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ABSTRACT 
 
The most detrimental missense mutations of TAR DNA Binding Protein 43 causing Fronto Temporal Lobar 
Degeneration were identified computationally and the substrate binding efficiencies of these mutations were 
analyzed. Out of 24 variants, I-Mutant 2.0, SIFT and PolyPhen programs identified 1 variant (D169G) that was less 
stable, deleterious and damaging respectively. Modeling of this one variant was performed to understand the 
change in their conformations with respect to the native TAR DNA Binding Protein 43 by computing their RMSD 
and Total energy. The native and the variant were docked with RNA to explain the binding efficiencies of those 
detrimental missense mutations. The loss of binding affinity with their interacting protein namely RNA was 
investigated by computing the flexibility of binding amino acids of TAR DNA Binding Protein 43 with their 
interacting proteins and computing the binding free energy (∆G) between native and mutant complexes. The novelty 
of our work is to identify and validate the detrimental missense mutations based on structural stability which could 
be reliable and competent with other computational programs. 
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INTRODUCTION 
 

Fronto temporal lobar degeneration (FTLD) is a neurodegenerative disease that selectively affects the anterior 
portions (i.e. frontal lobes, temporal lobes and amygdala) of the brain. FTLD typically has its onset in mid adulthood 
and is estimated to account for up to 20% of all cases of pre-senile dementia. It has prevalence similar to that of 
early-onset of Alzheimer’s disease which is associated with dramatic changes in emotion [1]. The major 
pathological change in FTLD is the substantial gliosis which is associated with cell loss. Unlike other degenerative 
diseases affecting the cortex, FTLD is also characterized by substantial gliosis in the white matter as indicated by the 
descriptive diagnosis of progressive subcortical gliosis [2]. FTLD collectively constitutes a common cause of 
dementia, particularly in younger age groups and these can be broadly classified according to the major constituents 
of the cellular inclusions present [tau, TARDNA-binding protein 43 (TDP-43) or fused-in-sarcoma (FUS)protein, 
designated FTLD-tau, FTLD-TDP or FTLD-FUS, respectively. A number of causative genes have been identified, 
of which the genes coding microtubule-associated protein tau (MAPT) and progranulin (GRN) are the most 
important [3].  
 
