Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2012, 4 (3):867-871 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Novel thiazolidine-2,4-dione mannich bases: Synthesis, characterization and antimicrobial activity

Prajwal L. Lobo^{1,2}, Boja Poojary^{1*} Manjunatha K.³, Prathibha A.¹, N. Suchetha Kumari³

¹Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India. ²Department of Chemistry, Maharani's Science College for Women, Bangalore, Karnataka, India. ³Department of Chemistry, Nagarjuna College of Engineering and Technology, Devanahalli, Bangalore, Karnataka, India

⁴Department of Biochemistry, K S Hegde Medical Academy, Deralakatte, Karnataka, India.

ABSTRACT

A series of novel (5E)-5-arylidene-3-substituted-1,3-thiazolidine-2,4-diones were prepared by treating 1,3thiazolidine-2,4-dione with substituted aromatic aldehydes in the presence of sodium acetate followed by Mannich reaction with primary/secondary amines. Structures of the newly synthesized compounds were assigned on the basis of elemental analyses, IR, 1H NMR and mass spectral studies. The newly synthesized compounds were tested for their in vitro antibacterial and antifungal activity against a variety of microorganism

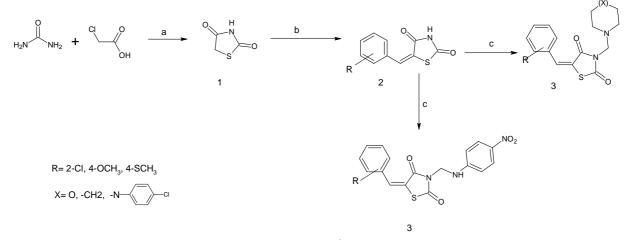
Key words 1,3-thiazolidine-2,4-dione, Mannich reaction, antibacterial, antifungal

INTRODUCTION

4-Thiazolidinone derivatives are an important group of heterocyclic compounds possessing a variety of biological effects [1], including antitumor [2-4], anti-inflammatory [5], antimicrobial [6], antiviral [7], anticonvulsant [8], antifungal [9], antibacterial [10] activities and so on. Among them, 5-benzylidene-4-thiazolidinone derivatives have been reported to show marked antitumor activities with different biotargets and mechanism, such as phosphatase of a regenerating liver (PRL-3) [11], Sphingosine Kinase (SK) [12], JNKstimulating phosphatase-1 (JSP-1) [13] and non membrane protein tyrosine phosphatase (SHP-2) [14]. Moreover, 5-benzylidene-4-thiazolidinone derivatives exhibited potent antitumor activities against non-small cell lung cancer cell line H460, paclitaxel-resistantH460_{taxR}, human colon cancer cell line HT-29 and human breastcancer cell line MDA-MB-231[15].These observations led to the conception that 5-benzylidene derivatives of 3-substituted thiazolidine-2,4-diones would possess potential anti-microbial properties along with potent antitumor activities. Several methods were reported in the literature for the preparation of thiazolidinone derivatives [16].

MATERIALS AND METHODS

Melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded by dispersing the compounds in KBr pellets on a Shimadzu FT-IR 157 spectrophotometer. 1H NMR spectra were recorded on a 400 MHz Bruker Avance spectrometer and all the chemical shift values were reported as δ . The DART-MS was recorded on a JEOL-ACCUTOF JMS-T100LC mass spectrometer having a DART source.


Boja Poojary et al

Materials

All the reagents and solvents are from spectrochem and Aldrich and they were used as received without further purification.

Experimental methods

In the present study a novel series (5E)-5-arylidene-3-substituted-1,3-thiazolidine-2,4-diones(**3a-l**) are synthesized. Our synthetic strategy for thiazolidinone derivatives is illustrated in **Scheme 1**. The synthesis starts with refluxing thiourea and chloroacetic acid in water media in the presence conc. sulphuric acid for about 10-12 hours, followed by cooling to afford thiazolidin-2,4-dione (**1**) which on further reaction with substituted aryl aldehydes in the presence of anhydrous sodium acetate in acetic acid media afforded 5-arylidene derivatives of thiazolidin-2,4-dione (**2**). These steps were carried out according to the procedures reported in the literature[17]. The resulting compound on Mannich reaction with formaldehyde and primary/secondary amines in the presence of trace of triethyl amine in absolute alcohol media yielded the title compounds (**3**) with 60-85% yield. Formation of the compounds was confirmed by spectral and analytical data.

