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ABSTRACT

The second virial coefficient,,Bvas measured using the gas filling and handlingasmptus made up of the gas
sample and evacuation cylinders. After the expeartrttee compressibility factor of G@vas evaluated to be 0.268.
The deviation from unity is an indication that £é& 373k and 19.6 atm behaves non-ideally. Froerdiure
however, the compressibility factor of €& this temperature is 0.274, showing an error2df%. This error is
within allowable limit. Subsequently the secondaVicoefficient was deduced to be -73.2 as compavitgh the
value of -72.2 contained in literature. In all, thesults obtained are plausible, precise and reatbnaccurate.

Key words: compressibility factor, carbon dioxide, non-idgatiecond virial coefficient.

INTRODUCTION

That the ideal gas law, is an abstraction is etidemen one considers the underlying assumptionsemmuht
molecules are point masses, and they undergo

PV = nRT, €Y)

only elastic collisions. Since we know these tarieerently false, it may be surprising how well itleal gas law
seems to work. At higher pressures and/or loweptgature, however, finite molecular volumes andrimiblecular
forces are considerable, and the expected deviatiom (1) become too large to be ignored.

One logical and systematic way in which deviatitmosn ideal gas behaviour can be expressed matheatigtis to
measure the state propertiBs,V,andT, of n moles of a gas at equilibrium, and to determineetkitent to which the
PV/nRTquotient deviates from unity. The dimensionlegsregsiorPV/nRTis called thecompressibility factorand
is denoted aZ. Since the extent to which differs from unity depends on the pressure [cerakitively, at a given

temperature, the reciprocal molar volumgV1i], Z can be expressed as a power series in eithdresktstate
variables. Thus,

z =%= 1+ B, (§)+B3 (§)2+B3 (;)3 o ()
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whereB,, Bs, are called the second, third, virial coefficients.(The term virial here indicates a power seriekeyl
are functions of temperature and actually relatthtosimultaneous interactionsf two, three, four... molecules,
respectively. It can be understood, therefore, thathigher-order virial coefficients become sigrdht only at
smaller molar volumes (i.e., higher pressure).

The virial coefficients can be calculated from tre¢iwal concepts involving statistical mechanicd &nowledge of
the intermolecular potential energy function appiate to the particular molecular system. This isaae in which
thermodynamics, which deals empirically with macagsc systems, can be linked with microscopic mE#jt
molecules [1].

Z can also be expressed as a power series in thgupes(it often being a more convenient state blaja
Z =14 AP+ A3P* + A,P3 + -, 3

where the temperature-dependent As, A4, ... are also virial coefficients. If equation (8)solved forP and this
expression is substituted in equation (3), the faoehts of i/V) of equal powers in the two expressions can be
equated. Thus,

B, = A,RT By = (A% + A3)R?*T? 4)

and
B4 = (A% + 3A2A3 + A4)R2T2

For most gases at moderate pressures (below ¢a.8D atm), the squared and higher terms can glected, and
equation (3) reads

%
Z =1+ A,P 5)

~ WRT

This is a one-parameter equation of state (corisiglé as a constant). If the van der Waals equatictate (1873)
RT a
(6)

b=y " wme

is cast into a virial form in eitheW(n) or P [1, 2] and the results are compared with equat®ro( (3) respectively,
it becomes evident that
a
B,=b-pm (7)
and

1
A2 =ﬁ(b—%)

The temperature dependenceBgfandA, here is explicit. Expressions for the higher Videefficients can also be
obtained in terms ad andb. Thus the virial coefficients can be estimatedrfrthe van der Waalsandb constants.
Alternatively,a andb can be determined from the temperature dependdrige(or A,).