Fronto temporal dementia (FTD) is the second most common young-onset dementia and is clinically characterized 
by progressive behavioral change, executive dysfunction and language difficulties. Three clinical syndromes, 
behavioral variant FTD, semantic dementia and progressive non-fluent aphasia, form part of a clinicopathological 
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spectrum named fronto temporal lobar degeneration (FTLD). 30-50% of FTD is familial, and mutations in two 
genes, microtubule associated protein tau and Progranulin (GRN), account for about half of these cases. Rare defects 
in VCP, CHMP2B, TARDP and FUS genes have been found in a small number of families. Linkage to chromosome 
9p13.2e21.3 has been established in familial FTD with motor neuron disease, although the causative gene is yet to 
be identified [4]. Approximately 40–50% of FTD cases express the microtubule associated protein tau in the 
inclusion bodies (tau+), and are categorized as Pick’s disease, corticobasal degeneration (CBD), progressive 
supranuclear palsy (PSP) or neurofibrillary tangle dementia. Most of the remaining 50–60% of cases (tau) has 
inclusions, which are Tau and Synuclein Negative, but intensely labelled by antibodies to Ubiquitin, known as 
ITSNU, ubiquitin-only inclusions or most commonly motor neuron disease-type inclusions, with the acronym FTD–
MND used for the disease. The term fronto temporal lobar degeneration is used in rare tau cases where no inclusion 
bodies are found [5,6,7]. Fronto temporal lobar degeneration (FTLD) often overlaps clinically with corticobasal 
syndrome (CBS) and progressive supranuclear palsy (PSP), both of which have prominent eye movement 
abnormalities. Eye movement abnormalities are sensitive markers of neurological disease and are useful in the 
differential diagnosis of a variety of clinical neurological syndromes. CBS and PSP are clinically, genetically and 
pathologically related to fronto temporal lobar degeneration(FTLD), a common cause of dementia in individuals 
with disease onset at age 65 as well as PSP related oculomotor abnormalities are present in FTLD, comprises three 
core clinical dementia syndromes, a behavioral and dysexecutive (or frontal) variant called fronto temporal dementia 
(FTD), and two forms of primary progressive aphasia, a temporal lobe variant, also called semantic dementia (SD), 
and a progressive non-fluent apahasia [8,9]. Clinical Pick’s disease, more recently referred to as fronto temporal 
lobar degeneration which is often considered ‘heterogeneous’. Currently, clinicopathologic studies recognize that 
ubiquitinated, tau and synuclein negative inclusions, or motor neuron disease type inclusions (MNDI) are also 
common in the cortex in FTD/Pick complex, In addition, dementia lacking distinctive histology (DLDH) is applied 
when tau or ubiquitin positive inclusions are lacking. All types include lobar atrophy, neuronal loss, gliosis, 
superficial spongiosis, and often ballooned neurons, and some glial abnormality, as well as Inclusion body 
myopathy (IBM) associated with Paget’s disease of the bone (PDB) and fronto-temporal dementia (FTD), or 
IBMPFD (OMIM 167320), is a multisystem degenerative disorder caused by mutations in p97/VCP (valosin 
containing protein) on chromosome 9p12-13. IBMPFD is autosomal dominantly inherited and primarily affects 
muscle, brain and bone tissue.  The penetrance of FTD in IBMPFD patients is 30% and its onset is at a later age (54 
years) than myopathy. IBMPFD CNS pathology is tau negative and ubiquitin-positive consistent with a fronto 
temporal lobar degeneration with ubiquitinated inclusions (FTLD-U) [10,11]. Up to 40% of the individuals with 
FTLD have similarly affected first-degree relatives consistent with autosomal dominant inheritance in some patients 
due to mutations in the tau (MAPT) gene and progranulin gene (PGRN). Reported PGRN mutations include 
missense mutations generating premature stop codons, insertion or deletion mutations resulting in frame shifts or 
changes within initiation codons precluding transcription (ex A324T) [12,13]. Mental retardation affects an 
estimated 2–3% of the population. About 25% of mental retardation is believed to be caused by genetic 
abnormalities, and up to 10% is estimated to be caused by X chromosome mutations, X-linked mental retardation 
with progressive supranuclear palsy, corticobasal degeneration and Pick disease, as well as familial forms of fronto-
temporal dementia (FTDP-17T) [14]. 

 
MATERIALS AND METHODS 

 
Datasets 
The protein sequence and variants (single amino acid polymorphisms/missense mutations/point mutations) of TAR 
DNA binding protein-43 were obtained from the Swissprot database available at http://www.expasy.ch/sprot/. The 
subsection of each Swissprot entry provides information on polymorphic variants, some of which polymorphic 
variants may be disease(s) - associated by causing defects in a given protein; most of them were nsSNPs (non-
synonymous SNPs) in the gene sequence and SAPs (single amino acid polymorphisms) in the protein sequence [15-
17]. The 3D Cartesian coordinates of TAR DNA Binding Protein-43 (TARDBP-43) and its complex were obtained 
from Protein Data Bank with PDB IDs 2CQG [18] for in silico mutation modeling and docking studies based on 
detrimental point mutants. 
 
Analysis of functional consequence, functional change and stability changes in Sequence level for TAR DNA 
Binding Protein 
To evaluate the data retrieved from Uniprot, we used the program I-Mutant 2.0 for predicting the protein stability 
changes caused by single point mutations. I-Mutant2.0 is available at:  
http://gpcr.biocomp.unibo.it/cgi/predictors/IMutant2.0/ I-Mutant2. 0. cgi [19].  
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This program was trained and tested on a data set derived from ProTherm [20], which is the most comprehensive 
available database of thermodynamic experimental data of free energy changes of protein stability caused by 
mutations under different conditions. The output files showed the predicted free energy change value or sign (∆∆G). 
Positive ∆∆G values meant that the mutated protein has higher stability and negative values indicate lower stability. 
We also used the program SIFT (Sorting Intolerant from Tolerant) [21], which specifically detects deleterious single 
amino acid polymorphisms, available at http://blocks.fhcrc.org/sift/SIFT.html. SIFT is a sequence homology-based 
tool, which presumes that important amino acids will be conserved in a protein family; therefore, changes at  well-
conserved positions tend to be predicted as deleterious [22]. The cutoff value in SIFT program was tolerance index 
of ≥ 0.05. The higher the tolerance index, the less functional impact a particular amino acid substitution would be 
likely to have. Finally to analyse the damage caused by point mutation we used the server PolyPhen (Polymorphism 
Phenotyping) available at http://coot.embl.de/PolyPhen/ [23]. PolyPhen calculates position-specific independent 
counts (PSIC) scores for each of the two variants and then computes the PSIC score difference between them. The 
higher the PSIC score difference, the higher the functional impact a particular amino acid substitution would be 
likely to have. 
 
