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ABSTRACT 
 
Pharmacophore mapping studies were undertaken for a set of 29 flavonoids as α-glucosidase 
inhibitors. Four point pharmacophores with two hydrogen bond acceptor, one hydrogen bond 
donor and one aromatic ring as pharmacophoric features were developed. Amongst them the 
pharmacophore hypothesis AADR1 yielded a statistically significant 3D-QSAR model with 0.903 
as R2 value and was considered to be the best pharmacophore hypothesis. The developed 
pharmacophore model was externally validated by predicting the activity of test set molecules. 
The squared predictive correlation coefficient of 0.69 was observed between experimental and 
predicted activity values of test set molecules. The geometry and features of pharmacophore 
were expected to be useful for the design of selective α-glucosidase inhibitors. 
 
Keywords: Flavonoids, α-glucosidase, 3D-QSAR, pharmacophore hypothesis, regression 
coefficient, squared predictive correlation coefficient. 
______________________________________________________________________________ 
 

INTRODUCTION 
 

More than 90% of diabetic patient suffers from type-2 diabetes, that is non - insulin dependent 
diabetes mellitus, which is characterized by insulin resistance and hyperglycemia [1]. Diabetes is 
a major and growing public health problem throughout the world, with an estimated worldwide 
prevalence in 2000 of 150 million people, expected to rise up to 220 million people by 2010 [2]. 
There has been an explosion of introduction of new classes of pharmacologic agents [3] 
including insulin and insulin analogues [4, 5], sulfonylureas [6], bigunides [7], glitazones 
(thiazolidinediones) [8, 9], and α -glucosidase inhibitors [10] are one of them. 
 
α- glucosidase belong to the glycosyl hydrolase-31, family of hydrolases and its major function 
is hydrolysis of terminal, non-reducing 1, 4-linked α-D-glucosidase with release of α -D-glucose. 
α -glucosidase has drawn a special interest of the pharmaceutical research community because in 
earlier studies it was shown that the inhibition of its catalytic activity resulted in the retardation 
of glucose absorption and decrease in postprandial blood glucose level [11]. The α-glucosidase 
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inhibitors might be a reasonable option as first-line drug in the treatment of patients with 
diabetes mellitus as it specifically targets postprandial hyperglycaemia. α-glucosidase inhibitors 
are expected to cause no hypoglycaemic events or other life-threatening events, even at 
overdoses, and cause no weight gain [12]. Acarbose, an α -glucosidase inhibitor, which delays 
the absorption of carbohydrate from the small intestine, reduces postprandial hyperglycemia in 
patients with type 2 diabetes [13].  

 
Flavonoids are widely distributed in plants such as vegetable and fruits. Some of the flavonoids 
were known to inhibit α -glucosidase enzyme. The primary structure of flavonoids consists of 
two moieties: benzopyran and phenyl ring groups. The variation in the phenyl ring and the 
linkage between the benzopyran and phenyl groups are the basis for the classification of 
flavonoids into six groups: flavones, flavonol, flavonone, isoflavone, flavan-3-ol, and 
anthocynidin groups [19].                                               
 
The pharmacophore modeling is a well established approach to quantitatively explore common 
chemical features among a considerable number of structures and qualified pharmacophore 
model could also be used as a query for searching chemical databases to find new chemical 
entities. Pharmacophore modeling correlates activities with the spatial arrangement of various 
chemical features [14]. Ligand-based drug design approaches like pharmacophore mapping [15] 
and quantitative structure-activity relationship [16] can be used in drug discovery in several 
ways, e.g. rationalization of activity trends in molecules under study, prediction of the activity of 
novel compounds, database search studies in search of new hits and to identify important 
features for activity [17]. 
 
This paper describes the development of a robust ligand-based 3D-pharmacophore hypothesis 
using pharmacophore alignment and scoring engine PHASE for flavonoids as   α-glucosidase 
inhibitors. The alignment obtained from the pharmacophoric points is used to derive a 
pharmacophore-based 3D-QSAR model. Such a pharmacophore model provides a rational 
hypothetical picture of primary chemical features responsible for activity [18]. 
 

