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ABSTRACT

Staphyl ococcus aureus causes a variety of human infections, ranging from superficial abscesses to life threatening
bacteremias. Saphylococcus aureus Sortase A inhibitors are widely used for the treatment of bacterial infections.
3D-QSAR analysis has been applied to a structurally diverse set of 34 compounds as Staphylococcus aureus Sortase
A inhibitors, which are of special interest because of their role in bacterial infections. The present study has been
focused on pharmacophore mapping study that can explore 3D features and configurations responsible for
biologically activity of structurally diverse compounds. A four point pharmacophore (ADRR) with one hydrogen
bond acceptor (A), one hydrogen bond donor (D) and two aromatic rings (R) as pharmacophore features was
developed. The generated best pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a
correlation coefficient of R* = 0.929 for training set molecules. The model generated showed excellent prediction
power, with Q? = 0.887 for an external set of 10 test set molecules. The geometry and features of pharmacophore
are expected to be useful for the design of sel ective Staphylococcus aureus Sortase A inhibitors.
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INTRODUCTION

Gram positive pathogenic bacteria display proteinstheir surface that play important roles durinfection. In
Staphylococcus aureus, these surface proteingiah®ied to the cell wall by two sortase enzymestaSe A (srtA)
and Sortase B (srtB), they recognize specific serfarotein sorting signals [1&aphylococcus aureus Sortase A is
an enzyme naturally located in the cell wall ofrgrpositive bacteria, where it catalyzes transpefitid reactions
without the need of ATP [2]. Srt A is a polypeptidé 206 amino acids [3], responsible for anchonprgteins
containing a C-terminal tripartite sorting signahich consists of a) an LPXTG pentapeptide (wheneptesents
amino acid) followed by, b) a less well conservaedirbphobic domain and c¢) a basic charged tail. Bbh
hydrophobic domain and the charged tail help tainethe putative surface protein in the membraia po sortase-
catalysed anchoring [4]. Srt A, a transpeptidasth &h active site cysteine, cleaves surface protegtween the
threonine (T) and the glycine (G) of the LPXTG m8] and catalyzes the formation of peptide boetineen the
carboxyl group of the threonine and the amine grafujine cell wall precursor lipid Il. The lipid linked protein is
then incorporated into the peptidoglycan of thé well via the transglycosylation and transpepiateactions of
bacterial cell wall synthesis. Sortases represanatiractive target for new anti-infective agergsce they are
widely distributed among a variety of bacterialagens [5].
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QSAR studies are mathematical methodologies, 8tatily validated and mostly used to correlate eipental or
calculated properties derived from chemical stmeguwith biological activities. With the advent D molecular
space modeling, a pharmacophore hypothesis camlizisuthe potential interaction between the ligamdl the
receptor [6]. 3D pharmacophore model is a liganskldaapproach that provides a unique tool for degigh. A 3D
pharmacophore is a collection of chemical featimespace that are required for a desired biologcéivity. These
may include hydrophobic groups, charged / ionisgoteips, hydrogen bond donors / acceptors and ¢théures
properly assembled in 3D space to reflect struttiequirements [7]. The objective of the presewidyg is to
develop ligand based pharmacophore hypothesis amgrive 3D-QSAR model with Pharmacophore Alignment
and Scoring Engine (PHASE) [8]. PHASE is a highéxible system for common pharmacophore identiftcatind
assessment, 3D-QSAR model development, and 3D akstaiveation and searching.

MATERIALSAND METHODS

Data sets

A set of 34 noveBRaphylococus aureus Sortase A inhibitors (Tables 1 and 2) with avdéal®;, data were taken
from literature for the development of ligand-bagddirmacophore hypothesis and 3D-QSAR model [9, Tid§
ICsovalues, i.e., the concentration (uM) of inhibitbat produces 50% inhibition &aphyl ococcus aureus Sortase
A, were converted to molar concentrations and thém plGso values as reported in Tables 1 and 2. In order to
obtain a validated and predictive QSAR model, aailakle data set should be divided into the trajrand test sets.
For the prediction statistics to be reliable, tbst tset must include at least five compounds [Lhg data set was
divided into a training set of 24 molecules andsi set of 10 molecules. The training set moleowkr® selected in
such a way that they contained information in teohboth their structural features and biologicetiaty ranges.
The most active molecules, moderately active asd &etive molecules were included, to spread airdahge of
activities [12]. In order to assess the predicpegver of the model, a set of 10 compounds wasrarhjtset aside as
the test set. The test compounds were selectaccmaway that they truly represent the trainirtg se

