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ABSTRACT

The most detrimental missense mutations of TAR BikwWing Protein 43 causing Fronto Temporal Lobar
Degeneration were identified computationally anae tbubstrate binding efficiencies of these mutatiomse
analyzed. Out of 24 variants, I-Mutant 2.0, SIFTd&volyPhen programs identified 1 variant (D169Gttlvas less
stable, deleterious and damaging respectively. Miegeof this one variant was performed to understahe
change in their conformations with respect to tlative TAR DNA Binding Protein 43 by computing tHRMSD
and Total energy. The native and the variant wavekdd with RNA to explain the binding efficienaéshose
detrimental missense mutations. The loss of bindifijity with their interacting protein namely RN#&as
investigated by computing the flexibility of bindiagiino acids of TAR DNA Binding Protein 43 withithe
interacting proteins and computing the binding fesergy 4G) between native and mutant complexes. The novelty
of our work is to identify and validate the detrimted missense mutations based on structural stghithich could
be reliable and competent with other computatigralgrams.

Key words: Missense mutation, TAR DNA Binding Protein 43, RN®omic Contact Energy, Flexibility.

INTRODUCTION

Fronto temporal lobar degeneration (FTLD) is a ndagenerative disease that selectively affectsatiterior
portions (i.e. frontal lobes, temporal lobes anggdala) of the brain. FTLD typically has its onsemid adulthood
and is estimated to account for up to 20% of adlesaof pre-senile dementia. It has prevalence airtol that of
early-onset of Alzheimer's disease which is asgediawith dramatic changes in emotion [1]. The major
pathological change in FTLD is the substantial gi§owhich is associated with cell loss. Unlike ottlegenerative
diseases affecting the cortex, FTLD is also charasd by substantial gliosis in the white matiralicated by the
descriptive diagnosis of progressive subcorticabsgg [2]. FTLD collectively constitutes a commoause of
dementia, particularly in younger age groups aredetcan be broadly classified according to the nwjostituents

of the cellular inclusions present [tau, TARDNA-thing protein 43 (TDP-43) or fused-in-sarcoma (FUSigin,
designated FTLD-tau, FTLD-TDP or FTLD-FUS, respesly. A number of causative genes have been idedtif
of which the genes coding microtubule-associateatgim tau (MAPT) and progranulin (GRN) are the most
important [3].

Fronto temporal dementia (FTD) is the second mostraon young-onset dementia and is clinically cheramed
by progressive behavioral change, executive dysfamcand language difficulties. Three clinical syowhes,
behavioral variant FTD, semantic dementia and msgjve non-fluent aphasia, form part of a clini¢bpkogical
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spectrum named fronto temporal lobar degeneraftarLD). 30-50% of FTD is familial, and mutations iwo
genes, microtubule associated protein tau and 8nafin (GRN), account for about half of these caBese defects

in VCP, CHMP2B, TARDP and FUS genes have been faudsmall number of families. Linkage to chrommso
9p13.2e21.3 has been established in familial FT{h wiotor neuron disease, although the causative gepet to

