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ABSTRACT 
 
In recent year’s topoisomerase I inhibitors like indenoisoquinolines have become important new lead for rational 
design of anticancer drugs due to their greater physiological and DNA-enzyme cleavage complexes stabilities. As a 
starting point a complete pharmacophore based 3D-QSAR study was performed on a series of 104 
indenoisoquinolines and their derivatives. The best pharmacophore model consisted of one Hydrophobe (HY), one 
Positive Ionizable (PI) and one Ring Aromatic (RA) charecterstics which are a necessary requirement for good 
topoisomerase I inhibitory activity. The model was validated using Fischer randomization test and by internal and 
external data set of 38 and 27 compounds, respectively exhibiting r2 of 0.663 and 0.66. The validated 
pharmacophore model was used to screen NCI and Maybridge database resulting in identification of 21 novel 
topoisomerase I inhibitors. Since all the 21 compounds obeyed Lipinski’s rule of five, it is envisaged that these 
structurally diverse compounds have great potential for their development as anti-cancer agents.  
 
Keywords: DNA, Enzyme, QSAR, Database, NCI, Maybridge 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Cancer is the leading cause of mortality in most countries after cardiovascular disease. There is no other disease 
which parallels cancer in diversity of its origin, nature and treatments [1]. It is likely to become the major reason of 
the death in the upcoming years.  In spite of the progress made, the index of cancer therapy remains low and its 
treatment is a challenge. Out of various types of cancers, lung cancer remains the leading cause of death among men 
and women in the civilized world. There will be an estimated 160,340 deaths caused by lung cancer (87,750 among 
men and 72,590 among women) in 2012, accounting for around 28 % of all cancer deaths [2]. As classified by the 
World Health Organization, there are four major types of lung cancer: squamous cell (epidermoid) carcinoma, 
small-cell (oat cell) carcinoma, adenocarcinoma, and large cell carcinoma. Conventional treatment of either form of 
lung cancer is quite ineffective. Therefore, there is a need to develop more effective chemotherapeutic agents against 
lung cancer. 
 
DNA Topoisomerase-I (TOP-I) is an effective molecular target for the development of clinically based anticancer 
agents. They show excellent activity against various types of tumors, especially lung cancer and colon cancer. 
Camptothecin (CPT) is the first agent identified as a TOP-I inhibitors. Camptothecins and its derivatives bind the 
interface of the TOP-I–DNA complex and exert their pharmacological activity. They are effective in S-phase rather 
than in the G1 or G2/M phases of the cell cycle [3-5].  
 
Although CPTs are very potent but often show dose related toxicities. The indenoisoquinolines as a class of 
cytotoxic TOP-I inhibitors provide greater stabilities of the compounds as well as drug-enzyme-DNA cleavage 
complexes in comparison to the CPTs [6].  
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Indenoisoquinoline compounds and their derivatives are found to possess antitumor and other biological activities 
like antimalarial, however, the relationships of their structure and activity are still not well understood [7, 8]. 
Therefore, correlating the physicochemical properties or structural features of compounds with their cytotoxicities in 
GI50 will surely provide useful information for the identification of new antitumor drugs.  
 
Pharmacophore modeling is a powerful computational approach used for the study of biological activities with 
properties or molecular structures, which is helpful to explore the relationship between the structures of ligands and 
their biological activities. Also, it offers the advantages of higher speed and lower costs for bioactivity evaluation, 
especially compared to experimental testing.  
 
In present research work we have focused on two aspects. One is generation of ligand-based pharmacophore models 
with the help of Catalyst 4.8 (available from Accelrys Inc.), one of the leading software products for the automated 
generation of pharmacophore models and second is database mining using validated pharmacophore model to 
identify novel, structurally diverse and druggable chemical entities with high TOP-I inhibitory activity. The large 
number of successful applications of pharmacophore based virtual screening has been clearly demonstrated [9-11].  
 

MATERIALS AND METHODS 
 
Biological activity and data set 
To build a dynamic 3D model four different datasets exhibiting TOP-I inhibitory activity were selected from the 
literature with experimentally determined cytotoxicity GI50 values on human lung cancer cell lines. 
 