MATERIALS AND METHODS 
 
Dataset 
The in vitro biological data of a series of 29 flavonoids [19] having α-glucosidase inhibitory 
activity was used for the present studies. The α-glucosidase inhibitory activity was expressed as 
IC50 i.e., concentration in µm required for 50% inhibition of enzyme activity. The dataset was 
divided randomly into training set and test set by considering the 70% of the total molecules in 
the training set and 30% in the test set. Twenty one molecules forming the training set were used 
to generate pharmacophore models and prediction of the activity of test set (08 analogues) 
molecules was used as a method to validate the proposed models. 
 
Pharmacophore modeling 
Pharmacophore modeling and 3-D database searching are now recognized as integral 
components of lead discovery and lead optimization. The continuing need for improved 
pharmacophore based tools has driven the development of ‘PHASE’ (20). To reach our research 
objectives we have used ‘PHASE’: a module of Schrödinger's drug design software [21]. 
 
Ligand Preparation 
The first step for pharmacophore mapping was ligand preparation. The chemical structures of all 
the compounds were drawn in maestro and geometrically refined using LigPrep module. LigPrep 



Vipin Kumar  et al                                                   Der Pharma Chemica, 2010, 2 (4):324-335  
_____________________________________________________________________________ 

326 
www.scholarsresearchlibrary.com 

is a robust collection of tools designed to prepare high quality, all-atom 3D structures for large 
numbers of drug-like molecules, starting with 2D or 3D structures in SD or Maestro format. The 
simplest use of LigPrep produces a single, low-energy, 3D structure with correct chiralities for 
each successfully proposed input structure.  
 
While performing this step, chiralities were determined from 3D structure and original states of 
ionization were retained. Tautomers were generated using Macro Model method discarding 
current conformers. The conformations were generated by the Monte Carlo (MCMM) method as 
implemented in Macro Model version 9.6 using a maximum of 2,000 steps with a distance-
dependent dielectric solvent model and an OPLS-2005 force field. All the conformers were 
subsequently minimized using Truncated Newton Conjugate Gradient (TNCG) minimization up 
to 500 interactions. For each molecule, a set of conformers with a maximum energy difference of 
30 kcal/mol relative to the global energy minimum conformers were retained. The 
conformational searches were done for aqueous solution using the generalized born/solvent 
accessible surface (GB/SA) continuum solvation model [22].For molecule 15, 16, 17 the original 
stereochemistry were maintained. 
 
Creation of Pharmacophoric Sites 
The next step in developing a pharmacophore model is to use a set of pharmacophoric features to 
create pharmacophore sites (site points) for all the ligands. In the present study, an initial 
analysis revealed that three chemical feature types i.e., hydrogen-bond acceptor (A), hydrogen 
bond donor (D), and aromatic ring (R) could effectively map all critical chemical features of all 
molecules in the data set. The minimum and maximum sites for all the features were kept 3 and 4 
respectively. These features were selected and used to build a series of hypothesis with find the 
common pharmacophore option in Phase. 
 
Searching Common Pharmacophore 
In this step, pharmacophores from all conformations of the ligands in the training set were 
examined and those pharmacophores that contain identical sets of features with very similar 
spatial arrangements were grouped together. If a given group is found to contain at least one 
pharmacophore from each ligand, then this group gives rise to a common pharmacophore. Any 
single pharmacophore in the group could ultimately become a common pharmacophore 
hypothesis. Common pharmacophores are identified using a tree-based partitioning technique 
that groups together similar pharmacophores according to their inter site distances, i.e., the 
distances between pairs of sites in the pharmacophore 
 
Scoring Hypothesis 
In this step, common pharmacophore hypothesis were examined using a scoring function to yield 
the best alignment of the active ligands using an overall maximum root mean square deviation 
(RMSD) value of 1.2 Å for distance tolerance. The quality of alignment was measured by 
survival score (23). 
 
