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ABSTRACT 
 
For a series of piperidone derivatives with anticancer activity against MCF7 cell lines pharmacophore modeling 
was performed by using PHASE, Partial least-squares (PLS) method was used to explore conformational space. All 
docking studies for the target compounds with VEGFR-2 tyrosine kinase were performed using GLIDE programme 
(Schrödinger Inc., USA).  Statistically significant 3D-QSAR model was obtained through the pharmacophore 
hypothesis. A four-point pharmacophore with one hydrophobic (H), one hydrogen bond donor  with positive ionic 
charge (P), and two aromatic rings (R) as pharmacophore features was developed with a correlation coefficient of 
r2 0.7586 and with a correlation coefficient of q2 0.532 for training set and test set of compounds, respectively with 
the excellent predictive power. The results provide insights that will facilitate the further structural modification of 
these anticancer agents for better activity, and may prove beneficial for lead optimization and in silico screening in 
future. 
 
Keywords: Molecular docking, pharmacophore modeling, 3D QSAR; piperidone, anticancer activity, VEGFR-2 
tyrosine kinase. 
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INTRODUCTION 
 

In tumor angiogenesis, the vascular endothelial growth factor (VEGF) is involved as one of the most important pro-
angiogenic factor [1].  Hence, for the inhibition of tumor angiogenesis blockade of the VEGF/VEGFR-signaling is 
considered as an attractive therapeutic target [2]. There are six subgroup of proteins in VEGF family. They are 
placenta growth factor and VEGF-A, B, C, D, E. The biological effects of these proteins are exerted by binding and 
activation of receptors like VEGFR1, VEGFR2 and VEGFR3. Among these, VEGF-A-induced angiogenesis in 
endothelial cells is transduced by the major receptor VEGFR2 [3]. Auto phosphorylation of the VEGFR2 receptor is 
resulted by the binding of VEGF-A to the receptor which leads to the activation of downstream signaling molecules 
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including focal adhesion kinase (FAK), 3-phosphoinositide-dependent kinase 1 (PDK1), phosphoinositide 3-kinase, 
Proto-oncogene tyrosine-protein kinase Src and Protein Kinase B (PKB), extracellular signal-regulated kinases 
(ERK) [4]. Cell survival and motility has been regulated by the activation of ERK pathway [5]. Cell migration, 
proliferation, and angiogenesis have been promoted by the activation of tyrosine-protein kinase Src by VEGFR2 
[6,7].  
 
In numerous solid tumors with aggressive disease the most closely associated angiogenic factor is VEGF, which is 
involved in oncogene activation [8] and loss of tumor suppressor gene function [9].  The over expression of VEGF 
by tumor cells occurs frequently [10]. In many human cancers poor prognosis and increased micro vessel counts are 
correlated with elevated VEGF level [11]. Furthermore, in newly formed blood vessels, VEGF functions as a potent 
antiapoptotic factor for endothelial cells [12]. The tyrosine kinase (RTK) VEGF receptor is located on endothelial 
cells [13]. Its expression levels are only increased in pathologic states (neovascularization). VEGFR-2 has an 
intracellular split tyrosine kinase domain, an extracellular VEGF-binding domain and single membrane-spanning 
domain. 
 
Inhibitions of VEGFR are currently being assessed in clinical trials with a variety of approaches. These include 
small molecule inhibitors, monoclonal antibodies targeting VEGFR and soluble receptors that sequester VEGF [14]. 
However, some adverse effects has been resulted with most of these inhibitors such as bleeding complications [15], 
and hence the need for new VEGFR signaling cascade inhibitors with less toxicity, prompted us to evaluate a series 
of piperidone derivatives by carrying out the molecular modeling studies in an effort to discover more potent 
VEGFR inhibitors with low toxicity.  
 
For the prediction of biological activities the quantitative structure–activity relationship (QSAR) approach is largely 
widespread and very useful tool, particularly in drug design [16,17]. In this approach the changes in their molecular 
features were correlated with the variations in the properties of the compounds [7]. This study was aimed to obtain 
the interaction of our compounds with the active residue of the receptor (VEGFR2) and also the predictive three-
dimensional QSAR (3D-QSAR) models to elucidate the structural features of piperidone derivatives required for 
VEGFR inhibition. This will provide better tools for the rational design of promising VEGFR inhibitors with more 
therapeutic efficacy and safety. 
 

