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ABSTRACT 
 
Staphylococcus aureus causes a variety of human infections, ranging from superficial abscesses to life threatening 
bacteremias. Staphylococcus aureus Sortase A inhibitors are widely used for the treatment of bacterial infections. 
3D-QSAR analysis has been applied to a structurally diverse set of 34 compounds as Staphylococcus aureus Sortase 
A inhibitors, which are of special interest because of their role in bacterial infections. The present study has been 
focused on pharmacophore mapping study that can explore 3D features and configurations responsible for 
biologically activity of structurally diverse compounds. A four point pharmacophore (ADRR)  with one hydrogen 
bond acceptor (A), one hydrogen bond donor (D) and two aromatic rings (R) as pharmacophore features was 
developed. The generated best pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a 
correlation coefficient of R2 = 0.929 for training set molecules. The model generated showed excellent prediction 
power, with Q2 = 0.887 for an external set of 10 test set molecules. The geometry and features of pharmacophore 
are expected to be useful for the design of selective Staphylococcus aureus Sortase A inhibitors. 
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INTRODUCTION 
 

Gram positive pathogenic bacteria display proteins on their surface that play important roles during infection. In 
Staphylococcus aureus, these surface proteins are anchored to the cell wall by two sortase enzymes, Sortase A (srtA) 
and Sortase B (srtB), they recognize specific surface protein sorting signals [1]. Staphylococcus aureus Sortase A is 
an enzyme naturally located in the cell wall of gram positive bacteria, where it catalyzes transpeptidation reactions 
without the need of ATP [2]. Srt A is a polypeptide of 206 amino acids [3], responsible for anchoring proteins 
containing a C-terminal tripartite sorting signal, which consists of a) an LPXTG pentapeptide (where X represents 
amino acid) followed by, b) a less well conserved hydrophobic domain and c) a basic charged tail. Both the 
hydrophobic domain and the charged tail help to retain the putative surface protein in the membrane prior to sortase-
catalysed anchoring [4]. Srt A, a transpeptidase with an active site cysteine, cleaves surface proteins between the 
threonine (T) and the glycine (G) of the LPXTG motif [3] and catalyzes the formation of peptide bond between the 
carboxyl group of the threonine and the amine group of the cell wall precursor lipid II. The lipid II linked protein is 
then incorporated into the peptidoglycan of the cell wall via the transglycosylation and transpeptidation reactions of 
bacterial cell wall synthesis. Sortases represent an attractive target for new anti-infective agents, since they are 
widely distributed among a variety of bacterial pathogens [5]. 
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QSAR studies are mathematical methodologies, statistically validated and mostly used to correlate experimental or 
calculated properties derived from chemical structures with biological activities. With the advent of 3D molecular 
space modeling, a pharmacophore hypothesis can visualize the potential interaction between the ligand and the 
receptor [6]. 3D pharmacophore model is a ligand-based approach that provides a unique tool for drug design. A 3D 
pharmacophore is a collection of chemical features in space that are required for a desired biological activity. These 
may include hydrophobic groups, charged / ionisable groups, hydrogen bond donors / acceptors and other features 
properly assembled in 3D space to reflect structural requirements [7]. The objective of the  present study is to 
develop ligand based pharmacophore hypothesis and to derive 3D-QSAR model with Pharmacophore Alignment 
and Scoring Engine (PHASE) [8]. PHASE is a highly flexible system for common pharmacophore identification and 
assessment, 3D-QSAR model development, and 3D database creation and searching. 
 

MATERIALS AND METHODS 
 
Data sets 
A set of 34 novel Staphylococus aureus Sortase A inhibitors (Tables 1 and 2) with available IC50 data were taken 
from literature for the development of ligand-based pharmacophore hypothesis and 3D-QSAR model [9, 10]. The 
IC50 values, i.e., the concentration (µM) of inhibitor that produces 50% inhibition to Staphylococcus aureus Sortase 
A, were converted to molar concentrations and then into pIC50 values as reported in Tables 1 and 2. In order to 
obtain a validated and predictive QSAR model, an available data set should be divided into the training and test sets. 
For the prediction statistics to be reliable, the test set must include at least five compounds [11]. The data set was 
divided into a training set of 24 molecules and a test set of 10 molecules. The training set molecules were selected in 
such a way that they contained information in terms of both their structural features and biological activity ranges. 
The most active molecules, moderately active and less active molecules were included, to spread out the range of 
activities [12]. In order to assess the predictive power of the model, a set of 10 compounds was arbitrarly set aside as 
the test set. The test compounds were selected in such a way that they truly represent the training set.  
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Table 1: Experimental inhibitory activity of training set compounds 
 