Scheme1. *Reagents and Conditions: a) Conc. H2SO4, water, 100* ⁰*C, 12h, yield: 90% b)Subt. Aldehyde, anhy. CH*₃*COONa, AcOH, 110* ⁰*C, yield:84-86% c)HCHO, Sec. amine/p-NO*₂ *aniline, Triethylamine, abs. alcohol, r.t., yield: 62-87%*

General Procedure for the Preparation of (5E)-5-arylidene-3-substituted-1,3-thiazolidine-2,4-diones(3a-l)

A mixture of 5-arylidene derivatives of thiazolidin-2,4-dione (2) (1mmol), formaldehyde (1 mmol), and primary/secondary amines(1mmol) in the presence of trace of triethyl amine in absolute alcohol media was stirred at room temperature for 2-3h and the completion of the reaction was ascertained by TLC. The reaction mixture was allowed to settle down. The reaction mixture was then gradually poured into crushed ice with stirring. The product separated was filtered, washed, dried and was recrystallized using ethanol.

(5E)-5-(2-chlorobenzylidene)-3-(morpholin-4-ylmethyl)-1,3-thiazolidine-2,4-dione (3a).

yield: 78%; m.p. 137-150 °C; IR: (KBr: γ /cm⁻¹): 2958 (C–H), 1667 (C= O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.51(t, 4H, *J* = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, *J* = 6.0 Hz, (CH₂)₂O), 4.56 (s, 2H, CH₂), 7.10-7.30 (m, 4H, ArH), 7.87 (s, 1H, =CH); DART–MS (m/z): 338.8 (M⁺). Anal. calcd. for C₁₅H₁₅ClN₂O₃S: C 53.17, H 4.46, N 8.27; Found: C 53.19, H 4.49, N 8.30.

(5E)-5-(2-chlorobenzylidene)-3-(piperidin-1-ylmethyl)-1,3-thiazolidine-2,4-dione (3b).

yield: 68%; m.p. 105 °C; IR: (KBr: γ/cm^{-1}): 2954 (C–H), 1669 (C=N); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.59(t, 4H, J = 6.3 Hz, N(CH₂)₂), 3.48 (m, 4H, (CH₂)₂), 4.48 (m, 2H, CH₂-piperidine), 4.59 (s, 2H, CH₂), 7.08-7.29 (m, 4H, ArH), 7.87 (s, 1H, =CH); DART–MS (m/z): 336.8 (M⁺). Anal. calcd. for C₁₆H₁₇ClN₂O₂S: C 57.05, H 5.09, N 8.32; Found: C 57.09, H 5.13, N 8.34.

 $(5E)-5-(2-chlorobenzylidene)-3-{[4-(4-chlorophenyl)piperazin-1-yl]methyl}-1,3-thiazolidine-2,4-dione (3c). yield: 78%; m.p. 137-150 °C; IR: (KBr: <math>\gamma/cm^{-1}$): 2959 (C–H), 1664 (C= O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.51(t, 4H, J = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, J = 6.0 Hz, (CH₂)₂N), 4.56 (s, 2H, CH₂), 7.10-7.28 (m, 4H, ArH), 7.87

(s, 1H, =CH), 6.82(d,2H, J=7.8Hz, ArH), 7.08(d,2H, J=7.8Hz, ArH) ; DART–MS (m/z): 448.01 (M⁺). Anal. calcd. for $C_{21}H_{19}Cl_2N_3O_2S$: C 59.06, H 4.51, N 6.26; Found: C 59.09, H 4.55, N 6.30.

