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ABSTRACT

In recent year's topoisomerase | inhibitors likel@moisoquinolines have become important new lendatmnal
design of anticancer drugs due to their greatergiblpgical and DNA-enzyme cleavage complexes #tabilAs a
starting point a complete pharmacophore based 3RSstudy was performed on a series of 104
indenoisoquinolines and their derivatives. The lgsirmacophore model consisted of one Hydrophob,(bine
Positive lonizable (PIl) and one Ring Aromatic (RAprecterstics which are a necessary requiremenggémd
topoisomerase | inhibitory activity. The model wadidated using Fischer randomization test and figrinal and
external data set of 38 and 27 compounds, resmégtiexhibiting f of 0.663 and 0.66. The validated
pharmacophore model was used to screen NCI and Nty database resulting in identification of 21vebd
topoisomerase | inhibitors. Since all the 21 commsuobeyed Lipinski’'s rule of five, it is envisaghdt these
structurally diverse compounds have great poteritintheir development as anti-cancer agents.

Keywords: DNA, Enzyme, QSAR, Database, NCI, Maybridge

INTRODUCTION

Cancer is the leading cause of mortality in mostntdes after cardiovascular disease. There istheralisease
which parallels cancer in diversity of its origimature and treatments [1]. It is likely to become major reason of
the death in the upcoming years. In spite of ttegmess made, the index of cancer therapy remainsahd its
treatment is a challenge. Out of various typesaofcers, lung cancer remains the leading causeatti @éenong men
and women in the civilized world. There will be estimated 160,340 deaths caused by lung cancéi5@3among
men and 72,590 among women) in 2012, accountingrmund 28 % of all cancer deaths [2]. As clasdifiy the
World Health Organization, there are four majoretypof lung cancer: squamous cell (epidermoid) nama,
small-cell (oat cell) carcinoma, adenocarcinoma, lange cell carcinoma. Conventional treatmentithfee form of
lung cancer is quite ineffective. Therefore, thisra need to develop more effective chemotherapagents against
lung cancer.

DNA Topoisomerase-l (TOP-I) is an effective molecungét for the development of clinically based artier
agents. They show excellent activity against varitgpes of tumors, especially lung cancer and calamncer.
Camptothecin (CPT) is the first agent identifiedaa$ OP-I inhibitors. Camptothecins and its deriedi bind the
interface of the TOP-I-DNA complex and exert thgiarmacological activity. They are effective in Igape rather
than in the G1 or G2/M phases of the cell cycl&]3-

Although CPTs are very potent but often show dodated toxicities.The indenoisoquinolines as a class of
cytotoxic TOP-I inhibitors provide greater stalidg of the compounds as well as drug-enzyme-DNAvege
complexes in comparison to the CPTs [6].
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Indenoisoquinoline compounds and their derivatiaes found to possess antitumor and other biologicavities
like antimalarial, however, the relationships oéithstructure and activity are still not well unsierod [7, 8].
Therefore, correlating the physicochemical propsrtir structural features of compounds with thgiotoxicities in
Glso will surely provide useful information for the idification of new antitumor drugs.

Pharmacophore modeling is a powerful computati@pmdroach used for the study of biological actigitigith

properties or molecular structures, which is hdlpduexplore the relationship between the strugturkligands and
their biological activities. Also, it offers the wmhtages of higher speed and lower costs for biggcevaluation,

especially compared to experimental testing.

In present research work we have focused on twecéspOne is generation of ligand-based pharmacephodels
with the help of Catalyst 4.8 (available from Aagslinc.), one of the leading software productstfe automated
generation of pharmacophore models and secondtébake mining using validated pharmacophore maulel t
identify novel, structurally diverse and druggablemical entities with high TOP-I inhibitory actiyi The large
number of successful applications of pharmacopbased virtual screening has been clearly demoadtfat11].

MATERIALS AND METHODS

Biological activity and data set
To build a dynamic 3D model four different datasexbibiting TOP-I inhibitory activity were selectdtbm the
literature with experimentally determined cytotaiidGls, values on human lung cancer cell lines.