S.No. X A-B C D Y R 
IC50 
(µM) 

pIC50 
observed 

pIC50 
predicted 

1. S CH=CH NH O O COOH 75 4.125 4.00 
2. O CH=CH NH O O COOCH3 58 4.237 4.04 
3. O CH=CH NH O O COOH 181 3.742 3.77 
4. O CH2-CH2 NH O O COOH 600 3.222 3.24 
5. O CH2-CH2 NH O O COOCH3 600 3.222 3.42 
6. S C C  NH O O COOCH3 165 3.783 3.83 

7. S C C  NH O O COOH 183 3.738 3.75 
8. S CH=CH NH O O COOCH3 61 4.215 4.22 
9. S CH=CH NH O O COOH 154 3.812 3.82 
10. O CH=CH NMe O O COOCH3 514 3.289 3.28 
11. S CH=CH NMe O O COOH 600 3.222 3.29 
12. O CH=CH NMe O O COOH 600 3.222 3.21 
13. S CH=CH NH HH O COOCH3 249 3.604 3.56 
14. S CH=CH NH HH O COOH 600 3.222 3.24 
15. O CH=CH NH O CH2 COOH 463 3.334 3.62 
16. O CH=CH NH O O CH2OH 111 3.955 3.97 
17. S CH=CH NH O O CHO 77 4.114 4.14 
18. O CH=CH NH O O CHO 107 3.971 3.97 
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S.No Structure 
IC50 
(µm) 

pIC50 
observed 

pIC50 
predicted 
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Table 2: Experimental inhibitory activity of test set compounds 
 

S.No X A-B C D Y R 
IC50 
(µm) 

pIC50 
observed 

pIC50 
predicted 

1. S CH=CH NH O O COOCH3 71 4.149 4.11 
2. S CH2-CH2 NH O O COOH 600 3.222 3.63 
3. S CH2-CH2 NH O O COOCH3 600 3.222 3.53 
4. S CH=CH NMe O O COOCH3 571 3.243 3.28 
5. S CH=CH NH O CH2 COOCH3 92 4.036 4.01 
6. O CH=CH NH O CH2 COOCH3 131 3.883 3.86 
7. S CH=CH NH O CH2 COOH 181 3.742 3.79 
8. S CH=CH NH O O CH2OH 73 4.137 4.17 
9. S CH=CH NH O O CONH2 105 3.979 3.98 

10. 
NN

NH2

NH NH

O
Cl

 

400 3.398 3.59 

 
Pharmacophore modeling  
Pharmacophore modeling and 3D database searching are now recognized as integral components of lead discovery 
and lead optimization. Pharmacophore modeling was carried out using PHASE: a module of Schrödinger's software 
program ‘MAESTRO’ [13]. 
 
Generation of Common Pharmacophore Hypothesis 
The chemical structures of all the compounds were drawn in maestro and geometrically refined using LigPrep 
module. Tautomers were generated using MacroModel method discarding current conformers. The conformations 
were generated by the Monte Carlo (MCMM) method as implemented in MacroModel version 9.6 using a maximum 
of 2,000 steps with a distance-dependent dielectric solvent model and an OPLS-2005 force field. All the conformers 
were subsequently minimized using truncated Newton conjugate gradient (TNCG) minimization up to 500 
iterations. For each molecule, a set of conformers with a maximum energy difference of 30kcal/mol relative to the 
global energy minimum conformer was retained. The conformational searches were done for aqueous solution using 
the generalized born/solvent accessible surface (GB/SA) continuum solvation model [14]. 
 
The next step in developing a pharmacophore model is to use a set of pharmacophore features to create 
pharmacophore sites (site points) for all the ligands.  
 
Common pharmacophoric features were then identified from a set of variants-a set of feature types that define a 
possible pharmacophore. Common pharmacophores are identified using a tree-based partitioning technique that 
groups together similar pharmacophores according to their inter site distances, i.e., the distances between pairs of 
sites in the pharmacophore.  
 