The Beattie-Bridgeman (BB) equation (1927), isvafparameter equation of state:

_ RTA-E)(V/n+B) A
B (V/n)? (V/n)?
whered = A,[1—a/(V/n)],B = B,[1—b(V/n)], andE = c/[(V/n)T3]. Thus the five parameters akg B, a,

b andc. This equation, which, because of the five paransetworks well over a wider pressure range, caoalsé
into a virial form (i.e. power series) in which thecond coefficient is

®)

A, ¢
B, =Bo—pr 73 9
Here, only three of the BB parameters appear. [2]
OnceA; (or By) is determined, the equation of state
PV,, = RT + B,P, (10)
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whereV,, is the molar volume (see equation 5) can be usethtiain certain real gas properties such as tecity
coefficient {), internal energyU), C, — C,, and the Joule-Thomson coefficient. As an exaropleow the simple
equation of state [10] can be used, we will conside calculation of the fugacity coefficient. Thmlar Gibbs free
energy (chemical potential). ., for a gas undealidenditions(P — 0or V —«) is expressed as

u® = u°(T) + RT In (;) (11)

whereP is the pressure in atmospheRe € 1 atm) and {iis the standard state chemical potential of tteeagd. atm
pressure and under “ideal gas conditions.”

At higher pressures where gas imperfection caneaigbored, equation (11) is modified to expressdhemical
potential as

f
4= po(T) + RT In (f—o) (12)
wheref is called thefugacity of the gas. In other words, the fugacity of a gas iquantity whose logarithm in
equation (12) represents the actual chemical pateftthe gas. Thus @&— 0, f - P, and if we take the standard

state pressure to be 1 atm, the dimensions of fiygawst also be in atmospheres in order to makeetijuation
quantitatively correct.

We wish to find out how the fugacity depends orspuee (S0 we can use a particular equation of giatetermine
f). At constant temperature, the pressure dependehtiee chemical potential is simplju = V;,,dP. Using this
expression along with (12) we get

du =RT d(Inf) =V,,dP (13)

In principle, this result could be intergrated &t ¢nf as a function oP. The problem is with the lower boundary
condition: forP = 0 (ideal gas)f = P, and thus Irf is not finite. We can get around this problem kpressing the
fugacity as a factoty, times the pressure:

f=vP, (14)

wherey is called thdugacity coefficientThere is an analogy here between the fugacity wierfit (for gases) and
the activity coefficient (usually used for solut®)n We recognize that, in the limit of zero pressyr — 1.
Substituting equation (14) into (13), we {efter using d(InP) = dP/P]

RT
RT d(Iny) = (Vm - ?) dP (15)

This equation is used for calculating fugacity ¢ieéfnts. After integration (using the dummy vat@aP’) between
P’ =0 (wherelny = 0) andP’=P. (15) yields
1 (F RT\
lny = ﬁ ) (Vm —F> dP (16)
The integrand in equation (16) is obtained fronegnation of state. Notice that tRg/P term in (16) would appear
to be troublesome as P> 0: however, in this limit},, = RT /P’ and the integrand vanishes.

From the simple equation of state presented intequ#l0),V,, = RT/P = B,, and using this result in equation

(16) and integrating between 0 and P gives finally
2

Iny = 222 (3, 4] 17
ny_RT ’ ( )

MATERIALSAND METHODS

In determining the second virial coefficie®,] experimentally, the most straightforward procedwould be to
measure as a function of pressure and, assuming a linéatior to hold (up to moderate pressures), to fles. P
[as implied in equation (15), thereby obtainiBg as the slope. Whil®, V,and T can be easily measured, the
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determination oh —the number of moles of gas — is not straightfodvd@r gravimetric technique is inappropriate
because the mass of vapor in the system is a vea}l raction of the total mass of the containetigh is
constructed of heavy-gauge metal so that it is lo@paf withstanding high pressures). An indirecttimod is
therefore needed to determing and an approach developed by Burnett in 1936af®] recently modified by
Baskett and Matthews [4] is particularly straiginifard. It involves filling a bomb (theample cylindgrwith the
gas to be studied at a moderately high pressae2@ atm), reading the pressure, and then withidgper small
amount of gas so that it fills another, somewhagdg container (thexpansion cylindgrat a known, low pressure (
less than 1 atm). The ideal gas law can then bkedpjp the gas in the expansion vessel, and thesiumber of
moles of gas withdrawn can be determined. A schientiagram of the experimental arrangement is shawn
Figure 1.