Computation of Total Energy and RMSD by Modelling the Single Amino Acid Polymorphisms location on 
Protein 3D structure 
The single amino acid polymorphism database (SAAP) [24] was used to recognize the protein encoded by TAR 
DNA binding protein 43 (PDB ID: 2CQG) available from PDB (Protein Data Bank) and identified single point 
mutation residue positions. The mutations were manually implemented using SWISSPDB viewer and the energy 
minimization for 3D structures was performed by NOMAD-Ref server [25]. This server use Gromacs as default 
force field for energy minimization based on the methods of steepest descent, conjugate gradient and L-BFGS 
methods [26].To optimize the 3D structure of TAR DNA Binding Protein 43, we used the ifold server [27] for 
simulated annealing, which is based on discrete molecular dynamics and is one of the fastest strategies for 
simulating protein dynamics. RMSD (Root Mean Squared Deviation), a parameter was used to analyse the structural 
level deviation between the native and the mutant modelled structures. Divergence of the mutant structure from the 
native structure could be caused by substitutions, deletions and insertions [28] and the deviation between the two 
structures could alter the functional activity [29,30] with respect to the binding efficiency of the inhibitors, which 
was evaluated by their RMSD values. 
 
Identification of Binding Sites and Computation of Atomic Contact Energy (ACE) between TAR DNA 
binding protein 43 and its substrate 
To compute the ACE between TAR DNA binding protein 43 and its substrate (RNA), we used the program 
PatchDock for docking the native and mutant TAR DNA binding protein 43 with RNA to compute the ACE by 
using additional option of binding residue parameter. The underlying principle of this server is based on molecular 
shape representation, surface patch matching plus filtering and scoring [31]. It finds docking transformations that 
yield good molecular shape complementarities. Such transformations, when applied, induce both wide interface 
areas and small amounts of steric clashes. A wide interface ensured that include several matched local features of the 
docked molecules that have complementary characteristics were included. The PatchDock algorithm divides the 
Connolly dot surface representation [32] of the molecules into concave, convex and flat patches. Then, 
complementary patches are matched to generate candidate transformations. Each candidate transformation is further 
evaluated by a scoring function that considers both geometric fit and atomic desolvation energy [33, 34]. Finally, an 
RMSD clustering was applied to the candidate solutions to discard redundant solutions. The main reason behind 
Patch Dock’s high efficiency is its fast transformational search, which is driven by local feature matching rather than 
by brute force searching of the six dimensional transformation spaces. It further speeds up the computational 
processing time using advanced data structures and spatial pattern detection techniques, such as geometric hashing 
and poses clustering. 
 
Calculating the Total Number of Intra Molecular Interactions Using PIC server 
We used PIC server for computing intra-molecular interactions for both native and mutant structures respectively. 
PIC (Protein Interactions Calculator) server accepts atomic coordinate set of a protein structure in the standard 
Protein Data Bank (PDB) format. Interactions within a protein structure and interactions between proteins in an 
assembly are essential considerations in understanding the molecular basis of stability and functions of proteins and 
their complexes. There are several weak and strong interactions that render stability to a protein structure or an 
assembly. It computes various interactions such as interaction between apolar residues, disulphide bridges, hydrogen 
bond between main chain atoms, and hydrogen bond between main chain and side chain atoms, hydrogen bond 
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between two side chain atoms, interaction between oppositely charged amino acids (ionic interactions), aromatic- 
aromatic interactions, aromatic-sulphur interactions and cation-π interactions. The PIC server [35] is available at: 
http://crick.mbu.iisc.ernet.in/PIC. We further analyzed the intramolecular interactions between the native and the 
mutant by secondary structure analysis  
 