be identified [4]. Approximately 40-50% of FTD casexpress the microtubule associated protein tathen
inclusion bodies (tau+), and are categorized ak’$idisease, corticobasal degeneration (CBD), megjve
supranuclear palsy (PSP) or neurofibrillary tandéamentia. Most of the remaining 50—-60% of cases) (fas
inclusions, which are Tau and Synuclein Negatiug, ibtensely labelled by antibodies to Ubiquitimokvn as
ITSNU, ubiquitin-only inclusions or most commonlhotor neuron disease-type inclusions, with the agroRTD—
MND used for the disease. The term fronto templotar degeneration is used in rare tau cases witenmgclusion
bodies are found [5,6,7]. Fronto temporal lobaredegation (FTLD) often overlaps clinically with tioobasal
syndrome (CBS) and progressive supranuclear pad&SfP), both of which have prominent eye movement
abnormalities. Eye movement abnormalities are seasmarkers of neurological disease and are usgefihe
differential diagnosis of a variety of clinical melogical syndromes. CBS and PSP are clinicallyegieally and
pathologically related to fronto temporal lobar degration(FTLD), a common cause of dementia inviddals
with disease onset at age 65 as well as PSP relatédmotor abnormalities are present in FTLD, cdsgs three
core clinical dementia syndromes, a behavioraldysgxecutive (or frontal) variant called fronto feral dementia
(FTD), and two forms of primary progressive aphaaiéemporal lobe variant, also called semanticatdgia (SD),
and a progressive non-fluent apahasia [8,9]. GlinRick’s disease, more recently referred to astérdaemporal
lobar degeneration which is often considered ‘togfeneous’. Currently, clinicopathologic studiesogrtze that
ubiquitinated, tau and synuclein negative inclusjoor motor neuron disease type inclusions (MNDB also
common in the cortex in FTD/Pick complex, In adufiti dementia lacking distinctive histology (DLDH) applied
when tau or ubiquitin positive inclusions are lagki All types include lobar atrophy, neuronal logfipsis,
superficial spongiosis, and often ballooned neurarsd some glial abnormality, as well as Inclusioody
myopathy (IBM) associated with Paget’s diseasehef bone (PDB) and fronto-temporal dementia (FTD), o
IBMPFD (OMIM 167320), is a multisystem degeneratigisorder caused by mutations in p97/VCP (valosin
containing protein) on chromosome 9p12-13. IBMPEDautosomal dominantly inherited and primarily etife
muscle, brain and bone tissue. The penetrancé bfiff IBMPFD patients is 30% and its onset is &dtar age (54
years) than myopathy. IBMPFD CNS pathology is tagative and ubiquitin-positive consistent with anfio
temporal lobar degeneration with ubiquitinated uisebns (FTLD-U) [10,11]. Up to 40% of the individeawith
FTLD have similarly affected first-degree relativamsistent with autosomal dominant inheritancedme patients
due to mutations in the tau (MAPT) gene and progiiangene (PGRN). Reported PGRN mutations include
missense mutations generating premature stop cpdwestion or deletion mutations resulting in fiashifts or
changes within initiation codons precluding traigesn (ex A324T) [12,13]. Mental retardation affecan
estimated 2-3% of the population. About 25% of rakmetardation is believed to be caused by genetic
abnormalities, and up to 10% is estimated to beeduy X chromosome mutations, X-linked mentalrdsttion
with progressive supranuclear palsy, corticobasgkderation and Pick disease, as well as famdrah$ of fronto-
temporal dementia (FTDP-17T) [14].

MATERIALSAND METHODS

Datasets

The protein sequence and variants (single amin @aiymorphisms/missense mutations/point mutatiafis)AR
DNA binding protein-43 were obtained from the Swigd database available at http://www.expasy.cbitspfhe
subsection of each Swissprot entry provides infdionaon polymorphic variants, some of which polyplaic
variants may be disease(s) - associated by caukdfegts in a given protein; most of them were nsSKHn-
synonymous SNPs) in the gene sequence and SARte(aimino acid polymorphisms) in the protein segegi5-
17]. The 3D Cartesian coordinates of TAR DNA Birgliarotein-43 (TARDBP-43) and its complex were aidi
from Protein Data Bank with PDB IDs 2CQG [18] fior silico mutation modeling and docking studies based on
detrimental point mutants.

Analysis of functional consequence, functional change and stability changes in Sequence level for TAR DNA
Binding Protein

To evaluate the data retrieved from Uniprot, wedudee program I-Mutant 2.0 for predicting the photstability
changes caused by single point mutations. I-Mut@rif2available at:
http://gpcr.biocomp.unibo.it/cgi/predictors/IMutc@/ I-Mutant2. 0. cgi [19].
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This program was trained and tested on a dataesiated from ProTherm [20], which is the most contyamsive
available database of thermodynamic experimenttd d& free energy changes of protein stability eauby
mutations under different conditions. The outplgsfishowed the predicted free energy change valsigo AAG).

