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ABSTRACT

For a series of piperidone derivatives with antican activity against MCF7 cell lines pharmacophaenedeling
was performed by using PHASE, Partial least-squéRtsS) method was used to explore conformationatepAll
docking studies for the target compounds with VE@Rrosine kinase were performed using GLIDE pemgme
(Schrédinger Inc., USA). Statistically significant 3D-QSAR model was obtdirtarough the pharmacophore
hypothesis. A four-point pharmacophore with onerbgtobic (H), one hydrogen bond donor with positionic
charge (P), and two aromatic rings (R) as pharmdumpe features was developed with a correlation ficiefit of
r?0.7586 and with a correlation coefficient ¢f @532 for training set and test set of compounespectively with
the excellent predictive power. The results prowdghts that will facilitate the further structalr modification of

these anticancer agents for better activity, and/ meove beneficial for lead optimization and inil screening in
future.

Keywords: Molecular docking, pharmacophore modeling, 3D QSARReridone, anticancer activity, VEGFR-2
tyrosine kinase.

INTRODUCTION

In tumor angiogenesis, the vascular endotheliavtrdactor (VEGF) is involved as one of the mospartant pro-
angiogenic factor [1]. Hence, for the inhibitiohtamor angiogenesis blockade of the VEGF/VEGFRyslig is
considered as an attractive therapeutic targetTRBgre are six subgroup of proteins in VEGF familhey are
placenta growth factor and VEGF-A, B, C, D, E. Hielogical effects of these proteins are exertedbioging and
activation of receptors like VEGFR1, VEGFR2 and \HR3. Among these, VEGF-A-induced angiogenesis in
endothelial cells is transduced by the major remeEGFR2 [3]. Auto phosphorylation of the VEGFR&eptor is
resulted by the binding of VEGF-A to the receptdrich leads to the activation of downstream sigmatimolecules
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including focal adhesion kinase (FAK), 3-phosphsitide-dependent kinase 1 (PDK1), phosphoinosidinase,
Proto-oncogene tyrosine-protein kinase Src andeRrdfinase B (PKB), extracellular signal-regulateédases
(ERK) [4]. Cell survival and motility has been régped by the activation of ERK pathway [5]. Cellgration,
proliferation, and angiogenesis have been prombiethe activation of tyrosine-protein kinase Src\WlEGFR2
[6,7].

In numerous solid tumors with aggressive diseasarbst closely associated angiogenic factor is VE@tch is
involved in oncogene activation [8hd loss of tumor suppressor gene function T%e over expression of VEGF
by tumor cells occurs frequently [10]. In many humtancers poor prognosis and increased micro vessals are
correlated with elevated VEGF level [11]. Furthersyan newly formed blood vessels, VEGF functioesagootent
antiapoptotic factor for endothelial cells [12].éltyrosine kinase (RTK) VEGF receptor is locatedeodothelial
cells [13]. Its expression levels are only increage pathologic states (neovascularization). VEGFRas an
intracellular split tyrosine kinase domain, an eg#llular VEGF-binding domain and single membrapaasing
domain.

Inhibitions of VEGFR are currently being assessedlinical trials with a variety of approaches. $aanclude
small molecule inhibitors, monoclonal antibodieg&ding VEGFR and soluble receptors that sequa4E&F [14].
However, some adverse effects has been resultedwast of these inhibitors such as bleeding corapibas [15],
and hence the need for new VEGFR signaling casiceuilgitors with less toxicity, prompted us to evaile a series
of piperidone derivatives by carrying out the malec modeling studies in an effort to discover mpatent
VEGFR inhibitors with low toxicity.

For the prediction of biological activities the qitative structure—activity relationship (QSAR)papach is largely
widespread and very useful tool, particularly ingidesign [16,17]. In this approach the changdhkeir molecular
features were correlated with the variations ingheperties of the compounds [7]. This study waseai to obtain
the interaction of our compounds with the activeidee of the receptor (VEGFR2) and also the pradidhree-
dimensional QSAR (3D-QSAR) models to elucidate shectural features of piperidone derivatives reggiifor
VEGFR inhibition. This will provide better toolsféhe rational design of promising VEGFR inhibitevi¢h more
therapeutic efficacy and safety.

MATERIALS AND METHODS

Schrddinger Inc., USA software was used to carry the present the study .Pharmacophore modeling was
performed by using PHASE, running on Red Hat Likv& 5.0.

Data set

As a continuation of our previous studies, in ttisdy 22 compounds having anticancer activity [A&] used to
construct 3D QSAR model. The biological activityaaas in the form of 1§ and these values were converted into
pICsp using the formula, plég = —log ICs,. The test compounds structures with their actndl @redicted activities
are presented in Table 1.