The homogeneity of the biological assays is onthefimportant aspects in pharmacophore based Q34dwes;

therefore data set of 104 compounds belongingeartienoisoquinolines was collected from the sagsearch lab
and group (Andrew Morrell and Mark Cushmetn al) with the same biological assay method. The dagsmnned
a 3.8 order magnitude with the activity range fror@12 uM to 89.1 uM. The structures of indenoisnglines

along with their biological activity are given iraffle 1 [12-15].

Table 1 Structures of 104 indenoisoquinoline derividves as topoisomerase-| inhibitors

Name of compound R R? R R Activity (Glsg in uM)

13 H NQ }\/\/C| -OCH; 0.295

1.35 -H -N I _-Br o—~ 5.75

_ Q \/

1.36 H N I _-Br /\ 21.4

. Q ~

1.37 -H -NQ I N_-Br -CHs 24.5

1.38 -H -NQ I _-Br \/S\ 1.05

140 H -NQ }\/\/C| H 43.6

141 H -NQ }\/\/C| F 2.29

1. 42 H -NQ }\/\/C| -cl 2.45
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Pharmacophore generation

The study was performed using the Catalyst softwarkage (version 4.8, Accelrys Inc., San Diego).@atalyst
software supports the HypoGen algorithm, which Ideato generate automatically structure activitysdzh
pharmacophore hypotheses from a set of compoumdegided that structure—activity relationship dataaowell-

balanced set of compounds are available. All comdsuvere built using ISIS Draw 2.5, imported to &leg's

Discovery Studio 2.0 (DS 2.0) window and energy imined to the closest local minima using the gelimrd

CHARMM-like force field as implemented in the pragn. This force field allows evaluation of the enewf

structure as well as repairing distorted geomettiesugh energy minimization. Conformational modefsthe

training set compounds were generated using a MBatt-like algorithm together with poling. Catalywovides
two types of conformational analysis: Fast and Bespresent study, the “best quality searchingcedure” was
adopted to select representative conformers wittorastraint of 20 kcal/mol range above the compuketbal

minimum energy. An important aspect of pharmacophgeneration is the appropriate feature selecfidre

selection of the features was done by considerireg tasic structure of the TOP-I inhibitors. Initstudy of
functional groups in all compounds revealed thatdbmpounds might contain hydrogen bond accepyairolgen
bond donor, positive ionizable group, hydrophobid aing aromatic features. On the basis of thisess

combinations of features were made and applieceteeigite hypothesis by HypoGen module in CatalysheNof
the statistically fit pharmacophore hypothesis KBA and HBD feature. As a result, it was concludieat HBA

and HBD region are not essential in the bindingaFiset of features included one hydrophobic, oositipe

ionizable, and one ring aromatic.

A training set of 59 and test set of 38 compoundh of all types of activity range as well as stuwral diversity
was chosen for correlation with selected set ofufes. Pharmacophore generation was carried outektyng
function weight to 0.205, mapping coefficient tor@solution to 297 pm. The uncertainty factor weiste 3. This
factor for each compound represents the ratio rarfgencertainty in the activity value based on theected
statistical straggling of biological data collectio

Seven compounds named 1_105, 1 111, 1 95,1 56, 2_239 and 4_42 were detected as outliers fror that
training as well as test set, so were excluded fitwerdataset. The implemented protocol returnedangypotheses
which were further analyzed for their statisticajnificance on the basis of cost function analysisirelation
coefficient andmsdeviation.

Model validation

1.CatScramble validation

CatScramble validation based on Fischer’s randdiizaest was performed as an internal validatemhnique. In

this method, the biological data and the corresjmanstructures were scrambled several times anddfie/are was
challenged to generate pharmacophoric models flenrdndomized data. To obtain a 95% confidence,lég

random spreadsheets were generated and every gehepreadsheet was submitted to HypoGen usingdine

experimental conditions (functions and parametassthe initial run [16]. The pharmacophore hypathgenerated
for present TOP-I inhibitors included in the traigiset were evaluated for their statistical sigaifice using the
aforesaid CatScramble program.

2.Internal test set validation

An internal test set comprising of 38 compounds emmployed to assess statistical significance ofdéneeloped
model. A relationship between actual activity astireated activity for all test set molecules waspated after
mapping of each molecule to the pharmacophore. t€ke set prediction was measured in terms of sdquare
correlation coefficientrf).

