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ABSTRACT

In this work, the diffusion coefficient of sucrosms determined in four experiments by varying thidiai
concentrations at different time rates. The amafrducrose that diffused into the solvent colums determined
via a coulometric assay developed by Dubois elna200secs and at initial concentration of 0.5ghthe rate of
diffusion was 99.43% while at the initial concetima of 3.0gmL* and in 800 secs the rate of diffusion was 99.88%.
From the concentrations obtained after diffusionsvadlowed at the different time ranges, the averdiftision
coefficient of 4.64 x 1f&nfs® was obtained. This value is in agreement with ttaained from literature (4.586 x
10%cntS?). The hydrodynamic radius of the sucrose was apresgtly evaluated to be 51.34pm.

Key words: Diffusion coefficient, solvent column, hydrodynaméxdius.

INTRODUCTION

Studies of reaction kinetics and the bulk fluid gedies of liquids often require fundamental kna¥ge of mass
transport in the condensed phase. The movemenbletcoies (considered in this experiment as thetsdtua dilute
solution) arises from one of the most basic progerof fluids, namely, the constant random motidntre
constituent molecules. Even when there is no ditkdriving force for mass transport, such as a eonation
gradient or a gravitational field (i.e., an isotipnedium), molecules are observed to undergo aahgandom
displacements. A well-known example of this phenoameis Brownian motion in which a particle moves in
continual zigzag patterns. Over a long time petime is nmetdisplacement of the particle because in the alesenc
of a concentration, chemical, or potential energdgent the probability of motion in any one difentis equal to
the probability of motion in exactly the opposiieegtion.[1]

In this experiment, the directed displacement oferules in solution will be considered. The drivifogce for this
motion is aconcentration gradienthus solute will spontaneously flow from a regidrhigher concentration to one
of lower concentration in a one-phase system. Phixess results in an entropy increase correspgrdirthe
increase in the volume available to the solutetamdves into a more dilute environment; in thisssenwe are
dealing with an “entropy of mixing” phenomenon.

In the most general case, the driving force caugiegchange in local concentration of a solutexggessed in terms
of the anisotropy (spatial asymmetry) of the cheinpotential, . If we consider one-dimensionaliom{along the
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x axis), the instantaneous velocity of a molecujejs proportional to the gradient of the chemicalgmtial at that
point, thus

vy =—u (%) (cms™1), (1D

X

where the proportionality constant, u, is callegirtfobility. The negative sign indicates that the molecule maves
direction from higher to lower chemical potentiat,., opposite to the gradient.can also be expressed in terms of
an- other constanD, called the diffusiorcoefficientas

— D -1
U=z (sg™, @)

wherek is the Boltzmann constant and T is the absolut@éeaiure. Equation (2) is known as tiernst-Einstein
relation, from which it can be seen thathas dimensions of ¢si* [2]

If the concentration of the solutg, is the number of moles per dntheflux, J,, is defined as the number of moles
passing through a unit cross section, {cper second, henck = v,C, and equations (1) and (2) can be combined
and written

f= 0= =0 (D) (motes em2s71) (3)
*OFE T RT T \ox/,

Now if the chemical potential is expressed in teoha concentration standard stat& @ mole dri?, u = |f + RT
In C, the concentration dependence of du becomes diiddrRC) = (RT/C)dC, and if this relation is sulbgted
into equation (3), we obtain

oc
Jx = =D(0)i 4)
This is known as Fick's first law and is a more @fie statement of mass transport than equation ABpther
fundamental law of mass transport, known Fsk’'s second lawis obtained from equation (4) through an
application of the conservation of mass known addtv of continuity.The change in the flow rate (flux) after a
system has moved from one volume element to anashegual to the concentration difference of théunm
elements (per unit time). Mathematically, thisxpmessed as

a] oc
@G o
ox/ ot/
By differentiating equation (4) with respectt@and equating the result with that in equation ¢Bg obtains
G L S
ox),  dx " \ox/I (6)
If we takeD to be independent of the diffusion distarxcavhich is to say the solute concentration, Fidesond
law then reads
(0”6) _) 7*c ;
ot)y  “\ox?) <0

The solution of equation (7) will describe the spardtime dependence of the solute concentration asdéergoes
diffusion. In order to solve this differential edios and apply the solution to the determinationtted diffusion
coefficient, it is important to consider the phydianethodology of the experiment. A homogenous t&oiu
containing the solute at a concentrat{dis placed in a cylindrical vessel. This solutigrsuddenly but quiescently
(i.e, without disturbance) placed in contact witlr@solvent contained in a cylinder of the sanaenditer such that
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the circular surfaces of the two liquids come idicect contact. The solution and solvent columnkjctv are
quiescent i.e., no physical agitation), remain amtact for a measured period of time during whikh solute
spontaneously diffuses into the solvent. The twaill columns are then separated at the same ptabeia original
contact, and the amount of solute that has diffustml the solvent column is then determined. Thecedure is
shown schematically in Figure 1. The apparatus usdtiis experiment was devised by Polson [1,2] dse in
determining the diffusion coefficient of a virusdais described in more detail below. The foregaiiggussion of
the experimental design allows us to establistbthendary conditions appropriate to the solutioeafiation (7)