MATERIALS AND METHODS 
 

Schrödinger Inc., USA software was used to carry out the present the study .Pharmacophore modeling was 
performed by using PHASE, running on Red Hat Linux WS 5.0.  
 
Data set 
As a continuation of our previous studies, in this study 22 compounds having anticancer activity [18] are used to 
construct 3D QSAR model. The biological activity data was in the form of IC50 and these values were converted into 
pIC50 using the formula, pIC50 = −log IC50. The test compounds structures with their actual and predicted activities 
are presented in Table 1. 
 

Table 1  Experimental and predicted activity of the piperidone derivatives used in training and test sets for VEGFR-2 inhibition using 
Model-1 and their Glide dock Score. 
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Compd. R R1 IC50 
(µM/ml) 

pIC 50 
(µM/ml) Residual Glide Dock Score 

Exp. Pred. 
S1 =O (=N-R) H 0.62 6.207 6.28 -0.073 -4.075 
S2 -OH H 0.35 6.455 6.34 0.115 -5.330 
S3 -NH2 H 0.27 6.568 6.35 0.218 -5.865 
S4 -C(=S)-NHNH2 H 0.125 6.903 6.93 -0.027 -6.766 
S5 -C(=S)-NHNH-OH H 2.14 5.669 5.95 -0.281 -3.928 
S6 p-F-C6H4 H 0.08 7.096 6.68 0.416 -6.882 
S7 -NH-C6H4 H 0.28 6.552 6.31 0.242 -5.336 
S8 o,p-OCH3-C6H3 H 0.17 6.769 6.79 -0.021 -6.536 
S9 o,m-CH3- C6H3 H 0.18 6.744 6.53 0.214 -6.323 
S10 o-CH3-m-Cl- C6H3 H 0.20 6.698 6.6 0.098 -6.031 
S11 o,p-Cl-C6H3 H 0.45 6.346 6.32 0.026 -5.005 
S12 o,p-F-C6H3 H 0.41 6.387 6.56 -0.173 -5.032 
S13 -C(=NH)-NH2 H 2.75 5.560 5.49 0.07 -4.372 
S14 -C6H5 H 1.7 5.769 6.34 -0.571 -4.420 
S15 p-Cl-C6H4 H 0.36 6.443 6.5 -0.057 -5.442 
S16 -C(=O)-NH2 H 0.91 6.040 6.41 -0.37 -4.683 
S17 o,p-NO2-C6H3 H 0.98 6.008 5.84 0.168 -4.160 
S18 -C(=S)-NH2 H 1.74 5.759 5.84 -0.081 -4.018 
S19 -OCH3 H 0.38 6.420 6.33 0.09 -5.122 
S20 -C(=O)-NHNH2 H 0.32 6.494 6.37 0.124 -5.269 

B1 =O (=N-R) 
CH

2

O  

0.61 6.214 6.30 -0.086 -4.307 

B2 -OH 
CH

2

O  

0.56 6.251 6.34 -0.089 -5.003 

 
Ligand preparation  
All molecules were in Maestro and were prepared using LigPrep with the optimized potentials for liquid simulations 
(OPLS) 2005 force field. Conformational space was explored through the combination of Monte-Carlo Multiple 
Minimum (MCMM) / Low Mode (LMOD) with maximum number of conformers 1000 per structure and 
minimization steps 100. Each minimized conformer was filtered through a relative energy window of 50 kJ/mol and 
redundancy check of 2Å in the heavy atom positions [19].  
 
Training and test set selection  
Data set were divided randomly by choosing 16 compounds in training set and 6 compounds in test set to maintain 
the 3:1 ratio. While dividing the test and training set, the even distribution of structurally varying compounds has 
been ascertained with a wide range of pIC50 value in both test and training set. The most active and inactive where 
kept in the training set [20]. PLS factor 2 is used for the model generation.  
 