(5E)-5-(2-chlorobenzylidene)-3-{[(4-nitrophenyl)amino]methyl}-1,3-thiazolidine-2,4-dione(**3d**). yield: 78%; m.p. 198-200 °C; IR: (KBr: γ/cm^{-1}): 2914 (C–H), 3355(NH),1590(-NO₂asy),1307(-NO₂sy) 1664 (C= O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 4.50(t, 1H, J = 6.0 Hz, NH),5.17(d, 2H, J=6.0Hz, CH₂), 6.85 (d, 2H, J = 9.0 Hz, ArH), 8.07 (d, 2H,J=9.0Hz, ArH), 7.10-7.28 (m, 4H, ArH), 7.43 (s, 1H, =CH), ; DART–MS (m/z): 389.8 (M⁺). Anal. calcd. for C₁₇H₁₂ClN₃O₄S: C 52.38, H 3.10, N 10.78; Found: C 52.42, H 3.14, N10.81.

(5E)-5-(4-methoxybenzylidene)-3-(morpholin-4-ylmethyl)-1,3-thiazolidine-2,4-dione(3e).

yield: 87%; m.p. 138-140 °C; IR: (KBr: γ/cm^{-1}): 2954 (C–H), 1668 (C=0), 1589(C=C); ¹H NMR (CDCl₃): δ 2.51(t, 4H, J = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, J = 6.0 Hz, (CH₂)₂O), 3.84(s, 3H, OCH₃), 4.56 (s, 2H, CH₂), 7.12(d, 2H,J=9.0Hz, ArH), 7.61(d, 2H, J=9.0Hz, ArH) 7.89 (s, 1H, =CH); DART–MS (m/z): 334.4 (M⁺). Anal. calcd. for C₁₆H₁₈N₂O₄S: C 57.47, H 5.43, N 8.38; Found: C 57.49, H 5.46, N 8.42.

(5E)-5-(4-methoxybenzylidene)-3-(piperidin-1-ylmethyl)-1,3-thiazolidine-2,4-dione (**3f**).

yield: 72%; m.p. 108 °C; IR (KBr) γ/cm^{-1} : 2957 (C–H), 1666 (C=O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.58(t, 4H, J = 6.6 Hz, N(CH₂)₂), 3.49 (m, 4H, (CH₂)₂), 3.84(s, 3H, OCH₃), 4.50 (m,2H,CH₂-piperidine) 4.58 (s, 2H, CH₂), 7.12 (d, 2H,J=8.9Hz, ArH), 7.62(d, 2H, J=8.9Hz, ArH), 7.85 (s, 1H, =CH); DART–MS (m/z): 332.4 (M⁺). Anal. calcd. for C₁₇H₂₀N₂O₃S: C 61.42, H 6.06, N 8.43; Found: C 61.46, H 6.08, N 8.46.

(5E)-5-(4-methoxybenzylidene)-3-{[4-(4-chlorophenyl)piperazin-1-yl]methyl}-1,3-thiazolidine-2,4-dione (3g).

yield: 60%; m.p. 142-144 °C; IR: (KBr: γ /cm⁻¹): 2959 (C–H), 1668 (C=O),762(C-Cl); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.52(t, 4H, J = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, J = 6.0 Hz, (CH₂)₂N), 3.84(s, 3H, OCH₃), 4.56 (s, 2H, CH₂), 7.14 (d, 2H, J=8.8Hz, ArH), 7.67(d, 2H, J=8.8Hz,Ar), 7.88 (s, 1H, =CH), 6.91(d, 2H, J=7.6Hz, ArH), 7.28(d, 2H, J=7.6Hz, ArH); DART–MS (m/z): 443.9 (M⁺). Anal. calcd. for C₂₂H₂₂ClN₃O₃S: C 62.36, H 5.23, N 6.32; Found: C 62.42, H 5.27, N 6.30.