Analysis of secondary structure elements of native and mutant 
We used STRIDE web server for analysis of secondary structure of native and mutant. STRIDE is an automatic 
algorithm for protein secondary structure assignment from atomic coordinates.  It implements a knowledge-based 
algorithm that makes combined use of hydrogen bond energy and statistically derived backbone torsional angle 
information and is optimized to return resulting assignments in maximal agreement with crystallographers' 
designations. The STRIDE web server provides access to this tool and allows visualization of the secondary 
structure, as well as contact and Ramachandran maps for any file uploaded by the user with atomic coordinates in 
the Protein Data Bank (PDB) format [36]. STRIDE considers both hydrogen bonding patterns and backbone 
geometry. The hydrogen bond energy is calculated using an empirical energy function which takes into account the 
distance between the donor and the acceptor and the deviations from linearity of the bond angles. A weighted 
product of hydrogen bond energy and torsion angle probabilities for a-helix and b-sheet is used to determine the start 
and stop positions of secondary structure elements based on empirically optimized recognition thresholds. 
 
Exploring the Flexibility of Binding Pocket by Normal Mode Analysis 
A quantitative measure of the atomic motions in proteins could be obtained from the mean square fluctuations of the 
atoms relative to their average positions. These could be related to the B-factor [37, 38]. Analysis of B-factors, 
therefore, could provide fresh insights into protein dynamics, the flexibility of amino acids, and protein stability 
[39]. Protein flexibility is important for protein function and for rational drug design [40]. In addition the flexibility 
of certain amino acids in a protein is useful for various types of interactions. Moreover, the flexibility of amino acids 
in the binding pocket is considered a significant parameter for understanding the binding efficiency. In fact, loss of 
flexibility impairs the binding effect [41] and vice versa. Hence, this can be analyzed by the B-factor, which is 
computed from the mean-square displacement <R2> of the lowest-frequency normal mode using the ElNémo server 
[42]. 
 

RESULTS AND DISCUSSION 
 

The SAP Data Set from Swissprot 
The TAR DNA binding protein-43 and 24 variants, namely, A90V, D169G, N267S, G287S, G290A, G294A, 
G294V, G295R, G295S, G298S, A315T, Q331K, S332N, G335D, M337V, Q343R, G348C, G357R, R361T, 
S379P, A382T, N390S and S393L investigated in this work were retrieved from the Swissprot database. 
 
Identification of Functional Variants by I-mutant 2.0 
Of the 24 variants, 7 variants were found to be less stable using the I-Mutant 2.0 server (Table 1). Among these 7 
variants, two variants showed a ∆∆G value < -1.0 and five variants showed a ∆∆G value > -1.0 as depicted in (Table 
1). Of the seven variants that showed a negative ∆∆G, four variants (A90V, N269S, S379P and N390S) retained 
their amino acid properties. Two variants (A315T and A382T) changed from non-polar to polar uncharged and one 
variant (D169G) changed from negatively charged to non polar. Indeed, by considering only amino acid substitution 
based on physico-chemical properties, we could not be able to identify the detrimental effect. Rather, by considering 
the sequence conservation along with the above said properties could have more advantages and reliable to find out 
the detrimental effect of missense mutations. 
 
Deleterious Single Point Mutants Identified by the SIFT Program 
The degree of conservation of a particular position in a protein was determined using sequence homology based tool 
SIFT. The protein sequences of the 24 variants were submitted to SIFT to determine their tolerance indices. As the 
tolerance level increases, the functional influence of the amino acid substitution decreases and vice versa. Among 
the 24 variants, 10 variants were found to be deleterious, having tolerance index scores of ≤0.05 (Table 1). Among 
these 24 variants, 4 variants showed a very high deleterious tolerance index score of 0.00. One variant had a 
tolerance index score of 0.02, three variants had tolerance index scores of 0.03, and one had a tolerance index score 
of 0.04 (Table 1). Interestingly, two deleterious variants identified by SIFT also were seen to be less stable by the I-
Mutant 2.0 server. 
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Damaging Single Point Mutations identified by the PolyPhen Server 
Structural level alterations were determined by PolyPhen program. Protein sequence with mutational position and 
amino acid variants associated with the 24 single point mutants were submitted to the PolyPhen server. A PSIC 
score difference of 0.5 and above was considered to be damaging. It could be seen from Table 1 that, out of 24 
variants, 11 were considered to be damaging by PolyPhen. These variants also exhibited a PSIC score difference 
from 0.01 to 0.999.  
 