Pharmacophore sites 
The common pharmacophore hypothesis (CPH) was performed by PHASE. Common pharmacophoric features were 
then identified from a set of variants that define a possible pharmacophore-using a tree-based partitioning algorithm 
with maximum tree depth of four with the requirement that all actives must match. After applying default feature 
definitions to each ligand, common pharmacophores were generated using a terminal box of 1Å. A set of SMARTS 
patterns were used to represent the positions of pharmacophore sites (feature definitions) internally. A set of 
chemical structure patterns which defines the pharmacophore feature are specified as SMARTS queries. The 
physical characteristics of the site were defined by one of three possible geometries. They are: 1). Point: in the 
SMARTS query, the site is located on a single atom. 2). Vector: in the SMARTS [21] query, the site is located on a 
single atom as like point, but it will be assigned based on one or more vectors originating from that atom and 
according to directionality. 3). Group: in the SMARTS query the site is located on the group of atoms at the 
centroid. To create pharmacophore sites a default setting having a hydrogen bond acceptor (A), hydrogen bond 
donor (D), hydrophobic (H), negative (N), positive (P), and aromatic ring (R) was used. 
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Scoring hypothesis  
Scoring function was used to examine these CPH. Overall maximum root mean square deviation (RMSD) value of 
1.2 A˚ was used to obtain the better alignment of the ligands. Quality of alignment is measured by survival score 
which is represented as follows. 
 
S = WsiteSsite +WvecSvec + WvolSvol + WselSsel +Wm rew where W = weights and S = scores, Ssite = 
alignment score; Svec = vector score Svol = volume score and Ssel = selectivity score. Wsite, Wvec, Wvol, and 
Wrew have default values of 1.0, while Wsel has a default value of 0.0. In hypothesis generation, default values 
have been used. Wm rew represents reward weights defined by m-1, where m is the number of actives that match 
the hypothesis.  
 
With respect to the activity of ligand, scoring of pharmacophore was conducted using default parameters for 
volume, vector, and site terms. To explain the Structural activity relationship the entire molecular structure has to be 
considered as in atom-based QSAR whereas in Pharmacophore based QSAR the ligand features beyond the 
pharmacophore model is not considered, such as possible steric clashes with the receptor. A molecule is considered 
as a set of overlapping Vanderwaals spheres in atom based QSAR. Each sphere (atom) is placed into one of 
following six categories. They are carbons, C–H hydrogens and halogens, are classified as non-polar / hydrophobic 
(H); hydrogens attached to polar atoms are classified as hydrogen bond donors (D); atoms with an explicit positive 
ionic charge are classified as positive ionic (P); atoms with an explicit negative ionic charge are classified as 
negative ionic (N); non-ionic atoms are classified as electron-withdrawing (W); and all other types of atoms are 
classified as miscellaneous (X). 
 
For the development of QSAR, in a regular grid of  training set Vanderwaals models of the ligand training set 
molecules were placed that occupies the cube. This binary-valued occupation patterns can be used as independent 
variables. Using the 16 membered  training set with a grid spacing of 1.0 Ǻ, pharmacophore based QSAR models 
for all hypotheses were generated and by predicting the activities of the six  test set compounds the best QSAR 
model was validated.   
 
Building 3D-QSAR models using PLS analysis  
To a CPH associated with a single reference ligand, the test molecules with varying activity have been aligned to 
develop QSAR models. These pharmacophore-based 3D-QSAR models with random seed value of zero, grid 
spacing 1.0 Ǻ and 1–5 PLS factors were build when all hypotheses were successfully generated. For the top ten 
scoring hypothesis, statistics were performed on the correlation of actual activity with predicted activity by the 
default hypothesis scoring functions. The QSAR model was obtained by PLS regression analysis. The dependent 
variable was the inhibitory activity and the independent variables were eliminated by using ‘a’ ‘t’ value filter and a 
default value of 2.0 because to make small changes in the training set composition their regression coefficients are 
too sensitive.  The maximum number of PLS factors were 12. In PHASE QSAR models distinct training and test 
sets were used but not the internal cross-validation techniques, since PHASE supports only external validation. The 
validation of each of the developed 3D-QSAR models were carried out by predicting activities of six test set 
molecules (q2) . Pearson-R value is used to measure the predictive ability of the models. By using 1–5 PLS factors 
the run was performed to overcome the over-fitting problem, in which the experimental error was approximately 
equal to the standard deviation of regression. The strength of the resulting 3D QSAR model was checked and also 
the comparison of the models from different hypothesis  was carried out by the stability value. 
 