3.External test set validation

In order to assess the predictive power of theltiaguhypogen three-feature pharmacophore modegxéernal test
set comprising of 27 indenoisoquinolines [17] wétkperimental G}, values determined in the same laboratory and
using comparable biological assays was used. Taamatophore model was used to predict biologicéitdes of

the external test set compounds and comparisormads between predicted and actual activities.
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4.External validation with marketed and clinical tridrug candidates

As an additional validation step, the pharmacophieas mapped on some of the clinically approved etedkdrugs
and clinical trial candidates like Irinotecan, Togman, Belotecan, SN-38, Lurtotecan, Rubitecan,td€sm,
Camptothecin, Afeletecan, Gimatecan and 9amino-tatimgcin and their mapping fashion were analyzed.

Virtual screening

The validated pharmacophore model included the awnfunctionalities responsible for the TOP-I ibiory
activity; therefore, these pharmacophore model®ewsed as a 3D query to perform virtual screeniig fast
flexible search databases method was applied fmckimg the Maybridge and NCI database, to retrjgviative
compounds, which are defined as compounds havigig themical moieties spatially mapped with coroegfing
features in the pharmacophoric query. All the Hbbgained from database search were analyzed angotalithe
Lipinski’'s rule-of five [18], which is a simple medlto predict the absorption and intestinal pernigalnf the
compound. According to the rule, compounds are-aleflorbed when they possess Log P less than 5S5cufare
weight less than 500, number of H-bond donors tleas 5, number H-bond acceptors less than 10 antb@wuof
rotatable bonds less than 10. Compounds violatimgenthan one of these rules may not have apprepriat
bioavailability. After checking the druggablity die HITs, fit values were considered as filter foocurement of
good HITs. In addition to this, the database comgsuwere also selected on the basis of the estivalees. The
compounds having estimated activity less thakl ivere selected as potential HITs.

RESULTS AND DISCUSSION

Pharmacophore generation and quality assessment

The in-built HypoGen algorithm was applied to thairiing set of 59 compounds with antiproliferatiaetivity
against the human lung cancer cell lines. Taking iamccount the chemical nature and conformationghef
compounds considered in this work, a set of 10 thgses (Hypol-Hypol0) was generated.

The top-ranked pharmacophore model (Hypol) congjsif one hydrophobic group, one positive ionizadie one
ring aromatic showed the best predictive power atatistical significance described by the high elation
coefficient ofr = 0.886,r* = 0.789, low root mean- square deviatiomgd =1.0827), weight (3.769) and error cost
(202.66), satisfying the acceptable range recomeekim the cost analysis of the Catalyst procedi®& [The low
value ofrmsd represents the good quality of correlation betwdenestimated and the actual activity data. The
obtained pharmacophoric features and their interfeadistances are shown in Fig. 1a and 1b.

(b)
(@)

Figure 1 Pharmacophore model generated by Hypol (®harmacophore features, (b) Interfeature distances
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Table 2 Cost values, RMSD, correlation values aneé#tures for top 10 hypotheses (Hypo 0- Hypo 10)

Hypothesis  Total Cost  Cost Difference RMSD  Correlabn Features

1 248.12 109.844 1.08273 0.886739 HY, PI, RA
2 269.976 87.988 1.41761 0.792682 HY, PI, RA
3 270.485 87.479 1.4229 0.790963 HY, PI, RA
4 271.752 86.212 1.4387 0.785622 HY, PI, RA
5 271.768 86.196 1.43835 0.785763 HY, PI, RA
6 272.528 85.436 1.44774 0.782549 HY, PI, RA
7 273.194 84.77 1.45543 0.779912 HY, PI, RA
8 286.114 71.85 1.59815 0.726441 HY, PI, RA
9 287.199 70.765 1.61046 0.721348 HY, PI, RA
10 290.678 67.286 1.64532 0.706729 HY, PI, RA

Cost function analysis

The quality of the generated pharmacophore hypethe@gre also evaluated by considering the costtine
represented in bits unit calculated by HypoGen nieduring pharmacophore generation. The fixed obshe 10
top-scored hypotheses was 210.687 bits, well segghfeom the null hypothesis cost of 357.964 bits.the total
cost of Hypol was 248.12, the large difference betwnull and total hypothesis cost (Dcost) was8Qoupled
with a high correlation coefficient, and a reasdeabot mean squarenis) deviation ensures that a true correlation
has been established between pharmacophore feahdemtiproliferative activity.