The homogeneity of the biological assays is one of the important aspects in pharmacophore based QSAR studies; 
therefore data set of 104 compounds belonging to the indenoisoquinolines was collected from the same research lab 
and group (Andrew Morrell and Mark Cushman et. al.) with the same biological assay method. The dataset spanned 
a 3.8 order magnitude with the activity range from 0.012 µM to 89.1 µM. The structures of indenoisoquinolines 
along with their biological activity are given in Table 1 [12-15]. 

 
Table 1 Structures of 104 indenoisoquinoline derivatives as topoisomerase-I inhibitors 
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O O

 

2.2 

 
Pharmacophore generation 
The study was performed using the Catalyst software package (version 4.8, Accelrys Inc., San Diego, CA). Catalyst 
software supports the HypoGen algorithm, which is able to generate automatically structure activity based 
pharmacophore hypotheses from a set of compounds, provided that structure–activity relationship data of a well-
balanced set of compounds are available. All compounds were built using ISIS Draw 2.5, imported to Accelry’s 
Discovery Studio 2.0 (DS 2.0) window and energy minimized to the closest local minima using the generalized 
CHARMM-like force field as implemented in the program. This force field allows evaluation of the energy of 
structure as well as repairing distorted geometries through energy minimization. Conformational models of the 
training set compounds were generated using a Monte Carlo-like algorithm together with poling. Catalyst provides 
two types of conformational analysis: Fast and Best. In present study, the “best quality searching procedure” was 
adopted to select representative conformers with a constraint of 20 kcal/mol range above the computed global 
minimum energy. An important aspect of pharmacophore generation is the appropriate feature selection. The 
selection of the features was done by considering the basic structure of the TOP-I inhibitors. Initial study of 
functional groups in all compounds revealed that the compounds might contain hydrogen bond acceptor, hydrogen 
bond donor, positive ionizable group, hydrophobic and ring aromatic features. On the basis of this, several 
combinations of features were made and applied to generate hypothesis by HypoGen module in Catalyst. None of 
the statistically fit pharmacophore hypothesis had HBA and HBD feature. As a result, it was concluded that HBA 
and HBD region are not essential in the binding. Final set of features included one hydrophobic, one positive 
ionizable, and one ring aromatic. 
 
A training set of 59 and test set of 38 compounds with of all types of activity range as well as structural diversity 
was chosen for correlation with selected set of features. Pharmacophore generation was carried out by setting 
function weight to 0.205, mapping coefficient to 0, resolution to 297 pm. The uncertainty factor was set to 3. This 
factor for each compound represents the ratio range of uncertainty in the activity value based on the expected 
statistical straggling of biological data collection.  
 
Seven compounds named 1_105, 1_111, 1_95, 1_56, 2_29, 2_39 and 4_42 were detected as outliers from both the 
training as well as test set, so were excluded from the dataset. The implemented protocol returned top ten hypotheses 
which were further analyzed for their statistical significance on the basis of cost function analysis, correlation 
coefficient and rms deviation. 
 
Model validation 
1. CatScramble validation 
CatScramble validation based on Fischer’s randomization test was performed as an internal validation technique. In 
this method, the biological data and the corresponding structures were scrambled several times and the software was 
challenged to generate pharmacophoric models from the randomized data. To obtain a 95% confidence level, 19 
random spreadsheets were generated and every generated spreadsheet was submitted to HypoGen using the same 
experimental conditions (functions and parameters) as the initial run [16]. The pharmacophore hypothesis generated 
for present TOP-I inhibitors included in the training set were evaluated for their statistical significance using the 
aforesaid CatScramble program. 
 
2. Internal test set validation 
An internal test set comprising of 38 compounds was employed to assess statistical significance of the developed 
model. A relationship between actual activity and estimated activity for all test set molecules was computed after 
mapping of each molecule to the pharmacophore. The test set prediction was measured in terms of squared 
correlation coefficient (r2). 
   