Generation of 3D-QSAR Model 
Phase provides the means to build 3D-QSAR models for a set of ligands that are aligned to a 
selected hypothesis. The Phase 3D-QSAR model partitions the space occupied by the ligands 
into a cubic grid. Any structural component can occupy part of one or more cubes. A cube is 
occupied by a feature if its centroid is within the radius of the feature. We can set the size of the 
cubes by changing the value in the Grid spacing text box. The regression is done by constructing 
a series of models with an increasing number of PLS factors. In present case, the pharmacophore 
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based model was generated by keeping 1Å grid spacing and 3 as maximum number of PLS 
factors. 
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Figure 1: Chemical structure of the 21 training set molecules 

 
Validation of Pharmacophore Model 
Validation is a crucial aspect of pharmacophore design, particularly when the model is built for 
the purpose of predicting activities of molecules in external test series (24). In the present case, 
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the developed pharmacophore model was validated by predicting the activity of test set 
molecules. The correlation between the experimental and predicted activities of the test set 
molecules was determined. 
 

RESULTS AND DISCUSSION 
 
The α-glucosidase inhibitors can retard the liberation of α-D-glucose of oligosaccharides and 
disaccharides from dietary complex carbohydrates, delay glucose absorption, and, therefore 
suppress postprandial hyperglycaemia [25]. Such inhibitors, including acarbose and voglibose, 
are currently used clinically in combination with either diet or other anti-diabetic agents to 
control blood glucose levels of patients [26]. A main drawback of the current α-glucosidase 
inhibitors (such as acarbose) is the presence of side effects such as abdominal bacterial 
fermentation of undigested carbohydrates in the colon [27] To either avoid or decrease the 
adverse effects of current agents and also to provide more candidates of drug choices, it is still 
necessary to search for new α-glucosidase inhibitors for further drug development [28]. Some 
flavonoids from natural sources are studied which possess the α-glucosidase inhibitory activity 
[19]. 
 
Ligand-based drug design relies on knowledge of other molecules that bind to the biological 
target of interest. These molecules may be used to derive a pharmacophore which defines the 
minimum necessary structural characteristics a molecule must possess in order to bind to the 
target [29]. In other words, a model of the biological target is built based on the knowledge of 
what binds to it and this model in turn may be used to design new molecular entities that interact 
with the target. 
 
Twenty one molecules forming the training set were used to develop the pharmacophore models. 
The pharmacophoric features selected for creating sites were hydrogen bond acceptor (A), 
hydrogen bond donor (D), and aromatic ring (R). Pharmacophore models containing three to four 
features were generated. The three featured pharmacophore hypotheses were rejected due to low 
value of survival score, as they were unable to define the complete binding space of the selected 
molecules. Four featured pharmacophore hypotheses were selected and subjected to stringent 
scoring function analysis. 
 

 
 

Figure 2: PHASE generated pharmacophore model AADR1 illustrating hydrogen bond 
acceptor (A1, A2; pink), hydrogen bond donor (D7; blue) and aromatic ring (R9; orange) 

features with distances (in Å) between different sites of AADR1. 
 
The results of four featured pharmacophore hypotheses, labeled AADR1, AADR2, and AADR3 
are presented in Table 1. The first hypothesis AADR1 is the best hypothesis in this study, 
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characterized by highest survival score (3.084), the best regression coefficient (0.903) and 
Pearson-R (0.8332). The pharmacophore hypothesis AADR1 is presented in Figure 2. The 
features represented by this hypothesis are two hydrogen bond acceptor (A), one hydrogen bond 
donor (D), and one aromatic ring (R). The distances and angles between different sites of 
AADR1 are given in Table 2 and 3 respectively.  
 

Table 1: Parameters of four featured pharmacophore hypotheses 
 

Sr. 
No. 