In the next step, common pharmacophore hypothesis were examined using a scoring function to yield the best 
alignment of the active ligands using an overall maximum root mean square deviation (RMSD) value of 1.2 Å for 
distance tolerance. The quality of alignment was measured by a survival score, defined as: 
 
S = WsiteSsite + WvecSvec + WvolSvol + WselSsel + Wm

rew 

 

Where WDs are weights and SDs are scores, and Ssite represents an alignment score, the RMSD in the site point 
position. Svec represents the vector score, and averages the cosine of the angles formed by corresponding pairs of 
vector features in aligned structures. Svol represents the volume score based on the overlap of the Vander Walls 
models of non-hydrogen atoms in each pair of structures. Ssel represents the selectivity score, and accounts for the 
fractions of molecules that are likely to match the hypothesis regardless of their activity towards a receptor. Weights 
are user adjustable.  Wsite, Wvec, Wvol, and Wrew have a default value of 1.0 while Wsel has a default value of 0.0, 
so that a useful hypothesis is not missed. Wm

rew represents the reward weights, where m is the number of actives that 
match the hypothesis minus one. In the hypothesis generation, all default values were used [15]. 
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Validation of QSAR model and Assessment of significant common pharmacophore hypothesis (CPH) using 
partial least square (PLS) analysis 
Validation is a crucial aspect of pharmacophore design, particularly when the model is built for the purpose of 
predicting activities of compounds in external test series [16, 17]. External validation is considered to be a 
conclusive proof for judging predictability of a model. Our priority was to develop QSAR models that were 
statistically robust both internally as well as externally. The main target of any QSAR modelling is that the 
developed model should be robust enough to be capable of making accurate and reliable predictions of biological 
activities of new compounds. In the present case, the validation of generated common pharmacophore hypothesis 
was performed by correlating the observed and estimated activity for 24 molecules of the training set  and 10 
molecules of the test set. PLS analysis were carried out using PHASE with ligands in the training set using a grid 
spacing of 1 Å. A common pharmacophore hypothesis with the best predictivity and significant statistics was 
selected for molecular alignments and a QSAR study of the test set was carried out. 
 

RESULTS 
 

Pharmacophore generation and 3D-QSAR model 
A total of 19 different variant hypothesis were generated upon completion of common pharmacophore identification 
process. A maximum of four features were allowed to develop hypothesis and a number of  CPHs were reported 
common to all molecules based on hydrogen bond acceptor (A), hydrogen bond donor (D) and aromatic ring (R). 
There were 9 hypothesis based on the combination ADRR, 3 hypothesis based on AADR and 7 hypothesis based on 
AARR. We have selected those pharmacophore models whose survival scores ranked in the top. The top model was 
found to be associated with the four point hypothesis (Figure 1), which consist of one hydrogen bond acceptor (A), 
one hydrogen bond donor (D) and two aromatic rings (R). This is denoted as A2D3 R7R8. The pharmacophore 
hypothesis showing distance between pharmacophoric sites is depicted in Figure 1. Predicted and observed 
biological activity of training and test sets are shown in Table 1 and 2.   
 

 
 

Figure 1: Pharmacophore hypothesis and distance between pharmacophoric sites. All distances are in Ǻ unit. 
 
The pharmacophore hypothesis yielded a 3D-QSAR model with good PLS statistics. The training set correlation is 
characterized by PLS factors (r2 = 0.929, SD = 0.12, F = 123, P = 6.307e – 20). The test set correlation is 
characterized by PLS factors (Q2

ext = 0.887, RMSE = 0.18, Pearson-R = 0.91). Results of PLS statistics of 3D-
QSAR model is shown in Table 3. Graph of observed versus predicted biological activity of training and test sets are 
shown in Figures 2 and 3, respectively. 
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Table 3: Parameters of best four featured pharmacophore hypothesis 
 

Training set Test set 
r2 = 0.929 Q2

ext = 0.887 
SD = 0.12 RMSE = 0.18 

F = 123, P = 6.307 - 20 Pearson-R = 0.91 

 
SD = standard deviation of the regression, r2 = correlation coefficient 

P = significance level of variance ratio, F = variance ratio 
Q2

ext = for the predicted activities, RMSE = root-mean-square error 
Pearson-R = correlation between the predicted and observed activity for the test set 