Table 1. List of functionally significant mutants predicted to be by I-Mutant 2.0, SIFT and PolyPhen 
 

VARIANTS ∆∆G Tolerance index PSIC SD 
A90V -1.49 0.38 0.149 

D169G -0.87 0.03 0.635 
N267S -0.51 0.88 0.007 
G287S 0.81 0.45 0.404 
G290A 0.47 0.98 0.02 
G294A 0.67 0.65 0.028 
G294V 0.08 0.05 0.139 
G295R 0.62 0.17 0.733 
G295S 0.95 0.59 0.01 
G298S 0.85 0.59 0.063 
A315T -1.1 0.31 0.063 
Q331K 0.38 0.03 0.462 
S332N 1.84 0.03 0.027 
G335D 0.15 0 0.999 
M337V 0.67 0.15 0.635 
Q343R 0.63 0 0.967 
G348C 1.59 0.02 0.992 
G357R 1.33 0.35 0.917 
R361T 0.31 0 0.604 
S379C 0.16 0 0.951 
S379P -0.53 0.02 0.001 
A382T -0.48 0.2 0.267 
N390S -0.07 1 0.956 
S393L 0.17 0.04 0.804 

Letters in bold indicate mutants predicted to be less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen respectively 
 
Rational Consideration of Detrimental Point Mutations 
We rationally considered one most potential detrimental point mutation (D169G) for further course of investigations 
because it was commonly found to be less stable, deleterious, and damaging by the I-Mutant2.0, SIFT and PolyPhen 
servers respectively. We considered the statistical accuracy of these three programs, I-Mutant improves the quality 
of the prediction of the free energy change caused by single point protein mutations by adopting a hypothesis of 
thermodynamic reversibility of the existing experimental data. The accuracy of prediction for sequence and structure 
based values were 78% and 84% with correlation coefficient of 0.56 and 0.69, respectively [44]. SIFT correctly 
predicted 69% of the substitutions associated with the disease that affect protein function. PolyPhen-2 evaluates rare 
alleles at loci potentially involved in complex phenotypes, densely mapped regions identified by genome-wide 
association studies, and analyses natural selection from sequence data, where even mildly deleterious alleles must be 
treated as damaging. PolyPhen-2 was reported to achieve a rate of true positive predictions of 92% [43, 44, 45]. To 
obtain precise and accurate measures of the detrimental effect of our variants, comprehensive parameters of all these 
three programs could be more significant than individual tool parameters. Hence, we further investigated this 
detrimental missense mutation by structural analysis. 
 
Computing Total Energy and RMSD by Modelling of Mutant Structures 
Mapping the one variant namely, D169G into TAR DNA binding protein-43 structure information was obtained 
from SAAPdb. The available structure for TAR DNA Binding protein has a PDB ID 2CQG. The mutational position 
and amino acid variants were mapped in the native structure. Mutation at specified position was performed by 
SWISSPDB viewer independently to get modeled structures. Then, energy minimization was performed by the 
NOMAD - Ref server for both the native structure (PDB 2CQG) and mutant modeled structures.  In order to find out 
the structural stability of TAR DNA binding protein-43 of native and mutant, we computed the total energy, which 
included bonds, angles, and torsions, non-bonded and electro-static constraints from GROMOS 96 force field 
implemented in DeepView to check their stability. It could be seen from Table 2 that the total energy of the native 
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protein had -10091.175KJ/Mol whereas all the 3 mutants had the total energy higher than native protein. The higher 
the total energy, lesser was the stability of the protein structure. In order to find out the deviation between the two 
structures, we superimposed the native structure (PDB 2CQG) with all the mutant modeled structures to get the 
RMSD. The higher was the RMSD value, more was the deviation between the native and mutant structure, which in 
turn change the binding efficiency with its interacting partners due to deviation in the 3D space of the binding 
residues of TAR DNA binding protein-43. Table 2 showed the RMSD for native structure with all the mutant 
modeled structures. Figure 2 showed the superimposed structure of native TAR DNA Binding Protein 43 (green) 
with mutant D169G (Blue) 
 

Figure 2. Superimposed structure of the native protein (green) with mutant 
               

 
 
Superimposed structure of native TAR DNA Binding Protein 43 (green) with mutant D169G (Blue) structure 
showing RMSD of 2.75 Ǻ. 