Table 1 Experimental and predicted activity of thepiperidone derivatives used in training and testeats for VEGFR-2 inhibition using
Model-1 and their Glide dock Score.
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Ic pICso
Compd. R R 50 (UM/ml) Residual | Glide Dock Score
(UM/ml)
Exp. | Pred.

S1 =0 (=N-R) H 0.62 6.207 6.24 -0.073 -4.075
S2 -OH H 0.35 6.455 6.34 0.115 -5.330
S3 -NH H 0.27 6.568| 6.35 0.218 -5.865
S4 -C(=S)-NHNH H 0.125 6.903] 6.93 -0.027 -6.766
St -C(=S-NHNH-OH H 2.1 5.66¢ | 5.9 -0.281 -3.92¢

S6 p-F-GH, H 0.08 7.096] 6.68 0.416 -6.882
S7 -NH-GH,4 H 0.28 6.552| 6.31 0.242 -5.336
S8 0,p-OCH;-CgH3 H 0.17 6.769| 6.79 -0.021 -6.536
S9 0,mCHs- CeH3 H 0.18 6.744| 6.53 0.214 -6.323
S10 0-CHz-m-Cl- CsH3 H 0.20 6.698 6.6 0.098 -6.031
S11 0,p-Cl-CgHs H 0.45 6.346| 6.32 0.026 -5.005
S12 0,p-F-GeHs H 0.41 6.387| 6.56 -0.173 -5.032
S13 -C(=NH)-NH H 2.75 5.560 5.49 0.07 -4.372
S14 -GHs H 1.7 5.769| 6.34 -0.571 -4.420
S15 p-Cl-CeH, H 0.36 6.443 6.5 -0.057 -5.442
S16 -C(=0)-NH H 0.91 6.040| 6.41 -0.37 -4.683
S17 0,p-NO,-CgH3 H 0.98 6.008| 5.84 0.168 -4.160
S18 -C(=S)-NH H 1.74 5.759| 5.84 -0.081 -4.018
S19 -OCH H 0.38 6.420| 6.33 0.09 -5.122
S20 -C(=0)-NHNH H 0.32 6.494| 6.37 0.124 -5.269
B1 =0 (=N-R) = / \ 0.61 6.214| 6.30 -0.086 -4.307

O
B2 -OH = / \ 0.56 6.251| 6.34 -0.089 -5.003
O]

Ligand preparation

All molecules were in Maestro and were preparedgikigPrep with the optimized potentials for liqusonulations
(OPLS) 2005 force field. Conformational space waglaed through the combination of Monte-Carlo Njl#
Minimum (MCMM) / Low Mode (LMOD) with maximum numiseof conformers 1000 per structure and
minimization steps 100. Each minimized conformes Vitiered through a relative energy window of Sl3nkol and
redundancy check of 2A in the heavy atom posit[a83.

Training and test set selection

Data set were divided randomly by choosing 16 camgs in training set and 6 compounds in test setamtain
the 3:1 ratio. While dividing the test and trainiset, the even distribution of structurally varyicgmpounds has
been ascertained with a wide range ofspNalue in both test and training set. The mostvaciind inactive where
kept in the training set [20]. PLS factor 2 is usedthe model generation.

Pharmacophore sites

The common pharmacophore hypothesis (CPH) wasmpeefbby PHASE. Common pharmacophoric features were
then identified from a set of variants that definpossible pharmacophore-using a tree-based paititj algorithm
with maximum tree depth of four with the requirem#mat all actives must match. After applying défdeature
definitions to each ligand, common pharmacophoresewgenerated using a terminal box of 1A. A s€8MARTS
patterns were used to represent the positions afnmdicophore sites (feature definitions) internaflyset of
chemical structure patterns which defines the phaophore feature are specified as SMARTS querieg. T
physical characteristics of the site were defingdobe of three possible geometries. They are: &ntPin the
SMARTS query, the site is located on a single a®mVector: in the SMARTS [2Huery, the site is located on a
single atom as like point, but it will be assigneased on one or more vectors originating from #tatm and
according to directionality. 3). Group: in the SMAR query the site is located on the group of atatnshe
centroid. To create pharmacophore sites a defatting having a hydrogen bond acceptor (A), hydnogend
donor (D), hydrophobic (H), negative (N), positif®, and aromatic ring (R) was used.
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Scoring hypothesis

Scoring function was used to examine these CPHrallvmaximum root mean square deviation (RMSD) eabdi
1.2 A’ was used to obtain the better alignmenthefligands. Quality of alignment is measured byisat score
which is represented as follows.