—
[
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lution
;:s;l 1<0 conc. profile cell 50 conc. profile
BEFORE MIXING AFTER r.v1|x|NG
Fig. 1: Polson cell positions and concentration profiles before mixing (left) and after mixing (right)
Att <0,C=Cy,forx>0 and C =0 forx<0. (8a)

Att>0,C->Ciasx >+ and C - 0asx — —oo, (8b)
and
Ast — oo,C — constant.

As is indicated in equation (8b) the columns ofilijare presumed at this point to be infinitelydon

Fick’'s second law, equation (7) subject to the @&dowundary conditions, has the following solutiopx,§ [3]. It is
important to realize that this solution is validyfor finite times, i.e., after diffusion has corenced (t >0).

C(x,t) = %{1 —erf [ﬁ]}, 9

where erf denotes the error function,

Values of erf (w) can be obtained from standarchesaiatical tables. It should be noted that in this-dimensional

solution of Fick's second law, the space and tiruéables x andt, are linked in the formx¢ ~'/2); see equation (9).
In order to express the diffusion coefficient imme of experimentally measurable quantities, equaf®) is first

differentiated with respect to x:

oC\  —Cp 1 —x? i
(5);7 Wt)m] exp (m) an

This is the concentration gradient expressed ametibn of x and t. If we now evaluate this gradianthe original
interface x = 0 (see Figure 1), we have

oc — b
(E)m © = 2Dz 12

The concentration gradient in equation (12) can hevgubstituted in Fick’s first law, equation (@hd defining the
flux asJ = (1/A)dn/dt,we have
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dn - CO _ ADl/Z CU

—=-AD = ,
dt 2(neDt)V2  2(mt)1/?

(13)

wheredn is the number of moles transported through thesesectional area, A, (across the original boundtxy=
0) in the timedt. Equaiton (13) may now be integrated to providettital number of moles of solute that diffuses
across the = 0 boundary during a time

"d _AD'2Cy (*t dt
fo n= —Zﬁ , m (14—)
or
1/2
n=A4 (E) CtV/? (15)

The length of the “solvent” cylinder is, in facinite, i.e.,h cm high. Thebulk (mixed) concentration of solute that
has diffused during the time interwak thenC = n/Ah Substituting n into equation (15) and solving Ebprovides
the final result for the measured diffusion coeéfitt [4]:

h2(C/Cy)*m
D= % (cm?s™1) (16)
Interestingly, the diffusion coefficient can be dde determine not only quantitative transport rties of a solute
but also certain structural characteristics ofgbkite in a given solvent environment. The relatiop between the
diffusion coefficient and the “size” of the solugecontained in th&tokes-Einsteine equatiolh.expresses §) the
diffusion coefficient atinfinite dilution, in terms of the solvent viscosity, and the “effective” radiusR’, of the
solute:

kT
DO - 61TI]R’ (17)
k is the Boltzmann constant afids the absolute temperature. There are severalriant assumptions implicit in
equation (17). Two of these are that the solutepiserical, and considerably larger than the solveolecules.
Deviations from spherical geometry (such as obdaterolate ellipsoids) could cause equation (1®eadn error up
to about 30 to 40 percent [3]. For solutes of amdize to that of the solvent, the 6 in the dematar of (17) is
sometimes replaced by 4. Stoke's law was actuatlyebbped to deal with macroscopic particles, anastein
successfully applied it to the quantitative obsgoraof the random displacements (Brownian motioholloidal
particles. The falling-sphere method of measuringcosities is an explicit application of Stoke’swlao a
macroscopic body. Stoke’'s law was also invokechitteatment of falling oil drops in the famous exqment by
Millikan et al. in 1909. [5]

It is remarkable that a fluid dynamic treatmentnodss transport pertaining to 0.01 — to 1-cm objéetsich
underlies the development of the Stokes-Einsteiratign) can be successfully extended to the leiehaecular
dimensions, i.e., ~30 Einstein’s application of Stoke’s law to Browniamotion (1905) provided a theoretical basis
that was used to support the then still unaccepteal of atomicity — that molecules are specifiscdite entities.

The diffusion coefficient reflects the transporoperties of the solute undeolvatedconditions and therefore the
“effective radius,”R, represents the radius of the solute that mayadordiound (e.g., hydrogen-bonded) solvent
molecules that on a time-averaged basis are pateofolute structure. The effective radius, whietiudes the
associated solvation shell, is referred to astrdrodynamic radius.