 
Figure 2: Graph of observed versus predicted biological activity of training set molecules 

 
Figure 3: Graph of observed versus predicted biological activity of test set molecules 
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DISCUSSION 
 

The purpose of pharmacophore modeling is to perform in silico screening searches in a 3 dimensional database of a 
virtual or real compound library to find diverse structures with desired binding activity and selectivity. In the present 
study, a series of S. aureus Sortase A inhibitors were considered for molecular modeling studies. The present study 
aimed to develop ligand based pharmacophore hypothesis and 3D-QSAR model which can provide information 
regarding structural modifications with which to design analogs with better activity prior to synthesis. 
 
We have previously shown the results of PLS analysis applied to generated pharmacophore hypothesis. For a 
reliable model, the squared predictive correlation coefficient should be > 0.6 [12]. The results of this study reveal 
that model A2D3R7R8 can be used for the prediction of srt A inhibitory activity. 
Additional insights into the inhibitory activity can be gained by visualizing the 3D-QSAR model.   
 
3D-QSAR model of compound 9 (5-(3-(yhiophen-2-yl)acrylamido)-2-morpholino benzoic acid) of the training set 
illustrating the hydrogen bond acceptor feature is shown in Figure 4. The red cubes around the oxygen of OH group 
of benzoic acid and at position 2 of morpholine ring favours the srt A inhibitory activity and substitutions at these 
positions by groups having more hydrogen bonding acceptor property favours the srt A inhibitory activity. Green 
region around the S of thiophene ring, near the donor (D3) and at position 5 and 6 of morpholine ring do not favour 
the srt A inhibitory activity. Substitutions at these positions by electron withdrawing groups such as NO2, Cl, F, etc. 
will result in increase in srt A inhibitory activity. 
 

 
 

Figure 4: Pictorial representation of the cubes generated using the 3D-QSAR model based on molecule 9 (most active) of training set 
illustrating hydrogen bond acceptor prediction. Red cubes indicate favourable regions, while green cubes indicate unfavourable region 

for the activity. 
 
The  3D-QSAR  model  based  on  molecule  9 of  the  training  set  using   hydrophobicity feature  is  shown  in  
Figure 5. Red region  around oxygen of OH group and C=O group of benzoic acid, at position 3 of morpholine ring 
and around S of thiophene ring favours srt A inhibitory activity  and  substitutions  at  these  positions  by  more  
hydrophobic  groups  will result in  increase  in srt A inhibitory activity.  Green  region at position 1, 3 and 4 of 
thiophene ring and position 2 of benzoic acid do  not  favour  the srt A inhibitory activity  and substitution  at  these  
position  with  hydrophobic  group  increase  the  srt A inhibitory activity. 
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Figure 5: 3D-QSAR model based on molecule 9 (most active) of training set illustrating hydrophobic feature 
 
The  3D-QSAR  model  based  on  molecule  9 of  the  training  set  using   hydrogen bond donor feature  is  shown  
in  Figure 6. Red region  around oxygen of OH group of benzoic acid and at the H of –CONH group (near D3 
region) favours srt A inhibitory activity  and  substitutions  at  these  positions  by  more  hydrogen bond donor  
groups  will result in  increase  in srt A inhibitory activity.  Green  region around the N of morpholine ring do  not  
favour  the srt A inhibitory activity  and substitution  at  these  position  with  electron donating groups increase  the  
srt A inhibitory activity. 
 

 
 

Figure 6: 3D-QSAR model based on molecule 9 (most active of highest fitness score 3) of training set illustrating hydrogen bond donor 
feature 
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CONCLUSION 
 

In conclusion, a highly predictive pharmacophore based 3D-QSAR model was generated using a training set of 24 
molecules which consists of four point pharmacophore hypothesis with one hydrogen bond acceptor (A), one 
hydrogen bond donor (D) and two aromatic rings (R). The developed 3D-QSAR model can provide insights into the 
structural requirement of novel Staphylococcus aureus Sortase A inhibitors.  
 
The present study aimed to develop ligand based pharmacophore hypothesis and 3D-QSAR model which give 
detailed structural insights as well as highlights important binding features of novel Staphylococcus aureus Sortase 
A inhibitors, which can provide guidance for the rational design of novel srt A inhibitors.  
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