Moreover, the total cost of any hypothesis showddtdoward the value of the fixed cost to represemt aseful
model. The cost difference between total and fizests for the best hypothesis was only 37.43 iiticating the
high probability of the true correlation of the aat

The configuration cost is another parameter touatal the quality of generated pharmacophore. Thégoation
cost for any generated hypothesis should be less ¢h equal to 17 (corresponds to 217 pharmacophocels).
The configuration cost was 11.315, indicating tiet generated models have been thoroughly analyi4es cost
values, correlation coefficients (r), thms factor indicate the quality of prediction for ttraining set. The features
for the top ten hypotheses are listed in Table®tha plot for training set compounds showing datien between
actual and predicted activity is depicted in Fig. 2

|
]

Eetirnated Activity

2
Actual activity

Figure 2. Graph between experimental and estimatedctivities of training set compounds

Pharmacophore validation
Besides cost function analysis, some other vabdatiethods were adopted to characterize the qualitypothesis

and accuracy of the model:

1.Test set prediction

The validity of any pharmacophore model needs tddtermined by applying that model to the testsdind out

how correctly the model predicts the activity of tiest set molecules and whether it can identifiy@a@nd inactive
molecules correctly. In order to validate the phacophore hypothesis, we used a test set compriHingg

molecules with anti-proliferative activity agairang cancer from different activity classes andedént structural
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information. All molecules in the test set werelfhuninimized and subjected to conformational aselike the
molecules in the training set. A squared corretatioefficient of 0.663 generated using the testsatpounds (Fig.
3) indicates a good correlation between the actunal estimated activities. The agreement betweeamalaend
predicted activity of test set compounds testifies soundness of Hypol. This validation provideditazhal

confidence in the usability of the selected phawphore.

i
—
tr

Estimated Activity

R? = 0.6634

Actual Adctivity

Fig. 3 Graph between experimental and estimated detties of internal test set compounds

2.CatScramble validation

To further assess the statistical significance hef pharmacophore hypotheses generated from th@ngaset

molecules, the Cat-scramble module in catalystwgasl which is based on the principle of Fishensloamization

test. In cross validation test, the thorough randation of the training set is used to validate atetive the

significance of the generated best model. Thesdoraized spreadsheets should yield hypotheses wgbel

statistical significance than the original modelstgygest that the original hypothesis represetitaeacorrelation.

Our model was found to be 95% significant in theaRelomization test. The results are given in Figi e data of
cross validation clearly indicate that the statstf Hypol is better than other random hypothesesevealed by
the lowest total cost and highest correlation doieffit, which verify that the Hypol is not obtaineg chance. This
cross-validation technique provided additional aderice on the pharmacophore generated from theirtgaset

molecules.

450 4

—4—Costs
400 -

——randoml

350 1 —de—random?

300 —=—random3

250 - —fe=random4

—&—random5
200 +

Pharmacophore Cost Difference

—t—randomé

150 -
e random7
100 - random8
50 - —4—random?9
0 T T T T T T T T T 1 #—random10
1 2 3 4 5 6 7 8 9 10 random11

Pharmacophore Hypothesis random12

Fig. 4 Plot of 95% Cat-scramble validation

3.External test set validation
A pharmacophore model is claimed to be best wheotitonly predicts the activity of the training setd internal
test set compounds but also predicts the activitieternal molecules. So, the selected pharmarephas further

validated by an external test set of TOP-I inhib#otivity with known Gi values. 27 compounds were selected for
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external set showing diversity in activity rangenr 0.01 uM to 56.6 uM (Table 3). All the compoundere
estimated using Hypol. The overall squared coroglatoefficient was 0.66 for the external testreetecules (Fig.
5) augmenting the results of internal test setiptieah.