Hypothesis Survival 
Score 

R2 Pearson-R 

1 AADR1 3.084 0.903 0.8332 

2 AADR2 3.007 0.814 0.7935 

3 AADR3 2.864 0.728 0.7754 

 
Table 2: Distances between different sites of model AADR1 

 
Site-1 Site-2 Distance 

(Å) 
Site-1 Site-2 Distance 

(Å)  
A2 A1 4.100 A1 D7 5.658 
A2 D7 3.709 A1 R9 2.789 
A2 R9 3.781 D7 R9 3.258 

 
For each ligand, one aligned conformer based on the lowest RMSE of feature atom coordinates 
from those of the corresponding reference feature was superimposed on AADR1. 

 
Table 3: Angles between different sites of model AADR1 

 
Site 
1 

Site 
2 

Site 
3 

Angl
e 

Site 
1 

Site 
2 

Site 
3 

Angl
e 

A1 A2 D7 92.7 A2 D7 A1 46.4 
A1 A2 R9 41.2 A2 D7 R9 65.4 
D7 A2 R9 51.9 A1 D7 R9 19.0 
A2 A1 D7 40.9 A2 R9 A1 75.5 
A2 A1 R9 63.3 A2 R9 D7 63.1 
D7 A1 R9 22.4 A1 R9 D7 138.6 

 

 
Figure 3: Best pharmacophore model AADR1 aligned with molecule 9. Pharmacophore 
features are color coded: hydrogen bond acceptor (A1, A2; pink), hydrogen bond donor 

(D7; blue) and aromatic ring (R9; orange). 
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Then fitness scores for all ligands were observed on the best scored pharmacophore model 
AADR1. The greater the fitness score, the greater the activity prediction of the compound. The 
fit function does not only check if the feature is mapped or not, it also contains a distance term, 
which measures the distance that separates the feature on the molecule from the centroid of the 
hypothesis feature. Table 4 shows the fitness score for all the molecules of training set. Figure 3 
shows the AADR1 aligned with ligand having maximum fitness score, i.e. molecule 9 (IC50 = 
75µm) of the training set. 
 
Beside this survival score analysis, another validation method to characterize the quality of 
AADR1 is represented by its capacity for correct activity prediction of training set molecules. 
AADR1 was regressed against the training set compound. Table 4 shows the actual and 
estimated inhibitory activities of the 21 molecules from the training set based on the 
pharmacophore hypothesis AADR1. The predicted α-glucosidase inhibitory activity of training 
set molecule exhibited a correlation of 0.903 with reported α -glucosidase inhibitory activity 
using model AADR1 (Figure 4).  
 

Table 4: Experimental and predicted IC50 values of training set molecules based on 
hypothesis AADR1 

 
Comp
. 

No. 

Experimen
tal IC50 
(µM) 

Predict
ed IC50 
(µM) 

Fitne
ss 

Score 
 

Comp
. 

No. 

Experimen
tal IC50 
(µM) 

Predict
ed IC50 
(µM) 

Fitne
ss 

Score 
 

1 12 94.75 2.80 12 201 240.41 1.63 
2 501 414 2.52 13 75 116.94 1.74 
3 301 387 2.51 14 2 13.77 1.66 
4 21 53.08 2.81 15 4 -16.43 1.45 
5 201 138.81 2.78 16 501 497.07 2.33 
6 201 95.74 2.80 17 68 31.18 1.23 
7 7 -5.88 2.75 18 37 22.30 2.46 
8 12 20.41 2.78 19 179 172.54 1.35 
9 75 69.40 3.00 20 57 71.11 2.18 
10 14 40.45 1.44 21 185 179.30 1.35 
11 7 24.53 2.46  

 
 

 
Figure 4: Relation between experimental and predicted α-glucosidase inhibitory activity                   

values of training set molecules using model AADR1. 
 