TRAINING SET & TEST SET BASIC STRUCTURE
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Table 1: Experimental inhibitory activity of training set compounds

ICs0 pICso pICso

S:No. | X AB € b Y R (uM) | observe | predictet
1. S CH=CH NH (@] O COOH 75 4,125 4.00
2. O | CH=CH NH (@] O COOCH| 58 4.237 4.04
3. O | CH=CH NH (@] (0] COOH 181 3.742 3.77
4, O | CH-CH, NH O O COOH 600 3.222 3.24
5. O | CH-CH, NH (6] O COOCH 600 3.222 3.42
6. S| C=C NH (e} (e} COOCH 165 3.783 3.83
7. S| C=C | NH | O 0 COOH 183 3.738 3.75
8. S CH=CH NH (@] (@] COOCH| 61 4.215 4.22
9. S CH=CH NH (@] (@] COOH 154 3.812 3.82
10. O| CH=CH NMe (e} (@] COOCH| 514 3.289 3.28
11. S CH=CH NMe O O COOH 600 3.222 3.29
12. O| CH=CH NMe O (@] COOH 600 3.222 3.21
13 S | CH=CH NH HH O COOCH; 24¢ 3.60¢ 3.5€
14. S CH=CH NH HH O COOH 600 3.222 3.24
15. O| CH=CH NH (@] Chl COOH 463 3.334 3.62
16. O| CH=CH NH (@] (0] CKOH 111 3.955 3.97
17. S CH=CH NH O (@] CHO 77 4,114 4.14
18 O | CH=CH NH (e} (@] CHO 107 3.971 3.97
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Table 2: Experimental inhibitory activity of test set compounds

ICs0 1Cso 1Cso
S:No | X A-B c Dl Y R (um) ot?served prgdicted
1. S| CH=CH NH O O COOCH| 71 4.149 411
2. S | CH,-CH, | NH O ®] COOF 60C 3.22% 3.6
3. S | CH-CH, | NH (6] 0] COOCH; | 60C 3.22% 3.5¢
4. S| CH=CH| NMe| O (6] COOCH| 571 3.243 3.28
5. S| CH=CH NH O| CH | COOCH 92 4.036 4.01
6. O | CH=CH NH O| Ch | COOCH, | 131 3.883 3.86
7. S| CH=CH NH O| CH| COOH 181 3.742 3.79
8. S | CH=CH NH O (®] CH,OH 73 4.13i 4.17
9. S | CH=CH NH O (®] CONH, 10E 3.97¢ 3.9¢
NHW/NH
o}
10. N©/ © | 400 | 3.398 3.59
NYN
NH,

Phar macophor e modeling
Pharmacophore modeling and 3D database searchengoar recognized as integral components of leacbdesy

and lead optimization. Pharmacophore modeling vaased out using PHASE: a module of Schrodingesfsasare
program ‘MAESTRO’ [13].

Generation of Common Pharmacophore Hypothesis

The chemical structures of all the compounds weeavd in maestro and geometrically refined usingPlrap
module. Tautomers were generated using MacroModthod discarding current conformers. The conforometi
were generated by the Monte Carlo (MCMM) methoihgdemented in MacroModel version 9.6 using a maxim
of 2,000 steps with a distance-dependent dielestilieent model and an OPLS-2005 force field. Ad tonformers
were subsequently minimized using truncated Newtonjugate gradient (TNCG) minimization up to 500
iterations. For each molecule, a set of conformetls a maximum energy difference of 30kcal/mol tieka to the
global energy minimum conformer was retained. Torefermational searches were done for aqueous solusing
the generalized born/solvent accessible surfacé§&Bcontinuum solvation model [14].