PositiveAAG values meant that the mutated protein has higflaility and negative values indicate lower stghil
We also used the program SIFT (Sorting Intoleregrhf Tolerant) [21], which specifically detects delous single
amino acid polymorphisms, available at http://bléfcrc.org/sift/SIFT.html. SIFT is a sequence hlmgg-based
tool, which presumes that important amino acid$ el conserved in a protein family; therefore, demat well-
conserved positions tend to be predicted as d&latef22]. The cutoff value in SIFT program wasetaince index
of > 0.05. The higher the tolerance index, the lesstfanal impact a particular amino acid substitutiwould be
likely to have. Finally to analyse the damage cdusepoint mutation we used the server PolyPhelyRarphism
Phenotyping) available at http://coot.embl.de/Phlf? [23]. PolyPhen calculates position-specifideipendent
counts (PSIC) scores for each of the two variantsthen computes the PSIC score difference bettlesn. The
higher the PSIC score difference, the higher thetfonal impact a particular amino acid substitatisould be
likely to have.

Computation of Total Energy and RM SD by Modelling the Single Amino Acid Polymor phisms location on
Protein 3D structure

The single amino acid polymorphism database (SARRR) was used to recognize the protein encoded AR T
DNA binding protein 43 (PDB ID: 2CQG) available fnoPDB (Protein Data Bank) and identified singlenpoi
mutation residue positions. The mutations were raypnimplemented using SWISSPDB viewer and the gpner
minimization for 3D structures was performed by N®DMRef server [25]. This server use Gromacs asulefa
force field for energy minimization based on thetmoels of steepest descent, conjugate gradient aBEGS
methods [26].To optimize the 3D structure of TAR ®®inding Protein 43, we used the ifold server [23@i]
simulated annealing, which is based on discreteeocubdr dynamics and is one of the fastest stragefpe
simulating protein dynamics. RMSD (Root Mean Sqddbeviation), a parameter was used to analysetthetsral
level deviation between the native and the mutasdetied structures. Divergence of the mutant stinecfrom the
native structure could be caused by substitutidetstions and insertions [28] and the deviatiowieen the two
structures could alter the functional activity [29)], with respect to the binding efficiency of thehibitors, which
was evaluated by their RMSD values.

Identification of Binding Sites and Computation of Atomic Contact Energy (ACE) between TAR DNA
binding protein 43 and its substrate

To compute the ACE between TAR DNA binding protdi® and its substrate (RNA), we used the program
PatchDock for docking the native and mutant TAR DHNiAding protein 43 with RNA to compute the ACE by
using additional option of binding residue parametde underlying principle of this server is basedmolecular
shape representation, surface patch matching plesny and scoring [31]. It finds docking transfeations that
yield good molecular shape complementarities. Swahsformations, when applied, induce both widerface
areas and small amounts of steric clashes. A wideface ensured that include several matched featdres of the
docked molecules that have complementary charatiteriwere included. The PatchDock algorithm digidiee
Connolly dot surface representation [32] of the eunales into concave, convex and flat patches. Then,
complementary patches are matched to generatedsaedransformations. Each candidate transformasidurther
evaluated by a scoring function that considers lgethmetric fit and atomic desolvation energy [34]. Finally, an
RMSD clustering was applied to the candidate smhgtito discard redundant solutions. The main reastrind
Patch Dock’s high efficiency is its fast transfotioaal search, which is driven by local feature chatg rather than

by brute force searching of the six dimensionahgfarmation spaces. It further speeds up the caatipuogl
processing time using advanced data structurespaital pattern detection techniques, such as geientshing
and poses clustering.

Calculating the Total Number of Intra Molecular I nteractions Using PIC server

We used PIC server for computing intra-moleculaeractions for both native and mutant structurepeetively.
PIC (Protein Interactions Calculator) server acgegibmic coordinate set of a protein structurehi@ $tandard
Protein Data Bank (PDB) format. Interactions witlrprotein structure and interactions between preta an
assembly are essential considerations in undeiisgtice molecular basis of stability and functiaigproteins and
their complexes. There are several weak and sthoegactions that render stability to a proteirusture or an
assembly. It computes various interactions sudhtagaction between apolar residues, disulphideégas, hydrogen
bond between main chain atoms, and hydrogen botwieba main chain and side chain atoms, hydrogeml bon
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between two side chain atoms, interaction betwggositely charged amino acids (ionic interactiorspmatic-
aromatic interactions, aromatic-sulphur interaddi@md catiore interactions. The PIC server [35] is available at:
http://crick.mbu.iisc.ernet.in/PIC. We further aymdd the intramolecular interactions between thiv@aand the
mutant by secondary structure analysis