Using the Strokes-Einstein equation (17) to esténlé hydrodynamic radius of a solute requires kedge of B3.
Some of the assumptions that underlies this equatiould seem to make its application semiquantiatit best
[after all, the measurement a@ine number(the diffusion coefficient) cannot provide much drhation about
something as complex as molecular structure]. Neglass, some insight into the gross structure obfased
molecules (including biologically significant maamnolecules) can be obtained. In this experiment, diffeision
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coefficient of sucrose in aqueous solution willdeermined at different concentrations, &ydwill be obtained by
extrapolation. The concentration dependenc® @ observed to be very slight, and a linear exti@pon to zero
concentration can be empirically justified [6]. Thgdrodynamic radius will be estimated frddg and the Stokes-
Einstein equation. Sucrose is a disaccharide irchwtwo cyclic forms of simple sugars, glucose angtbse, are
linked together. The structure is shown below.

H
HO CH, OH
0
H
HO™ \
H H
0
CH,OH H
Hof——0
H {—CHoH
HO :

It is obvious that in aqueous solution there israpiable hydrogen bonding between the solvent hedsticrose
molecule.

MATERIALSAND METHODS

The Polson apparatus is shown in Figure 2.

It consists of two cylinders constructed from aarirmaterial such as stainless steel, brass, arzbrd&six 1/4-in-
diameter cylindrical holes, or columns, precisgdaced 60 apart, are drilled into the two cylinders. The Bbles
completely pass through the upper cylinder anditeata in a blind end in the lower one. The two rgérs are in
close, fluid-tight contact, the upper one beinggtesd to rotate smoothly with respect to the looee.
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Figure 2: Diagram of the Polson cell

The upper cylinder is first rotated to a positionwhich the two columns are in precise alignmefite Folution
(concentratiorCy) is then added to thredternatechambers so that the liquid levels are slightipvethe boundary
plane between the two cylinders. The upper cylinsi@ext rotated by about 1/12 revolution so thatthree empty
chambers are situated above the boundary surfabe ¢dwer cylinder. These chambers are then filétl solvent,
and the upper cylinder Howly and steadily rotatedhead(i.e., clockwise, viewed from above) so that thiveat-
filled chambers are precisely (and quiescentlycgdaabove the solution-filled chambers. The uppdinaer
contains notches allowing the user to determinervthe upper and lower cylinder holes are in alignine

At this point, a discontinuous concentration gratlies created between the upper and lower chamfibes
concentration profile now represents a step fungtié\ timer is then started. After an appropridateet ¢) has

elapsed, the upper cylindersowly rotatedbackby 1/12 revolution to separate the upper and lakembers, and
the contents of the three isolated upper chamhbers@mbined and mixed. The solute concentrat©onaf the

sampled liquid is then determined, and the diffusggoefficient is calculated through equation (I&)is procedure
can be repeated using different diffusing time andtitial solute concentrations.

RESULTSAND DISCUSSION

Table 1 below gives results of diffusion measuremebtained.
Table 1: Diffusion M easur ements
Upper Chamber height = 3cm Temperature *C2801K)

Expt Initial conc. gmI*  Contact time (secs) Resulting conc. D
10%gmL? 10%cn?s?

1 0.t 20C 2.8t 4.58¢
2 1.0 400 8.05 4.581
3 25 600 24.67 4.590
4 3.C 80C 35.02 4.82(
D =4.64

The diffusion of solute into solvent is, in factbiateral process consisting of : (1) the solutdenules moving up
into solvent; and (2) the solvent molecules mowitogvn into solution. This intermingling of solute casolvent
molecules goes on, so that ultimately a solutiorumiform concentration results. It is this tendenoyequalize
concentration in all parts of the solution whichrésponsible for the diffusion of the solute. Thiliffusion of solute
will also take place when two solutions of unege@hcentration are in contact. This diffusion precisstime and
concentration dependent as depicted in equation The measurements carried showed that diffusitmincreases
with increase in both time and concentration. Therage value of 4.64 xTocnfs® obtained for sucrose did not
deviate much from the value of 4.586 x°t@'s™ from literature.
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Now, taking the value ob in Expt 4 as the diffusion coefficient at infinitélution (D, = 4.820 x 1Fcn?s™) and
using the Stokes-Einstein equation the effectidiug R of the sucrose is estimated at 51.34pm.inAgais
empirical value is reasonably rational.

Because the drift speed governs the rate at whiahge is transported, we might expect the conditztiv decrease
with increasing solution viscosity and ion sizepEsiments confirm these predictions for bulky i¢ssch as BN*
andR(,, but not for small ions. For example, the molanductivities of the alkali metal ions increasenfrbi® to
Cs" even though the ionic radii increase. The pardsogsolved when we realize that the radius R énfthmula is
the hydrogynamic radiusf the ion ie its effective radius in the solutiaking into account all the 4& molecules it
carries in its hydrogen sphere. The very low vadfieghe sucrose hydrodynamic raidus goes to exptaitigh
solubility in water.
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