The next step in developing a pharmacophore mosleloi use a set of pharmacophore features to create
pharmacophore sites (site points) for all the lggan

Common pharmacophoric features were then identffiech a set of variants-a set of feature types tiedine a
possible pharmacophore. Common pharmacophoresdantified using a tree-based partitioning technitjuet
groups together similar pharmacophores accordintyew inter site distances, i.e., the distancesvéen pairs of
sites in the pharmacophore.

In the next step, common pharmacophore hypothesig wxamined using a scoring function to yield llest
alignment of the active ligands using an overalkimam root mean square deviation (RMSD) value @f A.for
distance tolerance. The quality of alignment wassneed by a survival score, defined as:

S= WiteSite + WeeeSiee + WooiSiol + Weat St + Whey

Where W are weights and 53 are scores, andg;s represents an alignment score, the RMSD in the siint
position. S, represents the vector score, and averages theecokithe angles formed by corresponding pairs of
vector features in aligned structur&, represents the volume score based on the overlapeof¥ander Walls
models of non-hydrogen atoms in each pair of ainest Sy represents the selectivity score, and accountthfor
fractions of molecules that are likely to match kiypothesis regardless of their activity towards@eptor. Weights
are user adjustable. Wsite, Wvec, Wvol, and,\Wave a default value of 1.0 whileg\Mhas a default value of 0.0,
so that a useful hypothesis is not misd&fd.,, represents the reward weights, wheres the number of actives that
match the hypothesis minus one. In the hypothesiemation, all default values were used [15].
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Validation of QSAR model and Assessment of significant common pharmacophore hypothesis (CPH) using

partial least square (PLS) analysis

Validation is a crucial aspect of pharmacophordgiesparticularly when the model is built for therpose of
predicting activities of compounds in external testies [16, 17]. External validation is considetedbe a
conclusive proof for judging predictability of a ol. Our priority was to develop QSAR models thatrev
statistically robust both internally as well aser@lly. The main target of any QSAR modelling fgtt the
developed model should be robust enough to be pilmaking accurate and reliable predictions iofdgical

activities of new compounds. In the present case,validation of generated common pharmacophorethggis
was performed by correlating the observed and estidhactivity for 24 molecules of the training sahd 10
molecules of the test set. PLS analysis were choig using PHASE with ligands in the training esing a grid
spacing of 1 A. A common pharmacophore hypothesih the best predictivity and significant statistiwas
selected for molecular alignments and a QSAR stidlge test set was carried out.

RESULTS

Pharmacophore generation and 3D-QSAR model

A total of 19 different variant hypothesis were geted upon completion of common pharmacophordifa=tion
process. A maximum of four features were allowedi¢welop hypothesis and a number of CPHs werertezpo
common to all molecules based on hydrogen bondpsmcéA), hydrogen bond donor (D) and aromatic r{iR).
There were 9 hypothesis based on the combinatioRRALB hypothesis based on AADR and 7 hypothesiedhas
AARR. We have selected those pharmacophore modesevsurvival scores ranked in the top. The topaineds
found to be associated with the four point hypath@sigure 1), which consist of one hydrogen boodeptor (A),
one hydrogen bond donor (D) and two aromatic ri(igs This is denoted as,B; R;Rs. The pharmacophore
hypothesis showing distance between pharmacoplsités is depicted in Figure 1. Predicted and oleskrv
biological activity of training and test sets ah@wn in Table 1 and 2.

Figure 1: Pharmacophore hypothesis and distance between phar macophoric sites. All distancesarein A unit.

The pharmacophore hypothesis yielded a 3D-QSAR maitle good PLS statistics. The training set catien is
characterized by PLS factors? (= 0.929, SD = 0.12, F = 123, P = 6.307e — 20). Te= set correlation is
characterized by PLS factor%, = 0.887, RMSE = 0.18, Pearsén= 0.91). Results of PLS statistics of 3D-
QSAR model is shown in Table 3. Graph of obsenedws predicted biological activity of training aedt sets are
shown in Figures 2 and 3, respectively.
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Table 3: Parameters of best four featured phar macophore hypothesis