Analysis of secondary structure elements of native and mutant

We used STRIDE web server for analysis of secondamcture of native and mutant. STRIDE is an aatiien
algorithm for protein secondary structure assignnfiemm atomic coordinates. It implements a knowledased
algorithm that makes combined use of hydrogen bemergy and statistically derived backbone torsiarajle
information and is optimized to return resultingsigaments in maximal agreement with crystallograghe
designations. The STRIDE web server provides acteshis tool and allows visualization of the sedary
structure, as well as contact and Ramachandran foapsy file uploaded by the user with atomic aboates in
the Protein Data Bank (PDB) format [36]. STRIDE siolers both hydrogen bonding patterns and backbone
geometry. The hydrogen bond energy is calculatetyen empirical energy function which takes intc@unt the
distance between the donor and the acceptor andewations from linearity of the bond angles. Aigieed
product of hydrogen bond energy and torsion angieabilities for a-helix and b-sheet is used tedeine the start
and stop positions of secondary structure elenteged on empirically optimized recognition thredsol

Exploring the Flexibility of Binding Pocket by Normal M ode Analysis

A quantitative measure of the atomic motions int@rs could be obtained from the mean square fatictns of the
atoms relative to their average positions. Thesddcbe related to the B-factor [37, 38]. AnalysisBsfactors,

therefore, could provide fresh insights into protdiynamics, the flexibility of amino acids, and fgia stability
[39]. Protein flexibility is important for proteifunction and for rational drug design [40]. In aéuth the flexibility

of certain amino acids in a protein is useful farious types of interactions. Moreover, the flelitipiof amino acids
in the binding pocket is considered a significaatameter for understanding the binding efficiedayfact, loss of
flexibility impairs the binding effect [41] and \écversa. Hence, this can be analyzed by the B#aatoich is

computed from the mean-square displacemefit<Rthe lowest-frequency normal mode using thedgild server
[42].

RESULTSAND DISCUSSION

The SAP Data Set from Swissprot

The TAR DNA binding protein-43 and 24 variants, mdyn A90V, D169G, N267S, G287S, G290A, G294A,
G294V, G295R, G295S, G298S, A315T, Q331K, S332N35E8 M337V, Q343R, G348C, G357R, R361T,
S379P, A382T, N390S and S393L investigated inwligk were retrieved from the Swissprot database.

Identification of Functional Variants by |-mutant 2.0

Of the 24 variants, 7 variants were found to bs Eable using the I-Mutant 2.0 server (Table IhoAg these 7
variants, two variants showed\aAG value < -1.0 and five variants showed/&G value > -1.0 as depicted in (Table
1). Of the seven variants that showed a negativ®, four variants (A90V, N269S, S379P and N390S3ined
their amino acid properties. Two variants (A315T #&882T) changed from non-polar to polar uncharged one
variant (D169G) changed from negatively chargeddn polar. Indeed, by considering only amino acilssitution
based on physico-chemical properties, we couldadaible to identify the detrimental effect. Rathogrconsidering
the sequence conservation along with the abovemsajaerties could have more advantages and relialdiad out
the detrimental effect of missense mutations.

Deleterious Single Point M utants I dentified by the SIFT Program

The degree of conservation of a particular positioa protein was determined using sequence homdiaged tool
SIFT. The protein sequences of the 24 variants webenitted to SIFT to determine their tolerancedesl. As the
tolerance level increases, the functional influeat¢he amino acid substitution decreases and wécsa. Among
the 24 variants, 10 variants were found to be defmis, having tolerance index scores<0f05 (Table 1). Among
these 24 variants, 4 variants showed a very hidateléous tolerance index score of 0.00. One varfead a
tolerance index score of 0.02, three variants bbtance index scores of 0.03, and one had a taeri;dex score
of 0.04 (Table 1). Interestingly, two deleteriowsiants identified by SIFT also were seen to be &table by the I-
Mutant 2.0 server.
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Damaging Single Point M utationsidentified by the PolyPhen Server

Structural level alterations were determined byyPhen program. Protein sequence with mutationatippsand
amino acid variants associated with the 24 singliatpmutants were submitted to the PolyPhen se#ePSIC
score difference of 0.5 and above was considerdaetdamaging. It could be seen from Table 1 thatt,ob 24
variants, 11 were considered to be damaging byArag. These variants also exhibited a PSIC scéfieratice
from 0.01 to 0.999.