S = WsiteSsite +WvecSvec + WvolSvol + WselSsel +Waw where W = weights and S = scores, Ssite =
alignment score; Svec = vector score Svol = volwmere and Ssel = selectivity score. Wsite, WvecpMWand
Wrew have default values of 1.0, while Wsel hasetadlt value of 0.0. In hypothesis generation, difaalues
have been used. Wm rew represents reward weigfiteedeby m-1, where m is the number of actives thatch

the hypothesis.

With respect to the activity of ligand, scoring pliarmacophore was conducted using default parasnéber
volume, vector, and site terms. To explain the Gumal activity relationship the entire molecultnusture has to be
considered as in atom-based QSAR whereas in Phaphace based QSAR the ligand features beyond the
pharmacophore model is not considered, such asbmsseric clashes with the receptor. A molecaleansidered

as a set of overlapping Vanderwaals spheres in dtased QSAR. Each sphere (atom) is placed intoodne
following six categories. They are carbons, C—Hrbgeéns and halogens, are classified as non-pablglrbphobic

(H); hydrogens attached to polar atoms are claskdis hydrogen bond donors (D); atoms with an exgositive
ionic charge are classified as positive ionic (@pms with an explicit negative ionic charge arassified as
negative ionic (N); non-ionic atoms are classifeed electron-withdrawing (W); and all other typesatdms are
classified as miscellaneous (X).

For the development of QSAR, in a regular grid whining set Vanderwaals models of the ligand trgjnset
molecules were placed that occupies the cube. Aihary-valued occupation patterns can be useddepandent
variables. Using the 16 membered training set witirid spacing of 1.6, pharmacophore based QSAR models
for all hypotheses were generated and by predidtiegactivities of the six test set compoundstibst QSAR
model was validated.

Building 3D-QSAR models using PLS analysis

To a CPH associated with a single reference ligémal test molecules with varying activity have bedigned to
develop QSAR models. These pharmacophore-based SSERQmodels with random seed value of zero, grid
spacing 1.08 and 1-5 PLS factors were build when all hypothegere successfully generated. For the top ten
scoring hypothesis, statistics were performed an dbrrelation of actual activity with predicted isity by the
default hypothesis scoring functions. The QSAR nhades obtained by PLS regression analysis. The rogre
variable was the inhibitory activity and the indedent variables were eliminated by using ‘a’ ‘tluafilter and a
default value of 2.0 because to make small chaimgee training set composition their regressioeffioients are
too sensitive. The maximum number of PLS factoesenl2. In PHASE QSAR models distinct training aest
sets were used but not the internal cross-validadgohniques, since PHASE supports only externaation. The
validation of each of the developed 3D-QSAR modetse carried out by predicting activities of sistteset
molecules (§ . Pearson-R value is used to measure the preeliability of the models. By using 1-5 PLS factors
the run was performed to overcome the over-fitjimgblem, in which the experimental error was appnately
equal to the standard deviation of regression. Sttength of the resulting 3D QSAR model was checked also
the comparison of the models from different hypethewas carried out by the stability value.

Docking studies

The molecular docking studies were carried out WIEGFR-2 tyrosine kinase binding pocket by using tbol,
GLIDE (Schrédinger Inc., USA) (2008). Then VEGFRy2osine kinase crystal structure used in thegarestudy
was downloaded from the protein data bank (PDB 1BWN). Protein preparation was performed by using t
Maestro software (Schrédinger) and alignment wagfopeed using the protein alignment module (Prime,
Schradinger). Bond orders and formal charges weded for hetero groups and hydrogens were addali &aoms

in the system. Water molecules of crystallizatioerevremoved from the complex except in the actitee Brotein
Preparation module in Maestro was used to perforomief relaxation on structure with the “Refinemednly”
option. This is a procedure consisting of two-partich is optimization of thiol and hydroxyl toosis in the first
part followed by an all-atom constrained minimiraticarried out with Impact Refinement module (Infpresing
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the OPLS-2005 force field minimized [22] to alletd@asteric clashes that may exist in the originaBPdiructures.
The minimization was terminated when the RMSD reach cut off of 0.30 A.

The prepared ligands were docked against the prat&iGFR-2 kinase. All the calculations for dockingre
performed using the “Extra precision” (XP) modei@@| Schrédinger). Final scoring is then carried oo the
energy-minimized poses. The minimized poses am@ored using Schrodinger’s proprietary Glide Sc@eSgcore)
scoring function. G Score is a modified versiorChiemScore, but includes a steric-clash term and bdded polar
terms devised by Schrddinger to penalize electiosteismatches. All docking computations were @atrout with
the Linux OS (Red Hat Enterprise WS 5.0).