Training set Test set
r’=0.929 Q% = 0.887
SD=0.12 RMSE =0.18

F=123P=6.307 - 20| PearsdR=0.91

SD = standard deviation of the regression, r*> = correlation coefficient
P = significance level of varianceratio, F = varianceratio
Q% = for the predicted activities, RMSE = root-mean-square error
Pearson-R = correlation between the predicted and observed activity for the test set
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Figure 2: Graph of observed versus predicted biological activity of training set molecules
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Figure 3: Graph of observed versus predicted biological activity of test set molecules
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DISCUSSION

The purpose of pharmacophore modeling is to perfaralico screening searches in a 3 dimensional database of
virtual or real compound library to find diverseusttures with desired binding activity and seleityivin the present
study, a series d. aureus Sortase A inhibitors were considered for molecuatadeling studies. The present study
aimed to develop ligand based pharmacophore hygistland 3D-QSAR model which can provide information
regarding structural modifications with which tcstgn analogs with better activity prior to syntlsesi

We have previously shown the results of PLS analggiplied to generated pharmacophore hypothesisaFo
reliable model, the squared predictive correlatoefficient should be > 0.6 [12]. The results dEtktudy reveal
that model ADsR;Rg can be used for the prediction of Arinhibitory activity.

Additional insights into the inhibitory activity neébe gained by visualizing the 3D-QSAR model.

3D-QSAR model of compound 9 (5-(3-(yhiophen-2-yijdg@mido)-2-morpholino benzoic acid) of the traigiset
illustrating the hydrogen bond acceptor featurghiswn in Figure 4. The red cubes around the oxydéH group
of benzoic acid and at position 2 of morpholineggrfavours the srA inhibitory activity and substitutions at these
positions by groups having more hydrogen bondingepior property favours the srt A inhibitory acyviGreen
region around the S of thiophene ring, near theod@s) and at position 5 and 6 of morpholine ring do fasour
the srt A inhibitory activity. Substitutions at 8eepositions by electron withdrawing groups suchi@s, Cl, F, etc.
will result in increase in si inhibitory activity.

Figure4: Pictorial representation of the cubes generated using the 3D-QSAR model based on molecule 9 (most active) of training set
illustrating hydrogen bond acceptor prediction. Red cubesindicate favourableregions, while green cubesindicate unfavourableregion
for theactivity.

The 3D-QSAR model based on molecule 9 of ttening set using hydrophobicity feature shown in
Figure 5. Red region around oxygen of OH group @r@ group of benzoic acid, at position 3 of moiptering
and around S of thiophene ring favoursAiinhibitory activity and substitutions at tkespositions by more
hydrophobic groups will result in increase ihA inhibitory activity. Green region at position 3 and 4 of
thiophene ring and position 2 of benzoic acid da favour the srA inhibitory activity and substitution at these
position with hydrophobic group increase #reA inhibitory activity.
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Figure5: 3D-QSAR model based on molecule 9 (most active) of training set illustrating hydrophobic feature

The 3D-QSAR model based on molecule 9 of titaning set using hydrogen bond donor featis shown
in Figure 6. Red region around oxygen of OH grafipenzoic acid and at the H of —-CONH group (near
region) favours sri inhibitory activity and substitutions at tlespositions by more hydrogen bond donor
groups will result in increase in tinhibitory activity. Green region around thedlmorpholine ring do not

favour the srA inhibitory activity and substitution at thegmsition with electron donating groups incredke
srt A inhibitory activity.

Figure 6: 3D-QSAR model based on molecule 9 (most active of highest fitness scor e 3) of training set illustrating hydrogen bond donor
feature
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CONCLUSION

In conclusion, a highly predictive pharmacophoredsh3D-QSAR model was generated using a trainingfsa4
molecules which consists of four point pharmacophbypothesis with one hydrogen bond acceptor (&g o
hydrogen bond donor (D) and two aromatic rings {Rle developed 3D-QSAR model can provide insightis the
structural requirement of novB8laphylococcus aureus Sortase A inhibitors.

The present study aimed to develop ligand basedn@wphore hypothesis and 3D-QSAR model which give
detailed structural insights as well as highlightportant binding features of nov8laphylococcus aureus Sortase
A inhibitors, which can provide guidance for théaaal design of novel s inhibitors.
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