Tablel. List of functionally significant mutants predicted to be by I-Mutant 2.0, SIFT and PolyPhen

VARIANTS | AAG | Tolerance indey PSIC SD
A90V -1.49 0.38 0.149
D169G -0.87 0.03 0.635
N267< -0.51 0.8¢ 0.00%
G287¢ 0.81 0.4t 0.40:
G290A 0.47 0.98 0.02
G294A 0.67 0.65 0.028
G294V 0.08 0.05 0.139
G295R 0.62 0.17 0.733
G295¢ 0.9¢ 0.5¢ 0.01
G298¢ 0.8¢ 0.5¢ 0.0€3
A315T -1.1 0.31 0.063
Q331K 0.38 0.03 0.462
S332N 1.84 0.03 0.027
G335D 0.15 0 0.999
M337V 0.67 0.15 0.635
Q343R 0.63 0 0.967
G348C 1.59 0.02 0.992
G357R 1.33 0.35 0.917
R361T 0.31 0 0.604
S379C 0.16 0 0.951
S379P -0.53 0.02 0.001
A382T -0.48 0.2 0.267
N390S -0.07 1 0.956
S393L 0.17 0.04 0.804

Letters inbold indicate mutants predicted to be less stable tdatais and damaging by I-Mutant 2.0, SIFT and Pbign respectively

Rational Consideration of Detrimental Point M utations

We rationally considered one most potential detnitalepoint mutation (D169G) for further course w¥éstigations
because it was commonly found to be less stabletatimus, and damaging by the I-Mutant2.0, SIFd BolyPhen
servers respectively. We considered the statisticaliracy of these three programs, I-Mutant impsabe quality
of the prediction of the free energy change causedingle point protein mutations by adopting a dtiigsis of
thermodynamic reversibility of the existing expeeintal data. The accuracy of prediction for sequemeestructure
based values were 78% and 84% with correlationficterit of 0.56 and 0.69, respectively [44]. SIFarrectly
predicted 69% of the substitutions associated thighdisease that affect protein function. PolyPR@valuates rare
alleles at loci potentially involved in complex plogdypes, densely mapped regions identified by genande
association studies, and analyses natural seleftionsequence data, where even mildly deleteradletes must be
treated as damaging. PolyPhen-2 was reported iewach rate of true positive predictions of 92%,[43, 45]. To
obtain precise and accurate measures of the detianeffect of our variants, comprehensive paramsaiéall these
three programs could be more significant than iidgdial tool parameters. Hence, we further investidathis
detrimental missense mutation by structural anglysi

Computing Total Energy and RM SD by M odelling of Mutant Structures

Mapping the one variant namely, D169G into TAR DN#&ding protein-43 structure information was obgain
from SAAPdb. The available structure for TAR DNANBing protein has a PDB ID 2CQG. The mutationaltims
and amino acid variants were mapped in the natinectsire. Mutation at specified position was peried by
SWISSPDB viewer independently to get modeled stinest Then, energy minimization was performed kg th
NOMAD - Ref server for both the native structur®@2CQG) and mutant modeled structures. In orddintd out
the structural stability of TAR DNA binding prote#t8 of native and mutant, we computed the totatgnewhich
included bonds, angles, and torsions, non-bonded edectro-static constraints from GROMOS 96 forgdf
implemented in DeepView to check their stabilitycbuld be seen from Table 2 that the total enefgiyre native
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protein had -10091.175KJ/Mol whereas all the 3 migthad the total energy higher than native profEie higher
the total energy, lesser was the stability of thetgin structure. In order to find out the deviatizetween the two
structures, we superimposed the native structubB(RCQG) with all the mutant modeled structuregyét the
RMSD. The higher was the RMSD value, more was theation between the native and mutant structureghvin
turn change the binding efficiency with its intefag partners due to deviation in the 3D spacehef bhinding
residues of TAR DNA binding protein-43. Table 2 wsledl the RMSD for native structure with all the nrmita
modeled structures. Figure 2 showed the superintpsgacture of native TAR DNA Binding Protein 43d¢gn)
with mutant D169G (Blue)

Figure 2. Superimposed structure of the native protein (green) with mutant

Superimposed structure of native TAR DNA Bindingotein 43 (green) with mutant D169G (Blue) structure
showing RMSD of 2.74.