3. External test set validation 
In order to assess the predictive power of the resulting hypogen three-feature pharmacophore model, an external test 
set comprising of 27 indenoisoquinolines [17] with experimental GI50 values determined in the same laboratory and 
using comparable biological assays was used. The pharmacophore model was used to predict biological activities of 
the external test set compounds and comparison was made between predicted and actual activities. 
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4. External validation with marketed and clinical trial drug candidates 
As an additional validation step, the pharmacophore was mapped on some of the clinically approved marketed drugs 
and clinical trial candidates like Irinotecan, Topotecan, Belotecan, SN-38, Lurtotecan, Rubitecan, Exatecan, 
Camptothecin, Afeletecan, Gimatecan and 9amino-camptothecin and their mapping fashion were analyzed. 
 
Virtual screening 
The validated pharmacophore model included the chemical functionalities responsible for the TOP-I inhibitory 
activity; therefore, these pharmacophore models were used as a 3D query to perform virtual screening. The fast 
flexible search databases method was applied for searching the Maybridge and NCI database, to retrieve putative 
compounds, which are defined as compounds having their chemical moieties spatially mapped with corresponding 
features in the pharmacophoric query. All the HITs obtained from database search were analyzed according to the 
Lipinski’s rule-of five [18], which is a simple model to predict the absorption and intestinal permeability of the 
compound. According to the rule, compounds are well-absorbed when they possess Log P less than 5, molecular 
weight less than 500, number of H-bond donors less than 5, number H-bond acceptors less than 10 and number of 
rotatable bonds less than 10. Compounds violating more than one of these rules may not have appropriate 
bioavailability. After checking the druggablity of the HITs, fit values were considered as filter for procurement of 
good HITs. In addition to this, the database compounds were also selected on the basis of the estimated values. The 
compounds having estimated activity less than 1µM were selected as potential HITs. 

 
RESULTS AND DISCUSSION 

 
Pharmacophore generation and quality assessment 
The in-built HypoGen algorithm was applied to the training set of 59 compounds with antiproliferative activity 
against the human lung cancer cell lines. Taking into account the chemical nature and conformations of the 
compounds considered in this work, a set of 10 hypotheses (Hypo1–Hypo10) was generated.  
 
The top-ranked pharmacophore model (Hypo1) consisting of one hydrophobic group, one positive ionizable and one 
ring aromatic showed the best predictive power and statistical significance described by the high correlation 
coefficient of r = 0.886, r2 = 0.789, low root mean- square deviation (rmsd = 1.0827), weight (3.769) and error cost 
(202.66), satisfying the acceptable range recommended in the cost analysis of the Catalyst procedure [19]. The low 
value of rmsd represents the good quality of correlation between the estimated and the actual activity data. The 
obtained pharmacophoric features and their interfeature distances are shown in Fig. 1a and 1b. 

 

 
Figure 1 Pharmacophore model generated by Hypo1 (a) Pharmacophore features, (b) Interfeature distances 
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Table 2 Cost values, RMSD, correlation values and features for top 10 hypotheses (Hypo 0- Hypo 10) 
 

Hypothesis Total Cost Cost Difference RMSD Correlation Features 
1 248.12 109.844 1.08273 0.886739 HY, PI, RA 
2 269.976 87.988 1.41761 0.792682 HY, PI, RA 
3 270.485 87.479 1.4229 0.790963 HY, PI, RA 
4 271.752 86.212 1.4387 0.785622 HY, PI, RA 
5 271.768 86.196 1.43835 0.785763 HY, PI, RA 
6 272.528 85.436 1.44774 0.782549 HY, PI, RA 
7 273.194 84.77 1.45543 0.779912 HY, PI, RA 
8 286.114 71.85 1.59815 0.726441 HY, PI, RA 
9 287.199 70.765 1.61046 0.721348 HY, PI, RA 
10 290.678 67.286 1.64532 0.706729 HY, PI, RA 

 
Cost function analysis 
The quality of the generated pharmacophore hypotheses were also evaluated by considering the cost functions 
represented in bits unit calculated by HypoGen module during pharmacophore generation. The fixed cost of the 10 
top-scored hypotheses was 210.687 bits, well separated from the null hypothesis cost of 357.964 bits. As the total 
cost of Hypo1 was 248.12, the large difference between null and total hypothesis cost (Dcost) was 109.84, coupled 
with a high correlation coefficient, and a reasonable root mean square (rms) deviation ensures that a true correlation 
has been established between pharmacophore features and antiproliferative activity.  
 