 
Computing the Intra-molecular interactions in TAR DNA Binding protein 
We further evaluate the stability of protein structure by using the PIC server to identify the number of intra-
molecular interactions for both native and mutant structures. Interactions within a protein structure and the 
interactions between proteins in an assembly were essential considerations in understanding the molecular basis of 
stability and functions of proteins and their complexes. There are several weak and strong intra-molecular 
interactions that render stability of a protein structure. Therefore these intra-molecular interactions were computed 
by the PIC server in order to further substantiate the stability of protein structure. Based on this analysis, we found 
that a total number of 167 intra-molecular interactions were obtained in the native structure of TAR DNA binding 
protein-43. On the other hand, the mutant structure (D169G) of TAR DNA binding protein-43 established the intra-
molecular interactions of 268 as shown in Table 2. We further evaluated the effect of this detrimental missense 
mutation by studying the secondary structure elements of both native and mutant protein. Since the secondary 
structure elements are different in native and mutant this could be the reason for alteration of conformation of 
mutant structure.   
 
Analysis of secondary structure elements of native and mutant using STRIDE web server 
We further evaluate the distribution of secondary structure elements in native and mutant protein (D169G). Using 
the STRIDE web server we calculated the number of secondary structure elements for native and mutant structures. 
From table 2 we can see that the distribution of secondary structure elements in native is distributed as 14 coils, 31 
turns, 30 strands, and 28 alpha helixes where as for variant (D169G) the secondary structure elements are distributed 
as 13 coils, 32 turns, 31 strands and 28 alpha helixes. Since the secondary structure elements are different in native 
and mutant this could be the reason for alteration of conformation of mutant structure.  We further analyzed the 
effect of this detrimental missense by performing binding analysis between TAR DNA binding protein-43 and RNA 
through docking studies in order to understand the functional activity of TAR DNA binding protein-43. 
 
Investigating the Rationale of Binding Efficiency for Native and Mutant TAR DNA binding protein-43 with 
RNA. 
In order to find out the binding efficiency of native and mutant TAR DNA binding protein-43 with its interacting 
partner RNA, we implemented molecular dynamics approach for rationalizing the functional activity of this one 
mutant D169G. In this analysis, we performed 1 missense mutation (D169G) in the chain A of the PDB ID 2CQG 
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by swisspdb viewer independently and energy minimization was performed for the entire complex (both native and 
mutant complex) by GROMACS (Nomad-ref) followed by simulated annealing to get the optimized structures using 
a discrete molecular dynamics approach (ifold).  
 
Docking was performed using the PatchDock server between TAR DNA Binding protein 43 and RNA with both 
native and mutant modeled structures of TAR DNA Binding protein 43 to find out the binding efficiency in the form 
of Atomic Contact Energy (ACE). By this analysis, we found that, the ACE between RNA and native TAR DNA 
Binding protein 43 was found to be -24.70kcal/mol, whereas with mutant, the ACE was found to be -16.77kcal/mol 
(Table 2). Figure 3 shows the docked complex of Mutant D169G TAR DNA Binding Protein (blue) and RNA 
(magenta). This data clearly portrays that the maximum binding effect of RNA with the mutant (D169G) might be 
due to the 3D conformation of RNA which exclusively made a comfortable fit with less ACE into the 3D space of 
the binding residues of these mutants as compared to the native. 
 