Computing the I ntra-molecular interactionsin TAR DNA Binding protein

We further evaluate the stability of protein stuet by using the PIC server to identify the numbeiintra-
molecular interactions for both native and mutamticdures. Interactions within a protein structumed the
interactions between proteins in an assembly wssergial considerations in understanding the médedasis of
stability and functions of proteins and their coexgs. There are several weak and strong intra-mialec
interactions that render stability of a proteirusture. Therefore these intra-molecular interastioere computed
by the PIC server in order to further substantibgestability of protein structure. Based on thslgsis, we found
that a total number of 167 intra-molecular inteiatd were obtained in the native structure of TARADbinding
protein-43. On the other hand, the mutant strudfiDd69G) of TAR DNA binding protein-43 establishégt intra-
molecular interactions of 268 as shown in Tablé\2 further evaluated the effect of this detrimenmtéssense
mutation by studying the secondary structure elésnef both native and mutant protein. Since theosdary
structure elements are different in native and mtuthis could be the reason for alteration of comfation of
mutant structure.

Analysis of secondary structure elements of native and mutant using STRIDE web server

We further evaluate the distribution of secondaryciure elements in native and mutant protein @36 Using

the STRIDE web server we calculated the numbeeobisdary structure elements for native and mutanttsires.

From table 2 we can see that the distribution obedary structure elements in native is distribwiiedl4 coils, 31
turns, 30 strands, and 28 alpha helixes whererasftant (D169G) the secondary structure elemargsistributed
as 13 caoils, 32 turns, 31 strands and 28 alphadliSince the secondary structure elements dezatif in native
and mutant this could be the reason for alteratibnonformation of mutant structure. We furthealgmed the
effect of this detrimental misseng performing binding analysis between TAR DNA himglprotein-43 and RNA
through docking studies in order to understanduhetional activity of TAR DNA binding protein-43.

Investigating the Rationale of Binding Efficiency for Native and Mutant TAR DNA binding protein-43 with
RNA.

In order to find out the binding efficiency of nagiand mutant TAR DNA binding protein-43 with itgéracting
partner RNA, we implemented molecular dynamics apgn for rationalizing the functional activity dfi$ one
mutant D169G. In this analysis, we performed 1 enise mutation (D169G) in the chain A of the PDB20QG
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by swisspdb viewer independently and energy miration was performed for the entire complex (bottiveaand
mutant complex) by GROMACS (Nomad-ref) followed signulated annealing to get the optimized structusisg
a discrete molecular dynamics approach (ifold).

Docking was performed using the PatchDock servéwden TAR DNA Binding protein 43 and RNA with both
native and mutant modeled structures of TAR DNAd#ig protein 43 to find out the binding efficienitythe form
of Atomic Contact Energy (ACE). By this analysise found that, the ACE between RNA and native TARADN
Binding protein 43 was found to be -24.70kcal/nwdhereas with mutant, the ACE was found to be -l&&I7mol
(Table 2). Figure 3 shows the docked complex of vititD169G TAR DNA Binding Protein (blue) and RNA
(magenta). This data clearly portrays that the maxn binding effect of RNA with the mutant (D169G)gimt be
due to the 3D conformation of RNA which exclusivelade a comfortable fit with less ACE into the 3iace of
the binding residues of these mutants as comparétttnative.