Moreover, the total cost of any hypothesis should be toward the value of the fixed cost to represent any useful 
model. The cost difference between total and fixed costs for the best hypothesis was only 37.43 bits, indicating the 
high probability of the true correlation of the data.  
 
The configuration cost is another parameter to evaluate the quality of generated pharmacophore. The configuration 
cost for any generated hypothesis should be less than or equal to 17 (corresponds to 217 pharmacophore models). 
The configuration cost was 11.315, indicating that the generated models have been thoroughly analyzed. The cost 
values, correlation coefficients (r), the rms factor indicate the quality of prediction for the training set. The features 
for the top ten hypotheses are listed in Table 2 and the plot for training set compounds showing correlation between 
actual and predicted activity is depicted in Fig. 2. 
 

 
 

Figure 2. Graph between experimental and estimated activities of training set compounds 
 

Pharmacophore validation 
Besides cost function analysis, some other validation methods were adopted to characterize the quality of hypothesis 
and accuracy of the model: 
 
1. Test set prediction 
The validity of any pharmacophore model needs to be determined by applying that model to the test set to find out 
how correctly the model predicts the activity of the test set molecules and whether it can identify active and inactive 
molecules correctly. In order to validate the pharmacophore hypothesis, we used a test set comprising of 38 
molecules with anti-proliferative activity against lung cancer from different activity classes and different structural 
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information. All molecules in the test set were built, minimized and subjected to conformational analysis like the 
molecules in the training set. A squared correlation coefficient of 0.663 generated using the test set compounds (Fig. 
3) indicates a good correlation between the actual and estimated activities. The agreement between actual and 
predicted activity of test set compounds testifies the soundness of Hypo1. This validation provided additional 
confidence in the usability of the selected pharmacophore. 
 

 
 

Fig. 3 Graph between experimental and estimated activities of internal test set compounds 
 

2. CatScramble validation 
To further assess the statistical significance of the pharmacophore hypotheses generated from the training set 
molecules, the Cat–scramble module in catalyst was used which is based on the principle of Fisher’s randomization 
test. In cross validation test, the thorough randomization of the training set is used to validate and derive the 
significance of the generated best model. These randomized spreadsheets should yield hypotheses with lesser 
statistical significance than the original model to suggest that the original hypothesis represents a true correlation. 
Our model was found to be 95% significant in the F-randomization test. The results are given in Fig. 4. The data of 
cross validation clearly indicate that the statistics of Hypo1 is better than other random hypotheses, as revealed by 
the lowest total cost and highest correlation coefficient, which verify that the Hypo1 is not obtained by chance. This 
cross-validation technique provided additional confidence on the pharmacophore generated from the training set 
molecules. 
 

 
 

Fig. 4 Plot of 95% Cat-scramble validation 
 

3. External test set validation 
A pharmacophore model is claimed to be best when it not only predicts the activity of the training set and internal 
test set compounds but also predicts the activities of external molecules. So, the selected pharmacophore was further 
validated by an external test set of TOP-I inhibitor activity with known GI50 values. 27 compounds were selected for 
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external set showing diversity in activity range from 0.01 µM to 56.6 µM (Table 3). All the compounds were 
estimated using Hypo1. The overall squared correlation coefficient was 0.66 for the external test set molecules (Fig. 
5) augmenting the results of internal test set prediction.  

 
Table 3 Structures of 27 indenoisoquinoline derivatives as topoisomerase-I inhibitors used for external validation 

 
Name of compounds Structure of compounds Activity GI50 (in µM) 
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Fig. 5 Graph between experimental and estimated activities of external test set compounds 
 

4. External validation with marketed and clinical trial drug candidates 
As a more rigorous validation step, some of the clinically approved marketed drugs and clinical trial candidates like 
Camptothecin, Topotecan, Irinotecan, SN-38, Belotecan, Gimatecan, Rubitecan, Lurtotecan, Exatecan, and 
Afeletecan (Table 4) were mapped on the pharmacophore model. Among all the compounds, Irinotecan mapped all 
the features (one hydrophobic, one positive ionizable and one ring aromatic), with maximum fit value of 6.229. 
Topotecan, SN-38, Lurtotecan, Rubitecan, Exatecan and Camptothecin mapped two features missing on one feature. 
This may be attributed to the lower number of conformations generated due to rigid structures of the compounds. 
The three and two feature mapping of known drugs clearly highlights the validity, soundness and predictability of 
pharmacophore model. 