Table 3 Structures of 27 indenoisoquinoline derivates as topoisomerase-I inhibitors used for exterhaalidation

Name of compounds Structure of compounds Activity G0 (in pM)
’ O
6.5 O 56.6
N~oH

6.6 O 5.62
N
~"oH

4.89

6.7 O

6.8 O 3.81
N
\/\Cl

4.59

6_15a 13.1
N\/\/Cl
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Estimated Activity

. R%=0.6605
4
Actual Actiivity

Fig. 5 Graph between experimental and estimated atties of external test set compounds

4.External validation with marketed and clinical tridrug candidates

As a more rigorous validation stegpme of the clinically approved marketed drugs elirdcal trial candidates like
Camptothecin, Topotecan, lIrinotecan, SN-38, BelmtecGimatecan, Rubitecan, Lurtotecan, Exatecan, and
Afeletecan (Table 4) were mapped on the pharmacgepimodel. Among all the compounds, Irinotecan mdpgle

the features (one hydrophobic, one positive ioleamd one ring aromatic), with maximum fit valuk 60229.
TopotecanSN-38, Lurtotecan, Rubitecan, Exatecan and Camgtottmapped two features missing on one feature.
This may be attributed to the lower number of comiations generated due to rigid structures of trapounds.

The three and two feature mapping of known drugarty highlights the validity, soundness and predtidity of
pharmacophore model.

Table 4 Mapping of pharmacophoric features with maketed and clinical trial drug candidates

Name of compound Mapping of drugs on generatednphesphore model Fit valu

1’

Irinotecan 6.229

Afletecan 4.96
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Gimatecan

Lurotecan

Camptothecin

Exatecan

Belotecan
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4.946

4.92

4.029

4.025

3.069
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Topotecan 3.032
SN-38 2.966
Rubitecan 2.597
9amino-camptothecin 2.418

Pharmacophore mapping

Mapping of the most active compound 1_62 on thermphaophore (Fig. 6a) reveals that the benzeneatiaghed
with nitro substituent is mapping to ring aromagioup, benzene ring attached with ethoxy group é&ping to
hydrophobic feature, and substituted amines fiy weell to the positive ionizable, whereas the insctompound
1_103 (Fig. 6b) missed positive ionizable feature tb absence of amino group.
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(b)

Fig. 6 Mapping analysis of (a) most active and (Bgast active compound on pharmacophore model

Hypothesisl, identified as the best hypothesigmastd the activity of the training set moleculeswaately. In this
study all compounds were classified by their agtias highly active (<M, +++), moderately active (1-20M,
++) and inactive (>2QuM, +). Table 5 represents the actual and estimat@&-| inhibitory activity of the 59
training set molecules based on the best hypoth@simng 59 training set compounds, only two highbtive
compounds were predicted as moderate by Hypol.

Table 5 Actual biological data and estimated G (in uM) of training set compounds

Compound Actual Activity Estimated Activity Fitwa  Actual Activity Scale Estimated Activity Scale

1.62 0.012 0.075 7.13 +++ +++
45 0.02 0.091 7.05 +++ +++
234 0.026 0.086 7.08 +++ +++
3_38 0.028 0.011 6.98 +++ +++
2_32 0.031 0.12 6.93 +++ +++
3_39 0.032 0.068 7.18 +++ +++
1.70 0.033 0.085 7.08 +++ +++
3_45 0.048 0.085 7.08 +++ +++
4 41 0.06 0.12 6.92 +++ +++
3_49 0.068 0.19 6.74 +++ +++
1108 0.15 0.14 6.86 +++ +++
1_66 0.19 0.16 6.80 +++ +++
213 0.19 11 4.95 +++ ++
164 0.19 0.24 6.62 +++ +++
3_55 0.19 0.2 6.71 +++ +++
2_35 0.2 0.15 6.82 +++ +++
4 13 0.2 0.16 6.81 +++ +++
4 35 0.28 0.12 6.92 +++ +++
3_40 0.34 0.4 6.40 +++ +++
4 39 0.58 0.58 6.25 +++ +++
351 0.63 0.33 6.49 +++ +++
4 15 0.69 0.26 6.59 +++ +++
3_20 0.79 0.26 6.59 +++ +++
1.38 1 13 491 +++ ++
3_50 15 0.54 6.28 ++ +++
4.6 1.6 3.2 5.51 ++ ++
416 1.7 2.7 5.58 ++ ++
1107 1.8 0.25 6.61 ++ +++
1.59 1.8 12 4.93 ++ ++
4 11 1.9 6.1 5.22 ++ ++
4 17 2.7 2.6 5.59 ++ ++
3_52 3 0.21 6.69 ++ +++
187 4.1 13 491 ++ ++
1.90 4.2 13 4.91 ++ ++
2.6 4.6 12 4.93 ++ ++
212 5.6 2.5 5.61 ++ ++
1.35 5.8 14 4.87 ++ ++
228 7.6 12 4.93 ++ ++
3_34 11 12 4.94 ++ ++
1.97 12 12 4.91 ++ ++
3_42 13 4.6 5.34 ++ ++
1.92 15 12 4.91 ++ ++
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1.61 15 13 491 ++ ++
1.39 18 13 4.90 ++ ++
3_32 20 12 4.93 ++ ++
1_36 21 13 491 + ++
3_31 22 12 4.94 + ++
1.37 25 13 4.90 + ++
1_60 26 26 4.60 + +