Docking studies 
The molecular docking studies were carried out with VEGFR-2 tyrosine kinase binding pocket by using the tool, 
GLIDE (Schrödinger Inc., USA) (2008). Then VEGFR-2 tyrosine kinase  crystal structure used in the present study 
was downloaded from the protein data bank (PDB ID: 1YWN). Protein preparation was performed by using the 
Maestro software (Schrödinger) and alignment was performed using the protein alignment module (Prime, 
Schrödinger). Bond orders and formal charges were added for hetero groups and hydrogens were added to all atoms 
in the system. Water molecules of crystallization were removed from the complex except in the active site. Protein 
Preparation module in Maestro was used to perform a brief relaxation on structure with the “Refinement Only” 
option. This is a procedure consisting of two-part  which is optimization of  thiol and hydroxyl torsions in the first 
part followed by an all-atom constrained minimization carried out with Impact Refinement module (Impref) using 
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the OPLS-2005 force field minimized [22] to alleviate steric clashes that may exist in the original PDB structures. 
The minimization was terminated when the RMSD reached a cut off of 0.30 Å. 
 
The prepared ligands were docked against the protein VEGFR-2 kinase. All the calculations for docking were 
performed using the “Extra precision” (XP) mode (Glide, Schrödinger). Final scoring is then carried out on the 
energy-minimized poses. The minimized poses are rescored using Schrödinger’s proprietary Glide Score (G Score) 
scoring function. G Score is a modified version of ChemScore, but includes a steric-clash term and adds buried polar 
terms devised by Schrödinger to penalize electrostatic mismatches. All docking computations were carried out with 
the Linux OS (Red Hat Enterprise WS 5.0). 
 

RESULTS AND DISCUSSION 
 

Tree-based partition algorithms were used to identify the CPH using the training set. Based on the observed activity, 
the dataset was divided into active and inactive sets to find out the CPH. The ligands are active if the log IC50 is ≥ 
6.7µM/ml and inactive if ≤ 6 µM/ml. Number of CPH were reported with maximum of four features which was 
allowed to develop hypothesis based on sites and they are common in all 22 molecules. There were totally 144 
hypothesis; among that five hypothesis were selected based on the survival score for molecular alignment. PLS 
analysis was carried out using 12 factors with a grid spacing 1 Ǻ to derive five regression models. The best fitted 
Model-I HPRR.1 (r2 = 0.7586, q2 = 0.532, F = 20.4) and its regression summary are given in Table 2. The 
pharmacophore hypothesis for model-I is depicted in Fig. 1. Hydrophobic site is indicated by the green ball, 
hydrogen bond donor site is indicated by blue ball. The R (ring) feature of the pharmacophore is demonstrated by 
the brown ring. (Fig. 1). For Models 1–5, their statistical scores are listed in Table 2. 
 

 
 

Figure 1:  Pharmacophore distances (A) and angles (B) between pharmacophoric sites. Pharmacophore hypothesis (HPRR), where the 
green ball shows hydrophobic site, blue ball indicates hydrogen bond donor with positive charge while the brown ring demonstrates the 

R (ring) feature. 
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Table 2  Statistical data for best QSAR Model-1 for piperidone derivatives by the PLS method 
 

Hypothesis      ID Factor SD R2 F Stability RMSE Q2 Pearson R 
HPRR.1 12 0.2223 0.7586 20.4 0.7033 0.2509 0.532 0.7938 
DHPR.6 12 0.3623 0.7317 19.16 0.6727 0.3004 0.4912 0.7356 
DHPR.4 12 0.4712 0.6932 16.53 0.6456 0.3235 0.4234 0.7122 
DHPR.12 12 0.6015 0.6148 15.29 0.5910 0.4816 0.3763 0.6314 
DHPR.10 12 0.6194 0.5950 13.18 0.5823 0.5108 0.3096 0.5909 

R2 =Coefficient of determination; Q2 = cross validated R2, F=F test score; Pearson R=correlation between experimental and predicted activity 
for the test set. 

