Designing, synthesis and pharmacology of some novel 4-{4-(4-bromobenzyliden)amino}piperidin-1-yl)-5-aryl-3-thiol-4H-1,2,4-triazole

Nidhi Chaudharya, Ranjana Dubeyb and Hament Panwarc*

aDepartment of Chemistry, M. I. E. T., Meerut, U.P., India
bDepartment of Chemistry, S.R.M. University, Modinagar, Ghaziabad, U. P., India
cDepartment of Chemistry, Neelkanth Institute of Technology, Modipuram, Meerut, U. P., India

ABSTRACT

In the current study design, synthesis and biological evaluation of several substituted 1,2,4-triazoles have been reported. Structures of the synthesized substituted triazoles were characterized by IR, 1H-NMR, Mass and elemental analysis (C, H, N). Synthesised triazoles were screened for antibacterial, antifungal and insecticidal activities.

Keywords: Antibacterial, antifungal, insecticidal, 1,2,4-triazoles.

INTRODUCTION

1,2,4-triazole containing ring systems explored a wide variety of therapeutically interesting drug candidate including antiseptic, analgesic, anti-convulsant, antibiotic \cite{1}, anti-allergic \cite{1}, anti-inflammatory \cite{1-10,13}, diuretic \cite{1,5,8}, fungicidal \cite{3,4,10-13}, insecticidal \cite{3,10,13}, herbicidal \cite{3,10,13}, antibacterial \cite{3-6,11,12}, antiviral \cite{2-5,7,8,10}, antidepressant \cite{2,5,9}, antimicrobial \cite{2-5,7,10-12}, antitumor \cite{3,6,9-10}, antihypertensive \cite{5,8-9}, and antimigraine compounds \cite{7}. In addition many triazole drugs are under clinical use, e.g. anastrozole, rizatriptan, nefazodone, vorozole, ribavirin, fluconazole, letrozole and uniconazole, which possess the 1,2,4-triazole moiety as block material. Furthermore triazoles also displayed their versatility in industries as precursors for photosensitive materials as inks and toners \cite{14}, polymer chemistry \cite{11}, and others \cite{15-16}. In the current study we tried to design, develop some novel 1,2,4-triazole derivatives with the chemical modifications including joined tetrahydro-2H-pyran-4-amine and 4-bromo benzaldehyde moieties.

MATERIALS AND METHODS

All the chemicals used for the preparation of desired derivatives, were obtained from Sisco Research Laboratories (SRL), Mumbai, India; Qualigen Fine Chemicals, Mumbai, India. The melting points of the compounds were determined in open glass capillaries with the help of thermonic melting points apparatus and are uncorrected. The homogeneity of all the newly synthesized compounds was routinely checked by TLC on silica gel G plates and spots were located by using iodine chamber. Elemental analysis was performed in Heraeus CHN rapid analyser. The results were found within the ±0.4% of theoretical values. Infrared spectra were recorded on KBr pellets on a Perkin Elmer system 2000 FT-IR spectrometer and 1H NMR spectra on Bruker DPX 200 using TMS as internal standard.

Antimicrobial Tests

All the newly synthesized compounds were screened for their antibacterial and antifungal activity against the clinically isolated and identified microbial strains. The pathogens were obtained from the Department of Pathology, L.I.R.M. Medical College, India. Preliminary antimicrobial susceptibility test for the newly synthesized compounds 3a-f, 4a-f and 5a-b were screened for their antibacterial and antifungal activity. Disk diffusion method \cite{21-22} was used for determination of the preliminary antibacterial activity. While on the other hand, the newly prepared
An ethanolic mixture of compound 2a-f (0.01 mol) and 4-bromobenzaldehyde (0.01 mol) in the presence of few drops of glacial acid was refluxed for 3 hr. On completion of reaction, excess of ethanol was distilled, residue poured on crushed ice and resultant solid was recrystallized from ethanol to yield compounds 3a-f.

Insecticidal study

Periplaneta americana was taken for insecticidal study and 1 and 2% acetone solutions of the synthesized 2-substituted benzimidazole derivatives 3a-f were injected in between 4th and 5th abdominal segment on the ventral side of the body of *P. americana* with the help of micro syringe. The time of cockroach’s death was recorded as knock down (KD) value. Cypermethrin was used as standard drug. At the time of death the antennae of *P. americana* became motionless, the appendages shrunk and folded towards the ventral side and cockroach lay dorsally [25] (Table-2).