 
Table 4 Mapping of pharmacophoric features with marketed and clinical trial drug candidates 

 
Name of compound Mapping of drugs on generated pharmacophore model Fit value 

Irinotecan 

 

6.229 

Afletecan 

 

4.96 
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Gimatecan 

 

4.946 

Lurotecan 

 

4.92 

Camptothecin 

 

4.029 

Exatecan 

 

4.025 

Belotecan 

 

3.069 
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Topotecan 

 

3.032 

SN-38 

 

2.966 

Rubitecan 

 

2.597 

9amino-camptothecin 

 

2.418 

 
Pharmacophore mapping 
Mapping of the most active compound 1_62 on the pharmacophore (Fig. 6a) reveals that the benzene ring attached 
with nitro substituent is mapping to ring aromatic group, benzene ring attached with ethoxy group is mapping to 
hydrophobic feature, and substituted amines fit very well to the positive ionizable, whereas the inactive compound 
1_103 (Fig. 6b) missed positive ionizable feature due to absence of amino group. 
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Fig. 6 Mapping analysis of (a) most active and (b) least active compound on pharmacophore model 

 
Hypothesis1, identified as the best hypothesis, estimated the activity of the training set molecules accurately. In this 
study all compounds were classified by their activity as highly active (<1 µM, +++), moderately active (1-20 µM, 
++) and inactive (>20 µM, +). Table 5 represents the actual and estimated TOP-I inhibitory activity of the 59 
training set molecules based on the best hypothesis. Among 59 training set compounds, only two highly active 
compounds were predicted as moderate by Hypo1.  
 

Table 5 Actual biological data and estimated GI50 (in µM) of training set compounds 
 

Compound Actual Activity Estimated Activity Fit value Actual Activity Scale Estimated Activity Scale 
1_62 0.012 0.075 7.13 +++ +++ 
4_5 0.02 0.091 7.05 +++ +++ 
2_34 0.026 0.086 7.08 +++ +++ 
3_38 0.028 0.011 6.98 +++ +++ 
2_32 0.031 0.12 6.93 +++ +++ 
3_39 0.032 0.068 7.18 +++ +++ 
1_70 0.033 0.085 7.08 +++ +++ 
3_45 0.048 0.085 7.08 +++ +++ 
4_41 0.06 0.12 6.92 +++ +++ 
3_49 0.068 0.19 6.74 +++ +++ 
1_108 0.15 0.14 6.86 +++ +++ 
1_66 0.19 0.16 6.80 +++ +++ 
2_13 0.19 11 4.95 +++ ++ 
1_64 0.19 0.24 6.62 +++ +++ 
3_55 0.19 0.2 6.71 +++ +++ 
2_35 0.2 0.15 6.82 +++ +++ 
4_13 0.2 0.16 6.81 +++ +++ 
4_35 0.28 0.12 6.92 +++ +++ 
3_40 0.34 0.4 6.40 +++ +++ 
4_39 0.58 0.58 6.25 +++ +++ 
3_51 0.63 0.33 6.49 +++ +++ 
4_15 0.69 0.26 6.59 +++ +++ 
3_20 0.79 0.26 6.59 +++ +++ 
1_38 1 13 4.91 +++ ++ 
3_50 1.5 0.54 6.28 ++ +++ 
4_6 1.6 3.2 5.51 ++ ++ 
4_16 1.7 2.7 5.58 ++ ++ 
1_107 1.8 0.25 6.61 ++ +++ 
1_59 1.8 12 4.93 ++ ++ 
4_11 1.9 6.1 5.22 ++ ++ 
4_17 2.7 2.6 5.59 ++ ++ 
3_52 3 0.21 6.69 ++ +++ 
1_87 4.1 13 4.91 ++ ++ 
1_90 4.2 13 4.91 ++ ++ 
2_6 4.6 12 4.93 ++ ++ 
2_12 5.6 2.5 5.61 ++ ++ 
1_35 5.8 14 4.87 ++ ++ 
2_28 7.6 12 4.93 ++ ++ 