RESULTS AND DISCUSSION

Tree-based partition algorithms were used to ifiettie CPH using the training set. Based on theolesl activity,
the dataset was divided into active and inactite &efind out the CPH. The ligands are activehd tog 1G is >
6.7uM/ml and inactive i€ 6 pM/ml. Number of CPH were reported with maximoffour features which was
allowed to develop hypothesis based on sites aeg édne common in all 22 molecules. There were ljoted4
hypothesis; among that five hypothesis were sedebtessed on the survival score for molecular alignmPLS
analysis was carried out using 12 factors withid gpacing 1A to derive five regression models. The best fitted
Model-l HPRR.1 (f = 0.7586, § = 0.532, F = 20.4) and its regression summarygiven in Table 2. The
pharmacophore hypothesis for model-I is depictedriopp 1. Hydrophobic site is indicated by the grdmil,
hydrogen bond donor site is indicated by blue BElle R (ring) feature of the pharmacophore is destrated by
the brown ring. (Fig. 1). For Models 1-5, theirttistiical scores are listed in Table 2.

Figure 1: Pharmacophore distances (A) and angleB) between pharmacophoric sites. Pharmacophore hypleesis (HPRR), where the
green ball shows hydrophobic site, blue ball indida@s hydrogen bond donor with positive charge whil¢he brown ring demonstrates the
R (ring) feature.
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Table 2 Statistical data for best QSAR Model-1 fopiperidone derivatives by the PLS method

Hypothesis  ID| Factor SD R F Stability | RMSE Q? Pearson R
HPRR.1 12 0.2223 0.7586 20.4 0.7033 0.2509 0.%32 7938.
DHPR.6 12 0.3623 0.731y 19.16 0.6727 0.3004 0.49120.7356
DHPR.4 12 0.4712 0.6932 16.53 0.6456 0.3235 0.42340.7122
DHPR.12 12 0.6015 0.6148 15.29 0.5910 0.4816 0.3763.6314
DHPR.10 12 0.6194 0.595p 13.18 0.5823 0.5108 0.30960.5909

R? =Coefficient of determination; = cross validated R F=F test score; Pearson R=correlation betweenezipental and predicted activity
for the test set.

GLIDE (Schrodinger Inc., USA) (2006) was used tagaut the docking study for the test moleculeaiasf the
enzyme VEGFR-2 tyrosine kinase (PDB ID: 1YWN), whiwas obtained from the protein data bank PDB.
Molecular modeling was carried out by positioning @ompounds in the reference ligand’s binding. Siteen it
was subjected to minimization and dynamics. Thalibgp mode of test molecules and the reference digaare
compared by docking the reference ligand and tescules into the enzyme VEGFR-2 tyrosine kinase.

Figure 2: The common pharmacophore based alignmermf all molecules in 3D QSAR

Docking studies have shown that the N- of the baidazole ring interacts with H-atom of the aminaddzackbone
of GLU-883 through a hydrogen bond (Fig. 3 & 4).€$h interactions reveal the significance of nitrogeom for
inhibitory capacity. The nitrogen in the substituahthe 4' position of piperidone ring which is surroundedtbg

hydrophobic residues like ALA-854, CYS-917, LEU-BO®HE-916, LEU-838, and VAL-846. The piperidonagri
surrounded by the positively charged residue LY6-B6also understood from a CPH developed from 3AR),

where the nitrogen in the substituent is actinghashydrophobic site (H) and the nitrogen in thgepidone ring is
acting as a hydrogen bond donor with positive ocbdR) as shown in Fig. 1. Benzimidazole ring is@umded by
hydrophobic residues like ILE-886, ILE-890, ILE-I)4A/AL-896, CYS-1043 and LEU-887 indicates its rahe
hydrophobic interaction; in 3D QSAR model ring thgs (R) also suggests the same. The referencelligams
hydrogen bonding with CYS-917 via —N-of quinazolirieg and a similar interaction is also shown —of

benzimidazole ring of all piperidone derivativeghwiGLU-883 through hydrogen bonding.
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Figure 3: 3D Binding interaction of the compound, 8 in the active site of VEGFR-2 tyrosine kinase. Hbond interaction is indicated by
dotted yellow bond with site residue (green ellipge
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Figure 4: 2D binding interaction of S6 in the actie site of VEGFR-2 tyrosine kinase.