 
GLIDE (Schrödinger Inc., USA) (2006) was used to carry out the docking study for the test molecules against the 
enzyme VEGFR-2 tyrosine kinase (PDB ID: 1YWN), which was obtained from the protein data bank PDB. 
Molecular modeling was carried out by positioning our compounds in the reference ligand’s binding site. Then it 
was subjected to minimization and dynamics. The binding mode of test molecules and the reference ligand were 
compared by docking the reference ligand and test molecules into the enzyme VEGFR-2 tyrosine kinase.  
 

 
 

Figure 2:  The common pharmacophore based alignment of all molecules in 3D QSAR 
 
Docking studies have shown that the N- of the benzimidazole ring interacts with H-atom of the amino acid backbone 
of GLU-883 through a hydrogen bond (Fig. 3 & 4). These interactions reveal the significance of nitrogen atom for 
inhibitory capacity. The nitrogen in the substituent at the 4th position of piperidone ring which is surrounded by the 
hydrophobic residues like ALA-854, CYS-917, LEU-1033, PHE-916, LEU-838, and VAL-846. The piperidone ring 
surrounded by the positively charged residue LYS-866 is also understood from a CPH developed from 3D QSAR, 
where the nitrogen in the substituent is acting as the hydrophobic site (H) and the nitrogen in the piperidone ring is 
acting as a hydrogen bond donor with positive charge (P) as shown in Fig. 1. Benzimidazole ring is surrounded by 
hydrophobic residues like ILE-886, ILE-890, ILE-1042, VAL-896, CYS-1043 and LEU-887 indicates its role in 
hydrophobic interaction; in 3D QSAR model ring residues (R) also suggests the same. The reference ligand forms 
hydrogen bonding with CYS-917 via –N-of quinazoline ring and a similar  interaction is also shown by –N– of  
benzimidazole ring of all piperidone derivatives with  GLU-883 through hydrogen bonding. 
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Figure 3: 3D Binding interaction of the compound, S6 in the active site of VEGFR-2 tyrosine kinase. H-bond interaction is indicated by 
dotted yellow bond with site residue (green ellipse). 

 

 
 

Figure 4: 2D binding interaction of S6 in the active site of VEGFR-2 tyrosine kinase. 
 
Overall, the best model was Model 1 based on r2, q2, and RMSE and SD values as well as on the highest Pearson-R 
value. This pharmacophore model includes one hydrophobic (H), one hydrogen bond donor with positive ionic 
charge (P), and two aromatic rings (R). The pharmacophore hypothesis of angles, distances and alignment of all 
molecules are depicted in Fig. 1 and 2, respectively. The angles and distances between the four features are depicted 
in Table 3. For Model-1, the training set correlation is characterized by PLS factors (r2 = 0.7586, SD = 0.223, F = 
20.4). The test set correlation is characterized by PLS factors (q2 = 0.532, RMSE = 0.2509, Pearson-R = 0.7938). 
The scattered plots of experimental versus predicted activity of training and test sets are depicted in Fig. 5. 
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Table 3  Distances and angles of pharmacophore hypothesis by Model-1 
 

Hypothesis Site1 Site2 Distance(A˚ ) Hypothesis Site 1 Site 2 Site 3 Angles (Degree) 
HPRR.1 H4 P7 2.004 HPRR.1 P7 H4 R8 35.9 
HPRR.1 H4 R8 4.928 HPRR.1 P7 H4 R9 48.1 
HPRR.1 H4 R9 6.698 HPRR.1 R8 H4 R9 12.3 
HPRR.1 P7 R8 3.507 HPRR.1 H4 P7 R8 124.6 
HPRR.1 P7 R9 5.563 HPRR.1 H4 P7 R9 116.4 
HPRR.1 R8 R9 2.155 HPRR.1 R8 P7 R9 8.4 