(5E)-5-(4-methoxybenzylidene)-3-{[(4-nitrophenyl)amino]methyl}-1,3-thiazolidine-2,4-dione (3h).

yield: 82%; m.p. 200-201 °C; IR: (KBr: γ/cm^{-1}) : 2916 (C–H), 3355 (NH),1590 (-NO₂asy),1307 (-NO₂sy) 1664 (C=O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 3.84(s, 3H, OCH₃), 4.50(t, 1H, J = 6.8 Hz, NH), 5.14 (d, 2H, J=6.8Hz,CH₂), 6.90 (d, 2H, J = 9.2 Hz, ArH), 8.04 (d, 2H, J=9.2Hz, ArH), 7.39 (d, 2H, J=8.4Hz, ArH), 7.55(d, 2H, J=8.4Hz, ArH), 7.91 (s, 1H, =CH),; DART–MS (m/z): 385.4 (M⁺). Anal. calcd. for C₁₈H₁₅N₃O₅S: C 56.10, H 3.92, N 10.90; Found: C 56.14, H 3.95, N 10.88.

(5E)-5-[4-(methylsulfanyl)benzylidene]-3-(morpholin-4-ylmethyl)-1,3-thiazolidine-2,4-dione(**3i**). yield: 87%; m.p. 142-144 °C; IR: (KBr: γ /cm⁻¹) : 2958 (C–H), 1667.5 (C=O), 1578(C=C); ¹H NMR (CDCl₃): δ 2.51(t, 4H, J = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, J = 6.0 Hz, (CH₂)₂O),2.49(s, 3H, SCH₃), 4.55 (s, 2H, CH₂), 7.39(d, 2H,J=8.4Hz, ArH), 7.54(d, 2H,J=8.4Hz, ArH) 7.87(s, 1H, =CH); DART–MS (m/z): 350.4 (M⁺). Anal. calcd. for C₁₆H₁₈N₂O₃S₂: C 54.83, H 5.18, N 7.99; Found: C 54.80, H 5.21, N 7.95.

(5E)-5-[4-(methylsulfanyl)benzylidene]-3-(piperidin-1-ylmethyl)-1,3-thiazolidine-2,4-dione(**3***j*). yield: 78%; m.p. 142-144 °C; IR: (KBr: γ /cm⁻¹): 2958 (C–H), 1667(C=O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): 2.52(t, 4H, J = 6.6 Hz, N(CH₂)₂), 3.53 (m, 4H, (CH₂)₂), 2.49(s, 3H, SCH₃), 4.50(m,2H,CH₂-piperidine) 4.58 (s, 2H, CH₂), 7.38 (d, 2H,J=8.5Hz, ArH), 7.56(d, 2H, J=8.5Hz, ArH), 7.84 (s, 1H, =CH); DART–MS (m/z): 348.5 (M⁺). Anal. calcd. for C₁₇H₂₀N₂O₂S₂: C 58.59, H 5.78, N 8.04; Found: C 58.55, H 5.81, N 8.06.

(5E)-5-[4-(methylsulfanyl)benzylidene]-3-{[4-(4-chlorophenyl)piperazin-1-yl]methyl}-1,3-thiazolidine-2,4-dione (3k)

yield: 62%; m.p. 157-158 °C; IR: (KBr: γ/cm^{-1}): 2959 (C–H), 1668 (C=O), 762(C-Cl); ¹H NMR(δ ppm, CDCl₃, 400 MHz): δ 2.52(t, 4H, J = 6.0 Hz, N(CH₂)₂), 3.54 (t, 4H, J = 6.0 Hz, (CH₂)₂N), 2.49(s, 3H, SCH₃), 4.56 (s, 2H, CH₂), 7.38(d, 2H, J=8.8Hz, ArH), 7.56(d, 2H, J=8.8Hz, ArH), 7.88 (s, 1H, =CH), 6.96(d, 2H, J=7.8Hz, ArH), 7.16(d, 2H, J=7.8Hz, ArH); DART–MS (m/z): 460.0 (M⁺). Anal. calcd. for C₂₂H₂₂ClN₂O₂S₂: C 60.18, H 5.05, N 6.10; Found: C 60.22, H 5.07, N 6.07.