Synthesis

General preparation of 4-(4-Aminopiperidin-1-yl)-5-aryl-3-thiol-4H-1,2,4-triazole 2a-f

A dimethylformamide solution of 3-Aryl-4-amino-5-mercaptotriazoles [26-29] 1a-f (0.01 mol) and tetrahydro-2H-pyran-4-amine (0.01 mol) was refluxed for 3-5 h. Excess of solvent was distilled off, residue dumped in ice-water, washed, filtered, dried to afford crude 2a-f. Crude products was recrystallised with appropriate solvents.

4-(4-Aminopiperidin-1-yl)-5-phenyl-3-thiol-4H-1,2,4-triazole 2a: Yield 68%, mp 159 0C. IR (KBr, νmax cm⁻¹): 1678 (C...C of aromatic ring), 1602 (SH), 1556 (C=N), 1520 (N-N), 1304 (C=N). 1H NMR (CDCl3, δ ppm): 2.02-2.51 (t, 9H, -N-CH2), 4.56 (brs, 2H, NH2), 6.71-7.12 (m, 5H, ArH), 12.63 (s, 1H, HS). MS: [M]+ 275.37 at m/z. Anal. Calcd for C13H13N3S: C, 56.70; H, 6.22; N, 25.43; found: C, 56.58; H, 6.75; N, 25.45.

4-(4-Aminopiperidin-1-yl)-5-(2-hydroxy)phenyl-3-thiol-4H-1,2,4-triazole 2b: Yield 61%, mp 167 0C. IR (KBr, νmax cm⁻¹): 1684 (C...C of aromatic ring), 1610 (SH), 1560 (C=N), 1521 (N-N), 1300 (C=N). 1H NMR (CDCl3, δ ppm): 2.00-2.59 (t, 9H, -N-CH2), 4.50 (brs, 2H, NH2), 6.67-7.05 (m, 4H, ArH), 10.50 (s, 1H, OH), 12.63 (s, 1H, HS). MS: [M]+ 291.37 at m/z. Anal. Calcd for C13H13N3SO: C, 53.59; H, 5.88; N, 24.04; found: C, 53.57; H, 5.79; N, 24.10.

4-(4-Aminopiperidin-1-yl)-5-(3-hydroxy)phenyl-3-thiol-4H-1,2,4-triazole 2c: Yield 64%, mp 154 0C. IR (KBr, νmax cm⁻¹): 1682 (C...C of aromatic ring), 1606 (SH), 1555 (C=N), 1524 (N-N), 1305 (C=N). 1H NMR (CDCl3, δ ppm): 2.10-2.54 (t, 9H, -N-CH2), 4.60 (brs, 2H, NH2), 6.70-7.00 (m, 4H, ArH), 10.44 (s, 1H, OH), 12.52 (s, 1H, HS). MS: [M]+ 291.37 at m/z. Anal. Calcd for C13H13N3SO: C, 53.59; H, 5.88; N, 24.04; found: C, 53.57; H, 5.79; N, 24.10.

4-(4-Aminopiperidin-1-yl)-5-(2-chloro)phenyl-3-thiol-4H-1,2,4-triazole 2d: Yield 56%, mp 139 0C. IR (KBr, νmax cm⁻¹): 1680 (C...C of aromatic ring), 1606 (SH), 1564 (C=N), 1526 (N-N), 1303 (C=N). 1H NMR (CDCl3, δ ppm): 2.04-2.67 (t, 9H, -N-CH2), 4.53 (brs, 2H, NH2), 6.59-7.02 (m, 4H, ArH), 10.55 (s, 1H, OH), 12.60 (s, 1H, HS). MS: [M]+ 291.37 at m/z. Anal. Calcd for C13H13N3Cl: C, 53.59; H, 5.88; N, 24.04; found: C, 53.61; H, 5.90; N, 24.00.