1_47 28 12 4.94 + ++
222 34 12 4.94 + ++
4 31 36 14 4.86 + ++
1_40 44 12 4.95 + ++
1.45 44 39 4.42 + +

1.94 50 12 4.92 + ++
1.58 56 12 4.92 + ++
1.98 56 12 4.91 + ++
1.52 72 13 4.89 + ++
1 103 89 13 4.89 + ++

Database screening

Database screening speeds upithglico drug discovery process and drug development, legtieg the best drug
in very less time [20, 21]. The virtual screeningtpcol reported in this study is based on the iappbn of
sequential filters to select the restricted nundferompounds.

The best pharmacophore model was used to scre@6the71 compounds of NCI database and 56,000 comaso

of Maybridge as a result of which 652 and 97 HIeseweturned respectively. Lipinski’s rule-of fiwas applied as

a first filter to screen the identified compoundbis led to the selection of 363 and 78 compoumnds fNCI and
Maybridge respectively. Out of these, 11 active poumds from NCI and 10 from Maybridge with the wityi
range < im and fit value > 6 were selected and the resh@ftompounds were discarded. The final HITs rethine
were NSC 5126, NSC 10577, NSC 13277, NSC 13280, R&WB, NSC 13453, NSC 5483, NSC 13459, NSC
12122, NSC 3621, NSC 2453, KM 03141, BTB 05759, R3854, JFD 00997, RDR 01275, JFD 01424, SEW
02332, BTB 04553, KM 09064 and TB 00033. The edmhaactivity, fit value and pharmacophore mappifg o
identified structurally diverse compounds are giirefable 6.

Table 6 HITs obtained from NCI and Maybridge database

Mapping of HITs on generated pharmacophore model méNaf compound  Estimated value  Fit value

NSC 5126 0.056 7.265
NSC 10577 0.063 7.213
NSC 13277 0.065 7.195
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NSC 13280

NSC 3606

NSC 13453

NSC 5483

NSC 13459
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0.087

0.088

0.089

0.095

0.097

7.073

7.065

7.059

7.031

7.025
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NSC 12122

NSC 3621

NSC 2453

KM 03141

BTB 05759
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0.098

0.099

0.099

0.067

0.171

7.021

7.015

7.013

7.185

6.777
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RJC 03954

JFD 00997

RDR 01275

JFD 01424

SEW 02332
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0.311

0.322

0.342

0.378

0.401

6.517

6.502

6.472

6.432

6.407
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BTB 04553 0.518 6.296

KM 09064 0.876 6.067

TB 00033 0.882 6.064
CONCLUSION

In this study, we have used pharmacophore base@3PR method to develop thoroughly validated modietsa
series of 59 topoisomerase-| inhibitors. The madthined was highly robust and predictive with geodrelation
values ofr® = 0.789 (training set)> = 0.663 (internal test set) amd = 0.66 (external test set). The results
demonstrated that Hydrophobic (HY), Ring AromatiRA) and Positive lonizable (PIl) features influence
significantly the inhibitory activity. The whole gcedure of pharmacophore modeling along with datlsareening
carried out on the NCI and Maybridge database teguh the retrieval of 21 novel ligands with TOR+hibitory
activity which can be used for further investigatio
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