The mathematical treatment of the above experirhemgthod that leads to an expressioZ ef f(P) follows. LetV®
and\? be the volumes of the expansion and sample cylindespectivelyP® and P® are the corresponding gas
pressures in these containers. The experimentrigedaout at a controlled temperatuik, Initially, the sample
cylinder is filled (at high pressure) witly moles of the gas to be studied. A small amoutihefgyas is transferred to
the expansion cylinder

Figurel: Schematic diagram of gasfilling and handling apparatus. Sand E are the sample and evacuation cylinders, and P*and P*are
the respective pressure-sensing devices. Thevalves A, B, and C areindicated

which has been previously evacuated; the preshererises td&*°;, which is not allowed to exceedl atm. In this
way, the ideal gas law can be justifiably appliedhe gas in the expansion cylinder. The pressutbe sample
cylinder falls fromP% to P%,. From the ideal gas law, the number of moles stigmsferredis

ng = Pel\/e/RT

The expansion cylinder is then pumped out andleefilvith anotherr 1 atm amount of gas from the sample
cylinder. The resulting pressures are néwandP®, and the number of moles transferred this time¥sP°/RT.
The expansion cylinder is reevacuated and the aggeated until finally, in theth transfer, the pressure in the
sample cylinder drops to about 1 atm (or lowee), P%,= P%,.

In order to proceed further, we must determineniin@ber of moles of gas remaining in the samplendgr after a
given transfer. This is achieved as follows. Théahnumber of moles of gas in the sample cylindgris equal to
the number of moles of gas remaining after mhib expansiorplus the total number of moles delivered via the
individual transfers to the expansion cylinder;shu

1
ng = = (PRV® + PYVE + PSV + 4 PRV) (18)

m
1
ny = E(P,;W"’ +ve Z Pf)
=
wherePf is the pressure in the expansion cylinder afteiitth expansion. Thus the number of moles of gasen th
sample cylinder that remains afteexpansions have been carried out is

or
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r

n, =ng— Z n;, (19)

i=1

wheren; is the number of moles of gas withdrawn in ftfe expansionn; = PfV¢/RT. Substitutingn; and n,
(equation 18) into (19) results in

T T
1
n, = E(P,ﬁVS + Vez pm — Vez Pf) (20)

i=1 i=1

m
1
n = oo (P,,‘;VS Ve Z Pf)

i=r+1
Using this result for pwe can now write the compressibility factor

or

PrSVS PTSVS (21)
" n.RT PEVS + Vei pe

A

i=r+1

and this simplifies, after dividing by, to
(22)

RGO

i=r+1

Zy

Equation (22) is the desired result and is the adatnal basis of this experiment. The measuratledP;’}, the
set of pressure readings in the sample cylinded, {#f}, the corresponding set of pressures in the expans
cylinder. The summation in equation (22) goes betwg + 1)th and the finahth, expansion, wherneis a running
index. The volume ratid/¢/V?, is separately measured by performing a gas eigans

RESULTSAND DISCUSSION

The following readings were taken from the pressemsing devices of the apparatus used:
Sample pressur®’ = 19.6 atm

Pressure droé = 0.5 atm

Expansion pressur®’ = 15, 10, 5 atm

Sample Volumey® = 418.5cm the 20 atm

Expansion volumey® = 1012.8crh pressure

Temperature (operating)= 373K

By using Equation (22), the compressibility factdris calculated to be 0.268. For ideal behavidwill be unity
for all pressures and temperatures. For real gasethe CQ studied, however, some deviation from unity will
occur. So, the gas imperfection is apparent agliffierence between the observed valu&a@nd unity. It is to be
noted however, that at very low pressures almdsthal gases hav& as unity and behave nearly perfectly.
Deviations recorded at high pressures signify &adrignolar volume than a perfect gas, because igputsrces are
now dominant.

Again, to obtain the second virial coefficient; Bie value of compressibility factor is substituiadEquation (5)

and the result at the minimal pressure (0.01 asmY38.2. The values of virial coefficients of a gae determined
from measurements of its compressibility factor. ifaportant point is that, although the equatiorstatte of a real
gas may coincide with the perfect gas lawPas 0, not all its properties necessarily coincide witbse of a perfect
gas in that limit. Because several physical pragemnf gases depend on derivatives, the propestiesal gases do
not always coincide with the perfect gas valuetoat pressures. Again, since virial coefficients smperature
dependent, there are temperatures at whieh 1 with zero slope at low pressure or high moldunee. At this
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temperature, which is called the Boyle temperatligethe properties of the real gas to coincide witbse of a
perfect gas aB — 0.
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