    HPRR.1 H4 R8 P7 19.6 
    HPRR.1 H4 R8 R9 138.6 
    HPRR.1 P7 R8 R9 157.9 
    HPRR.1 H4 R9 P7 15.6 
    HPRR.1 H4 R9 R8 29.1 
    HPRR.1 P7 R9 R8 13.7 

 
 

Figure 5:  Scatter plots for the QSAR model applied to all compounds in the test (a) and training (b) set. 
 
Reliable predictions could be obtained only from statistically significant valid QSAR models. The parameters r2, q2, 
SD, RMSE, and F are used to evaluate the robustness of a QSAR model. According to the reported method [23],  

Model 1 is validated as the best QSAR model, since the r2 and q2 values of model 1 are higher than those of Models 
2, 3, 4 and 5. Moreover, RMSE value for Model 1 was found to be the lowest and the Pearson-R value was found to 
be the highest among other models. Further, by PHASE PLS analytical method, five various combinations of test 
and training sets were generated and evaluated. Compared to all other models consistent and good predictivity was 
observed for Model 1 for each combination. The predictive qualities of the QSAR models of all the molecules are 
satisfactory while considering the flexibility. 
 
Correlation of the results of the docking study which was measured in terms of glide dock score values by 
comparing it with the docked poses of the reference ligand is shown in Table 1. The minimum glide dock score of -
6.882,-6.536 and -6.323 kcal/mol of compound S6, S8 and S9 having dimethyl and dimethoxy phenyl and also 
fluorophenyl substituted derivatives proved that both electron donating and withdrawing groups substituted in the 
phenyl group favors the VEGFR-2 inhibition activity; but as the number of electron withdrawing groups increases in 
the phenyl group the activity decreases as it is evidenced from docking scores of compounds S11, S12, and S17.  
 

CONCLUSION 
 

Series of piperidone derivatives with anticancer activity against MCF7 cell lines were subjected to a 3D-QSAR 
study. Good statistical validation and predictabilities has been shown by all the developed 3D-QSAR models. Based 
on the PLS factors for training set (r2 = 0.7586, SD = 0.223, F = 20.4) the for the test set (q2 = 0.532, RMSE = 
0.2509, Pearson-R = 0.7938) Model-1 (HPRR 1) was significantly more precise than other models. An insight into 
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the structure activity relationship has been provided by 3D-QSAR in terms of rational drug design. The importance 
of nitrogen in the substituent at the 4th position of piperidone ring is understood from a CPH developed from 3D 
QSAR where the nitrogen in the substituent is acting as the hydrophobic site (H). Nitrogen atom of the piperidone 
ring serves as hydrogen bond donor with positive charge (P7) in drug receptor interaction. Ring residue (R8, R9) in 
this model occupies much of the favorable position due to the presence of the hydrophobic benzimidazole ring. The 
bulky substituent is essential at the 4th position of the piperidone ring for producing VEGFR-2 kinase inhibition, it 
is also inferred from the docking results that the bulky moiety is located in a deep hydrophobic pocket formed by 
ALA-854, CYS-917, LEU-1033, PHE-916, LEU838 and VAL846. So this present study has provided us the 
guidance for further structural modification and development of potential VEGFR-2 tyrosine kinase inhibitors. 
 
Acknowledgements 
We are thankful to Manipal University for providing financial assistance to one of the authors (RR) and MCOPS, 
Manipal University for providing research facilities. We are grateful to Principal, PSG College of pharmacy, for 
providing facilities for molecular modeling studies. We gratefully acknowledge AICTE, DBT and DST, New Delhi, 
for providing analytical facilities to MCOPS through funding. 
 