3_34 11 12 4.94 ++ ++ 

1_97 12 12 4.91 ++ ++ 
3_42 13 4.6 5.34 ++ ++ 
1_92 15 12 4.91 ++ ++ 
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1_61 15 13 4.91 ++ ++ 
1_39 18 13 4.90 ++ ++ 
3_32 20 12 4.93 ++ ++ 
1_36 21 13 4.91 + ++ 
3_31 22 12 4.94 + ++ 
1_37 25 13 4.90 + ++ 
1_60 26 26 4.60 + + 
1_47 28 12 4.94 + ++ 
2_22 34 12 4.94 + ++ 
4_31 36 14 4.86 + ++ 
1_40 44 12 4.95 + ++ 
1_45 44 39 4.42 + + 
1_94 50 12 4.92 + ++ 
1_58 56 12 4.92 + ++ 
1_98 56 12 4.91 + ++ 
1_52 72 13 4.89 + ++ 
1_103 89 13 4.89 + ++ 

 
Database screening  
Database screening speeds up the in silico drug discovery process and drug development, by selecting the best drug 
in very less time [20, 21]. The virtual screening protocol reported in this study is based on the application of 
sequential filters to select the restricted number of compounds.  
 
The best pharmacophore model was used to screen the 260,071 compounds of NCI database and 56,000 compounds 
of Maybridge as a result of which 652 and 97 HITs were returned respectively. Lipinski’s rule-of five was applied as 
a first filter to screen the identified compounds. This led to the selection of 363 and 78 compounds from NCI and 
Maybridge respectively. Out of these, 11 active compounds from NCI and 10 from Maybridge with the activity 
range < 1µm and fit value > 6 were selected and the rest of the compounds were discarded. The final HITs retained 
were NSC 5126, NSC 10577, NSC 13277, NSC 13280, NSC 3606, NSC 13453, NSC 5483, NSC 13459, NSC 
12122, NSC 3621, NSC 2453, KM 03141, BTB 05759, RJC 03954, JFD 00997, RDR 01275, JFD 01424, SEW 
02332, BTB 04553, KM 09064 and TB 00033. The estimated activity, fit value and pharmacophore mapping of 
identified structurally diverse compounds are given in Table 6. 

 
Table 6 HITs obtained from NCI and Maybridge database 

 
Mapping of HITs on generated pharmacophore model Name of compound Estimated value Fit value 

 

NSC 5126 0.056 7.265 

 

NSC 10577 0.063 7.213 

 

NSC 13277 0.065 7.195 
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NSC 13280 0.087 7.073 

 

NSC 3606 0.088 7.065 

 

NSC 13453 0.089 7.059 

 

NSC 5483 0.095 7.031 

 

NSC 13459 0.097 7.025 
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NSC 12122 0.098 7.021 

 

NSC 3621 0.099 7.015 

 

NSC 2453 0.099 7.013 

 

KM 03141 0.067 7.185 

 

BTB 05759 0.171 6.777 
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RJC 03954 0.311 6.517 

 

JFD 00997 0.322 6.502 

 

RDR 01275 0.342 6.472 

 

JFD 01424 0.378 6.432 

 

SEW 02332 0.401 6.407 
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BTB 04553 0.518 6.296 

 

KM 09064 0.876 6.067 

 

TB 00033 0.882 6.064 

 
CONCLUSION 

 
In this study, we have used pharmacophore based 3D-QSAR method to develop thoroughly validated models for a 
series of 59 topoisomerase-I inhibitors. The model obtained was highly robust and predictive with good correlation 
values of r2 = 0.789 (training set), r2 = 0.663 (internal test set) and r2 = 0.66 (external test set). The results 
demonstrated that Hydrophobic (HY), Ring Aromatic (RA) and Positive Ionizable (PI) features influence 
significantly the inhibitory activity. The whole procedure of pharmacophore modeling along with database screening 
carried out on the NCI and Maybridge database resulted in the retrieval of 21 novel ligands with TOP-I inhibitory 
activity which can be used for further investigation.  
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