4-(4-Aminopiperidin-1-yl)-5-(2-chloro)phenyl-3-thiol-4H-1,2,4-triazole 2e: Yield 52%, mp 172 0C. IR (KBr, νmax cm⁻¹): 1685 (C...C of aromatic ring), 1608 (SH), 1558 (C=N), 1523 (N-N), 1309 (C=N). 1H NMR (CDCl3, δ ppm): 2.07-2.55 (t, 9H, -N-CH2), 4.51 (brs, 2H, NH2), 6.78-7.20 (m, 4H, ArH), 12.48 (s, 1H, HS). MS: [M]+ 309.82 at m/z. Anal. Calcd for C13H13N3Cl: C, 50.40; H, 5.21; N, 22.60; found: C, 50.44; H, 5.25; N, 22.62.

4-(4-Aminopiperidin-1-yl)-5-(2-chloro)phenyl-3-thiol-4H-1,2,4-triazole 2f: Yield 48%, mp 160 0C. IR (KBr, νmax cm⁻¹): 1687 (C...C of aromatic ring), 1605 (SH), 1560 (C=N), 1520 (N-N), 1304 (C=N). 1H NMR (CDCl3, δ ppm): 2.00-2.51 (t, 9H, -N-CH2), 4.58 (brs, 2H, NH2), 6.68-7.18 (m, 4H, ArH), 12.58 (s, 1H, HS). MS: [M]+ 309.82 at m/z. Anal. Calcd for C13H13N3Cl: C, 50.40; H, 5.21; N, 22.60; found: C, 50.38; H, 5.22; N, 22.57.

General preparation of 4-(4-(4-bromobenzylidene)amino)piperidin-1-yl)-5-aryl-3-thiol-4H-1,2,4-triazole 3a-f

An ethanolic mixture of compound 2a-f (0.01 mol) and 4-bromobenzaldehyde (0.01 mol) in the presence of few drops of glacial acid was refluxed for 3 hr. On completion of reaction, excess of ethanol was distilled, residue poured on crushed ice and resultant solid was recrystallized from ethanol to yield compounds 3a-f.
were evaluated for antibacterial, antifungal and insecticidal activities.

RESULTS AND DISCUSSION

Chemistry

Synthetic strategy is depicted in scheme-1. 3-Aryl-4-amino-5-mercapto triazoles and tetrahydro-2H-pyran-4-amine were refluxed to furnish 4-(4-aminopiperidin-1-yl)-5-aryl-3-thiol-4H-1,2,4-triazole...

domestic Activities: During antimicrobial screening, the prepared derivatives were evaluated against...
fungal strains. Compound 3d and 3e revealed almost equal antimicrobial potential. Compound 3e and 3f showed inhibition against the used antimicrobial strains but compound 3f was the most potent derivative. Compound 3f demonstrated remarkable activity in comparison to the used microbial strains.

Insecticidal activity results cleared that among the tested compounds 3a-f, compound 3d showed better KD values at two different doses- 1% and 2% against P. americana. Compound 3f displayed considerable insecticidal potential in comparison to used standard cypermethrin.

Table 2: Insecticidal activity of 4-{4-(4-bromobenzylidene) amino} piperidin-1-yl)-5-aryl-3-thiol-4H-1,2,4-triazole 3a-f at two different concentrations (KD value in min.)

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R</th>
<th>1%</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>C,H6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3b</td>
<td>2-OH, C,H6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>3-OH, C,H6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3d</td>
<td>4-OH, C,H6</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>3e</td>
<td>2-Cl, C,H6</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>3f</td>
<td>4-Cl, C,H6</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- means no activity.

R = C,H6, 2-Cl,C,H6, 3-Cl,C,H6, 4-Cl,C,H6, 2,4-Cl2,C,H4

Scheme-1
CONCLUSION

On the basis of structure activity relationship, it was found that presence of electron-withdrawing group on the aromatic ring showed remarkable antibacterial and antifungal activity. Among the biologically screened compounds 3a-f only derivative 3e and 3f elucidated better biological potency. On the basis of structure-activity relationships (SAR), among the all 1,2,4-triazole derivative 3a-f, 4-chloro phenyl substitution was responsible to enhance the antibacterial and antifungal activity.

Acknowledgement
We are thankful for Mr. Brijver Singh, Chairman and Dr. Dinesh Chandra Sharma, Vice chairman, Neelkanth Institute of Technology, to provide essential support and facilities.

REFERENCES