REFERENCES 
 

[1] I.S. Moreira, P.A. Fernandes, M.J. Ramos, Anti-Cancer Agents Med. Chem., 2007, 7, 223. 
[2] G. Bold, K.H. Altmann, J, Frei, M. Lang, P.W. Manley, P. Traxler, B. Wietfeld, J. Brüggen, E. Buchdunger, R. 
Cozens, S. Ferrari, P. Furet, F. Hofmann, G. Martiny-Baron, J. Mestan, J. Rösel, M. Sills, D. Stover, F. Acemoglu, 
E. Boss, R. Emmenegger, L. Lässer, E. Masso, R. Roth, C. Schlachter, W. Vetterli, J. Med. Chem., 2000, 43, 2310. 
[3] T. Kamba, D.M. McDonald, Br. J. Cancer, 2007, 96, 1788. 
[4] R. van der Meel, M.H. Symons, R. Kudernatsch, R.J. Kok, R.M. Schiffelers, G. Storm, W.M. Gallagher, A.T. 
Byrne, Drug Discov. Today, 2011, 16, 219. 
[5] T. Veikkola, M. Karkkainen, L. Claesson-Welsh, K. Alitalo, Cancer Res., 2000, 60, 203. 
[6] T. Takahashi, S. Yamaguchi, K. Chida, M. Shibuya, EMBO J., 2001, 20, 2768. 
[7] B.P. Eliceiri, R. Paul, P.L. Schwartzberg, J.D. Hood, J. Leng, D.A. Cheresh. Mol. Cell., 1999, 4, 915. 
[8] J. Rak, Y. Mitsuhashi, L. Bayko, J. Filmus, S. Shirasawa, T. Sasazuki, R.S. Kerbel. Cancer Res., 1995, 55, 4575. 
[9] L. Zhang, D. Yu, M. Hu, S. Xiong, A. Lang, L.M. Ellis, R.E. Pollock, Cancer Res., 2000, 60, 3655. 
[10] D. Shweiki, A Itin, D. Soffer, E. Keshet, Nature, 1992, 359, 843. 
[11] J. Hasan, R. Byers, G.C. Jayson, Br. J. Cancer, 2002, 86, 1566. 
[12] L.E. Benjamin, D. Golijanin, A. Itin, D. Pode, E. Keshet, J. Clin. Invest., 1999, 103, 159. 
[13] G. Neufeld, T. Cohen, S. Gengrinovitch, Z. Poltorak, FASEB J., 1999, 13, 9. 
[14] J. Holash, S. Davis, N. Papadopoulos, S.D. Croll, L. Ho, M. Russell, P. Boland, R. Leidich, D. Hylton, E. 
Burova, E. Ioffe, T. Huang, C. Radziejewski, K. Bailey, J.P. Fandl, T. Daly, S.J. Wiegand, G.D. Yancopoulos, J.S. 
Rudge, Proc. Natl. Acad. Sci. USA., 2002, 99, 11393. 
[15] F. Elice, F. Rodeghiero, Thromb. Res., 2010, 125(Suppl 2), S55. 
[16] M.N. Noolvi, H.M. Patel, V. Bhardwaj, Med. Chem., 2011, 7, 200. 
[17] R. Darnag, M. E.L. Mazouz, A. Schmitzer, D. Villemin, A. Jarid, D. Cherqaoui. Eur. J. Med. Chem., 2010, 45, 
1590. 
[18] R. Revathi, S.G. Kini, K.S.R. Pai, G. Arunkumar, DUPHAT Dubai, 2014, P148. 
[19] N.R. Tawari, S. Bag, M.S. Degani, J. Mol. Model., 2008, 14, 911–21. 
[20] A. Golbraikh, M. Shen, Z. Xiao, Y.D. Xiao, K.H. Lee, A. Tropsha, J. Comput. Aided Mol. Des., 2003, 17, 241. 
[21] S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, R.A. Friesner. J. Comput. Aided Mol. Des., 
2006, 20, 647. 
[22] H. Zhong, L.M. Tran, J.L. Stang, J. Mol. Graph Mod., 2009, 28, 336. 
[23] A. Tropsha, In: T.I. Oprea, (Ed.), Chemoinformatics in drug discovery (Wiley, Weinheim, 2005) 437. 
 
 
 