Overall, the best model was Model 1 based’ofr and RMSE and SD values as well as on the highestson-R
value. This pharmacophore model includes one hydbig (H), one hydrogen bond donor with positivai¢o
charge (P), and two aromatic rings (R). The phaopheore hypothesis of angles, distances and alighwieall
molecules are depicted in Fig. 1 and 2, respegtividie angles and distances between the four f=afine depicted

in Table 3. For Model-1, the training set correlatis characterized by PLS factor$ £r0.7586, SD = 0.223, F =
20.4). The test set correlation is characterizedPb$ factors (§= 0.532, RMSE = 0.2509, Pearson-R = 0.7938).
The scattered plots of experimental versus predli@tivity of training and test sets are depicte#ip. 5.
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Table 3 Distances and angles of pharmacophore hytbesis by Model-1

Hypothesis | Sitel| Site2| Distance(A’ Hypothesis  8ifl | Site 2| Site 3] Angles (Degree)
HPRR.1 H4 P7 2.004 HPRR.1 P17 H4 R8 35.9
HPRR.1 H4 R8 4.928 HPRR.1 P7 H4 R 48.1
HPRR.1 H4 R9 6.698 HPRR.1 R8 H4 RY 12.3
HPRR.1 P7 R8 3.507 HPRR.1 H4 P17 R8 124.6
HPRR.1 P7 R9 5.563 HPRR.1 H4 P17 R9 116.4
HPRR.1 R8 R9 2.155 HPRR.1 R§ P R9 8.4
HPRR.1 H4 R8 P7 19.6
HPRR.1 H4 R8 R9 138.6
HPRR.. P7 R8 RS 157.¢
HPRR.. H4 R9 P7 15.€
HPRR.1 H4 R9 R8 29.1
HPRR.1 P7 R9 R8 13.7
A B
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Figure 5: Scatter plots for the QSAR model appliedo all compounds in the test (a) and training (byet.

Reliable predictions could be obtained only fromtistically significant valid QSAR models. The paeters T, ¢f,

SD, RMSE, and F are used to evaluate the robustfesQSAR model. According to the reported metf2g],
Model 1 is validated as the best QSAR model, sthee? and § values of model 1 are higher than those of Models
2, 3,4 and 5. Moreover, RMSE value for Model 1 deasd to be the lowest and the Pearson-R valuefovasl to

be the highest among other models. Further, by FHRES analytical method, five various combinatiafigest
and training sets were generated and evaluatedp@mwuh to all other models consistent and good gtigily was
observed for Model 1 for each combination. The jtace qualities of the QSAR models of all the nmlées are
satisfactory while considering the flexibility.

Correlation of the results of the docking study ethiwas measured in terms of glide dock score vahyes
comparing it with the docked poses of the referdigaand is shown in Table 1. The minimum glide daclore of -
6.882,-6.536 and -6.323 kcal/mol of compound S6,a688 S9 having dimethyl and dimethoxy phenyl armb al
fluorophenyl substituted derivatives proved thathbelectron donating and withdrawing groups sulbitd in the
phenyl group favors the VEGFR-2 inhibition activibut as the number of electron withdrawing groumgseases in
the phenyl group the activity decreases as itidezced from docking scores of compounds S11, 1@ S17.

CONCLUSION

Series of piperidone derivatives with anticanceiviag against MCF7 cell lines were subjected t@R-QSAR
study. Good statistical validation and predictdiedi has been shown by all the developed 3D-QSARefsoBased
on the PLS factors for training sef & 0.7586, SD = 0.223, F = 20.4) the for the test(f = 0.532, RMSE =
0.2509, Pearson-R = 0.7938) Model-1 (HPRR 1) wasifitantly more precise than other models. Anghsiinto
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the structure activity relationship has been predithy 3D-QSAR in terms of rational drug design. Tthportance

of nitrogen in the substituent at th8 gosition of piperidone ring is understood from BHCdeveloped from 3D
QSAR where the nitrogen in the substituent is actia the hydrophobic site (H). Nitrogen atom of pigeridone
ring serves as hydrogen bond donor with positivergh (P7) in drug receptor interaction. Ring resi¢ik8, R9) in
this model occupies much of the favorable positioe to the presence of the hydrophobic benzimigazog. The
bulky substituent is essential at the 4th positbthe piperidone ring for producing VEGFR-2 kinaskibition, it

is also inferred from the docking results that bludky moiety is located in a deep hydrophobic podkemed by
ALA-854, CYS-917, LEU-1033, PHE-916, LEU838 and V&46. So this present study has provided us the
guidance for further structural modification andvelepment of potential VEGFR-2 tyrosine kinase hitars.
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