Casano, M. Robin, C. Pannecouque, N. Azas, *Bioorg Med Chem Lett.*, 2009, 19, 5962-5964.

[5] G. B. Sokolova, A. D. Kunichan, Lazareva IV. Antibiot Khimioter., 2009, 54, 31-37.

[6] L. J. Huang, M. C. Hsieh, C. M. Teng, K. H. Lee, S. C. Kuo, Bioorg. Med. Chem., 1998, 6 1657-1662.

[7] C. H. Liao, C. C. Tzeng, C. M. Teng, Eur. J. Pharmacol., 1998, 349, 107-114.

[8] J. D. Oriel, Rev. Infect. Dis, Suppl., 1989, 5, 1273-1276

[9] Y. Xia, Z. Y. Yang, P. Xia, T. Hackl, E. Hamel, A. Mauger, J. H. Wu, K. H. Lee, J. Med. Chem., 2001, 44, 3932-3936.

[10] D. Drygin, A. Siddiqui-Jain, S. O'Brien, M. Schwaebe, A. Lin, J. Bliesath, C. B. Ho, C. Proffitt, K. Trent, J. P. Whitten, J. K. Lim, D. Von Hoff, K. Anderes, W. G. Rice, *Cancer Res.* **2009**, 69, 7653-7661.

[11] Q. D You, Z. Y. Li, C. H. Huang, Q. Yang, X. J. Wang, Q. L. Guo, X. G. Chen, X. G. He, T. K. Li, J. W. Chern, J. Med. Chem., 2009, 52, 5649-5661.

[12] L. C. Chou, J. S. Yang, L. J. Huang, H. C. Wu, C. C. Lu, J. H. Chiang, K. T. Chen, S. C. Kuo, J. G. Chung, J. Gastroenterol., 2009, 44, 1055-1063.

[13] J. Azéma, B. Guidetti, J. Dewelle, B. Le Calve, T. Mijatovic, A. Korolyov, J. Vaysse, M. Malet-Martino, R. Martino, R. Kiss, *Bioorg. Med. Chem.*, **2009**, 17, 5396-5407.

[14] M. J. Pelczar, E. S. Chan, J. R. Pelczar, N. R. Krieg, Microbiology. 5th edition. McGraw-Hill Book Company, **1997**, 73-98.

[15] Hiren R. Patel, Parth K. Patel, Dhrubo Jyoti Sen and Amit H. Patel, *Inter. J. Drug Development and Research.*, **2010**, 2(1), 190-196.