Table 2. RM SD, Total Energy, Number of Intramolecular Interactions, ACE and secondary structure distribution of native and mutant

Tool Native D169G
RMSD () 0A 2.75A
Total Energy (KJ/mol) -4574.801 -4471.873
No. of Intramolecular inraction: 167 26€
ACE -24.70 -16.77
Secondary Structure Distribution
Coll 14 12
Turn 31 32
Stranc 3C 31
AlphaHelix 28 28

RMSD root mean square deviatigkCE-Atomic Contact Energy

Figure 3. Docked complexes of Native and Mutant TAR DNA Binding protein 43 with RNA

Docked complex of Mutant D169G TAR DNA Binding Reist (blue) and RNA (magenta) having the ACE scdre o
-16.17,

Themajority of amino acidsin active site showed loss of flexibility

To understand the cause of the lower substratertgrefficiency of the detrimental missense mutatioe used the
program EINemo to compare the flexibility of amiaoids that were involved in binding with RNA of hothe
native protein and the mutants. Table 3 and degpitte flexibility of the amino acids in the substrainding pocket
(active site) of both the native and mutant pratdiy means of the normalized mean square displateqi&>.
These data were further sorted into three diffecamegories of flexibility. One was where the’:Rf the amino
acids in the substrate binding pocket of the muteas$ the same as that of the native protein (teridentical
flexibility). The second category was where the’x<Rf the amino acids in the substrate binding podfethe
mutant was higher than that of the native protéénnfied increased flexibility). The last categoryswahere the
<R2> of the amino acids in the substrate bindingkpb of a mutant was lower than that of the napivetein
(termed decreased flexibility). From this analysis&e found that the substrate binding amino acidgsheke 3
mutants have increased flexibility (Table 4). Thine majority of the amino acids participating ifbstrate binding
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of these mutants lost their flexibility, leading #oloss of binding efficiency with the substratdu$ this study
showed that, increased flexibility of the proteiassthe cause for the loss in substrate bindingibffi

Table 3 Comparison of normalized mean sguar e displacement of binding amino acidsfor native and mutant TAR DNA Binding Protein

43 protein

Binding residue | Normalized mean square displacemen®>
Native Native EM D169G

Prol112 0.0121 0.0078 0.0066

Trpl13 0.0104 0.0026 0.0023

Lysl14 0.0131 0.0078 0.0085
Thr115 0.011¢ 0.006¢ 0.007:
Lys137 0.000:1 0.009: 0.010¢

His 143 0.0055 0.0062 0.0084

Ser 144 0.0048 0.0040 0.0051

Bold indicates increased flexibility of mutantsrhaative. *indicates decreased flexibility of mutatihan native.

Table 4 Substrate binding amino acids of mutantswith different ranges of flexibility based on<R?>

Mutants| A] B] C
<R>
D169V | 2] 5] O

Where the letter ‘A’ denotes amino acids with dasesl flexibility of mutants than native; ‘B’ denstamino acids
with increased flexibility of both native and mutsn'C’ denotes amino acids with identical flexitjl of both
native and mutants.

CONCLUSION

Of the 24 variants that were retrieved from Swisspr variants found less stable by IMutant2.0yafiants were
found to be deleterious by SIFT and 11 variantsewsemsidered damaging by PolyPhen. One variantselasted
as potentially detrimental point mutation becatiseais commonly found to be less stable, deleter@masdamaging
by the I-Mutant 2.0, SIFT and PolyPhen serverspaetvely. The structure of this variant was modedad the
RMSD between the mutants and native structure wasd to be 2.7%. Docking analysis between RNA and the
native and mutant modeled structures generated idt@ontact Energy scores between -24.70 and -1&irally,
we concluded that the lower binding affinity of rant (D169G) with RNA compared with TAR DNA Binding
protein 43 in terms of their ACE and RMSD scoresntified them as deleterious mutations. Normalizeshn
square displacement £Rby normal mode analysis allowed us to conclude the majority of amino acids in the
mutants bound to RNA (i.e. are in the active dii@) increased flexibility which could be the catmetheir loss in
substrate binding affinity. Thus the results inticghat our approach successfully allowed us tocdnsider
computationally a suitable protocol for the missemsutation (point mutation/single amino acid polyptasm)
analysis before wet lab experimentation and (2)viged an optimal path for further clinical and erpental
studies to characterize TAR DNA Binding protein emis in depth.
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