(5E)-5-[4-(methylsulfanyl)benzylidene]-3-{[(4-nitrophenyl)amino]methyl}-1,3-thiazolidine-2,4-dione (**31**). yield: 86%; m.p. 202-204 °C; IR: (KBr: γ/cm^{-1}) : 2916 (C–H), 3355(NH),1590(-NO₂asy),1307(-NO₂sy) 1664 (C=O); ¹H NMR(δ ppm, CDCl₃, 400 MHz): δ 2.49(s, 3H, SCH₃), 4.50(t, 1H, J = 6.8 Hz, NH),5.14(d, 2H, J=6.8Hz,CH₂), 6.93 (d, 2H, J = 9.2 Hz, ArH), 8.03 (d, 2H,J=9.2Hz, ArH), 7.40(d, 2H, J=8.4Hz, ArH), 7.55(d, 2H, J=8.4Hz, ArH), 7.91 (s, 1H, =CH) ; DART–MS (m/z): 401.5 (M⁺). Anal. calcd. for C₁₈H₁₅N₃O₄S₂: C 53.85, H 3.77, N 10.47; Found: C 53.82, H 3.75, N 10.51

RESULTS AND DISCUSSION

¹H NMR spectrum of compound **3e** showed a singlet at 7.89 ppm for one proton which is characteristic value of benzylidene proton. The aromatic protons resonated at 7.12ppm and 7.61ppm as two doublets with coupling constant 9.0 Hz. The $-CH_2$ protons resonated at 4.46ppm. The-OCH₃ protons resonated at 3.84ppm and the morpholine protons resonated as two triplets at 2.51ppm and 3.54ppm. The absence of absorption bands corresponding to -NH group in IR spectrum confirmed the formation of Mannich base (**3e**). The DART-mass spectrum of compound **3e** showed the molecular ion peak at m/z = 334.13, in conformity with its molecular formula $C_{16}H_{18}N_2O_4S$.

Antimicrobial activity

The antimicrobial activity was determined using disc diffusion method by measuring zone of inhibition in mm [18]. All the compounds, **3a-1** were screened *in-vitro* at a concentration of 10 µg/disc for their antibacterial activity against two Gram-positive strains (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa). Antifungal evaluation was also carried out against Candida albicans and Aspergillus niger at a concentration of 10 µg/disc. Standard antibacterial drug ciprofloxacin (10µg/disc) and antifungal drug fluconazole (10µg/disc) were also tested under similar conditions against these organisms. Each experiment was done in triplicate and the average reading was taken. The antibacterial activity was classified as highly active (\geq 26 mm), moderately active (11-25 mm) and least active (<11 mm). The results of antibacterial and antifungal activities are expressed in terms of zone of inhibition and presented in **Table 1**.

	Zone of inhition in mm					
Compd	Antibacterial activity				Antifungal activity	
	S. aureus	B. subtilis	E. coli	P. aeruginosa	C. albicans	A. nige
3a	18	18	20	21	16	18
3b	22	22	20	22	18	11
3c	20	20	19	20	20	18
3d	28	26	28	24	27	25
3e	22	20	20	22	18	16
3f	18	16	20	18	19	18
3g	20	18	22	20	20	16
3h	28	28	26	24	26	24
3i	10	12	08	08	10	11
3ј	12	10	10	10	14	16
3k	10	12	08	10	14	11
31	22	20	22	18	20	18
Ciprofloxacin	26	26	28	25	-	-
Flucanazol	-	-	-	-	26	25

Table 1 Antimicrobial a	activity of the tested	compounds 3a-l
-------------------------	------------------------	----------------

The newly synthesized compounds were tested to evaluate their antibacterial and antifungal activity. All these compounds were found to exhibit moderate antibacterial and antifungal activity against different species of bacteria and fungi. From the activity data (**Table 1**) it was observed that among all the compounds tested, compound **3d** and **3h** showed good activity against all the tested bacteria and fungi. Among the other compounds **3b**, **3c**, **3e** and **3g** showed moderate activity against bacterial and fungal strains. The compounds **3a**, **3b** and **3c** showed least activity against all the pathogens.