Table 2. RMSD, Total Energy, Number of Intramolecular Interactions, ACE and secondary structure distribution of native and mutant 

 
Tool Native D169G 

RMSD (Ǻ) 0 Ǻ 2.75 Ǻ 
Total Energy (KJ/mol) -4574.801 -4471.873 
No. of Intramolecular interactions 167 268 
ACE -24.70 -16.77 
Secondary Structure Distribution 
Coil 14 12 
Turn 31 32 
Strand 30 31 
AlphaHelix 28 28 

RMSD root mean square deviation, ACE-Atomic Contact Energy 
 

Figure 3. Docked complexes of Native and Mutant TAR DNA Binding protein 43 with RNA 
 

 
Docked complex of Mutant D169G TAR DNA Binding Protein (blue) and RNA (magenta) having the ACE score of 
-16.17, 
 
The majority of amino acids in active site showed loss of flexibility 
To understand the cause of the lower substrate binding efficiency of the detrimental missense mutation, we used the 
program ElNemo to compare the flexibility of amino acids that were involved in binding with RNA of both the 
native protein and the mutants. Table 3 and depicted the flexibility of the amino acids in the substrate binding pocket 
(active site) of both the native and mutant proteins by means of the normalized mean square displacement <R2>. 
These data were further sorted into three different categories of flexibility. One was where the <R2> of the amino 
acids in the substrate binding pocket of the mutant was the same as that of the native protein (termed identical 
flexibility). The second category was where the <R2> of the amino acids in the substrate binding pocket of the 
mutant was higher than that of the native protein (termed increased flexibility). The last category was where the 
<R2> of the amino acids in the substrate binding pocket of a mutant was lower than that of the native protein 
(termed decreased flexibility). From this analysis, we found that the substrate binding amino acids of these 3 
mutants have increased flexibility (Table 4). Thus the majority of the amino acids participating in substrate binding 
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of these mutants lost their flexibility, leading to a loss of binding efficiency with the substrate. Thus this study 
showed that, increased flexibility of the protein was the cause for the loss in substrate binding affinity.  
 
Table 3 Comparison of normalized mean square displacement of binding amino acids for native and mutant TAR DNA Binding Protein 

43 protein 
 

Binding residues Normalized mean square displacement <R2> 
 Native Native EM D169G 

Pro112 0.0121 0.0078 0.0066 
Trp113 0.0104 0.0026 0.0023 
Lys114 0.0131 0.0078 0.0085 
Thr115 0.0114 0.0068 0.0071 
Lys137 0.0007 0.0093 0.0108 
His 143 0.0055 0.0062 0.0084 
Ser 144 0.0048 0.0040 0.0051 

Bold indicates increased flexibility of mutants than native. *indicates decreased flexibility of mutants than native. 

 
Table 4 Substrate binding amino acids of mutants with different ranges of flexibility based on<R2> 

 
Mutants A B C 

 <R2> 
D169V 2 5 0 

 
Where the letter ‘A’ denotes amino acids with decreased flexibility of mutants than native; ‘B’ denotes amino acids 
with increased flexibility of both native and mutants; ‘C’ denotes amino acids with identical flexibility of both 
native and mutants. 
 

CONCLUSION 
 

Of the 24 variants that were retrieved from Swissprot, 7 variants found less stable by IMutant2.0, 11 variants were 
found to be deleterious by SIFT and 11 variants were considered damaging by PolyPhen. One variant was selected 
as potentially detrimental point mutation because it was commonly found to be less stable, deleterious and damaging 
by the I-Mutant 2.0, SIFT and PolyPhen servers, respectively. The structure of this variant was modeled and the 
RMSD between the mutants and native structure was found to be 2.75 Ǻ.  Docking analysis between RNA and the 
native and mutant modeled structures generated Atomic Contact Energy scores between -24.70 and -16.77. Finally, 
we concluded that the lower binding affinity of mutant (D169G) with RNA compared with TAR DNA Binding 
protein 43 in terms of their ACE and RMSD scores identified them as deleterious mutations. Normalized mean 
square displacement <R2> by normal mode analysis allowed us to conclude that the majority of amino acids in the 
mutants bound to RNA (i.e. are in the active site) had increased flexibility which could be the cause for their loss in 
substrate binding affinity. Thus the results indicate that our approach successfully allowed us to (1) consider 
computationally a suitable protocol for the missense mutation (point mutation/single amino acid polymorphism) 
analysis before wet lab experimentation and (2) provided an optimal path for further clinical and experimental 
studies to characterize TAR DNA Binding protein mutants in depth. 
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