CONCLUSION

In conclusion, we have synthesized a series of novel thiazolidine-2,4-dione Mannich bases and have screened for antibacterial and antifungal activities. The results from our biological activity studies showed that compound **3d** and

3h having a secondary–NH group attached to a phenyl ring with the nitro group at the para position showed very good activity against all tested bacteria and fungi as good as the standard itself.

Acknowledgement

The authors are thankful to UGC for the financial assistance and to the Head, SAIF, CDRI, Lucknow, the Chairman, Indian institute of science, Bangalore and the Head, USIC, Mangalore University for providing mass, ¹H NMR and IR data.

REFERENCES

[1] T. Tomasic, L. P. Masic, Curr. Med. Chem., 2009, 16,1596.

[2] R. Lesyk, B. Zimenkovsky, D. Atamanyuk, F. Jensen, K. Kiec-Kononowicz, A. Gzell, *Bioorg. Med. Chem.*, 2006,14,5230.

[3] D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, L. Zaprutko, A. Gzella, R. Lesyk, *Eur. J. Med. Chem.*, 2009, 44, 1396.

[4] D.Kaminskyy, B.Zimenkovsky, R. Lesyk, Eur. J.Med.Chem., 2009, 44, 3627.

[5] R. Ottana, R. Maccari, M.L. Barreca, G. Bruno, A. Rotondo, A. Rossi, G. Chiricosta, R. Di Paola, L. Sautebin, S. Cuzzocrea, M.G. Vigorita, *Bioorg. Med. Chem.*, **2005**, 13, 4243.

[6] P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med. Chem., 2006, 14, 3859.

[7] A.A. Elbarbary, A.I. Khodair, E.B. Pedersen, C. Nielsen, Monatsh. Chem., 1994, 125, 593.

[8] E. Rydzik, A. Szadowska, A. Kaminska, Acta Pol. Pharm., 1984, 41, 459-464.

[9] H.L. Liu, Z.C. Li, T. Anthonsen, *Molecules*, 2000, 5, 1055.

[10] B. Samir, K. Wesam, A.F. Ahmed, Eur. J. Med. Chem., 2007, 42, 948.

[11] J.H. Ahn, S.J. Kim, W.S. Park, S.Y. Cho, J.D. Ha, S.S. Kim, S.K. Kang, D.G. Jeong, S.K. Jung, S.H.Lee, H.M.

Kim, S.K. Park, K.H. Lee, C.W. Lee, S.E. Ryu, J.K.Choi, *Bioorg.Med. Chem. Lett.*, 2006, 16, 2996.

[12] K.J. French, R.S. Schrecengost, B.D. Lee, Y. Zhuang, S.N. Smith, J.L. Eberly, J.K. Yun, C.D. Smith, *Cancer Res.*, 2003, 63, 5962.

[13] N.S. Cutshall, C. O'Day, M. Prezhdo, Bioorg. Med. Chem. Lett., 2005, 15, 3374.

[14] A. Geronikaki, P. Eleftheriou, P. Vicini, I. Alam, A. Dixit, A.K. Saxena, J. Med. Chem., 2008, 51, 5221.

[15] H.Y. Zhou, S.H. Wu, S.M. Zhai, A.F. Liu, Y. Sun, R.S. Li, Y. Zhang, S. Ekins, P.W. Swaan, B.L. Fang, B. Zhang, B. Yan, *J. Med. Chem.*, **2008**, 51, 1242.

[16] (a) J.F. Dubreuil , J.P. Bazureau, *Tetrahedron*, **2003**, 59, 121.

(b) A. Verma , S.K. Saraf, Eur. J. Med. Chem., 2008, 43, 897.

(c) T. Srivastava, W. Haq, S.B. Katti, Tetrahedron, 2002, 58, 7619.

[17] L. V. Sonawane, S. B. Bari, International Journal of Biological Chemistry, 2011, 5, 68.

[18] A. N. Bauer, W. N. M. Kirby, J. C. Sherries, M. Truck, Am. J. Clin. Pathol., 1996, 45, 493.