Vipin Kumar  et al                                                   Der Pharma Chemica, 2010, 2 (4):324-335  
_____________________________________________________________________________ 

331 
www.scholarsresearchlibrary.com 

The validity and predictive character of AADR1 were further assessed by using the test set 
prediction. The test set having eight molecules was analyzed. All the test set molecules were 
built and minimized as well as used in conformational analysis like all training set molecules. 
Then the activities of test set molecules were predicted using AADR1 and compared with the 
actual activity. Actual and predicted activity values of test set molecules are given in Table 5. 
The predicted α-glucosidase inhibitory activity of test molecule exhibited a correlation of 0.69 
with reported α -glucosidase inhibitory activity using model AADR1 (Figure 6). For a reliable 
model, the squared predictive correlation coefficient should be >0.60 [30, 31]. The results of this 
study reveal that model AADR1 can be used for the prediction of α-glucosidase inhibitory 
activity.  
 
Table 5: Experimental and predicted IC50 values of test set molecules based on hypothesis 

AADR1 
Comp
. No 

Experiment
al IC50 
(µM) 

Predicte
d IC50 
(µM) 

Fitnes
s 

Score 
 

Comp
. 

No. 

Experiment
al IC50 
(µM) 

Predicte
d IC50 
(µM) 

Fitnes
s  

Score 
 

1   5 15.65 2.72 5 501 306.36 2.35 

2 13 102.37 1.50 6 45 79.44 2.42 

3 150 100.69 2.65 7 150 124.71 1.21 

4 201 152.61 1.54 8 358 106.85 1.27 
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Figure 5: Chemical structures of the 8 test set molecules 

 
3-D QSAR analysis 
Additional insight into the α-glucosidase inhibitory activity can be gained by visualizing the 3-D 
QSAR model in the context of one or more ligands in the series with varying activity. This 
information can then be used to design new or more active analogues. 3-D QSAR models based 
on the molecules of training and test set using various features, i.e., hydrogen bond donor, 
hydrogen bond acceptors and aromatic ring has been studied.  
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Figure 6: Relation between experimental and predicted α-glucosidase inhibitory activity  
values of test set molecules using model AADR1. 

 

s 
Figure 7: 3-D QSAR model based on molecule 9 of training set illustrating hydrogen bond 

donor feature 
 
Hydrogen bond donor field predictions: The 3-D QSAR model based on molecule 9 of the 
training set using hydrogen bond donor feature is shown in Figure 7. Blue region near and 
around the ortho and meta hydrogen of phenyl ring substituted at position 2; hydrogen of OH 
group at position 5; and hydrogens at position 6, 8 of benzopyran indicates that the substitutions 
at these positions by groups having more hydrogen bond donor property favours the α-
glucosidase inhibitory activity. Red region around the  OH group at para position of phenyl ring, 
oxygen of carbonyl group at position 4, oxygen of OH at position 5  and oxygen of OH at 
position 7 of benzopyran indicates that substitutions at these positions by groups having 
hydrogen bond donor property do not favors α-glucosidase inhibitory activity. 
 
Hydrogen bond acceptor field prediction: The 3-D QSAR model based on molecule 9 of the 
training set using hydrogen bond acceptor feature is shown in Figure 8. Blue region around 
oxygen at position 1, oxygen of carbonyl group at position 4, oxygen of OH at position 5 and 
oxygen of OH group at position 7 of benzopyran indicates that the substitutions at these positions 
by groups having more hydrogen bond acceptor property favours the α-glucosidase inhibitory 
activity. Red region around the para OH group of phenyl ring at position 2 of benzopyran do not 
favor the α-glucosidase inhibitory activity. Replacement of this OH group by any electron 
withdrawing group such as NO2, OCH3, Cl. F, Br etc. will result in increase in α-glucosidase 
inhibitory activity.  
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Figure 8: 3-D QSAR model based on molecule 9 of training set illustrating hydrogen bond 
acceptor feature 

 

 
 

Figure 9: 3-D QSAR model based on molecule 9 of training set illustrating hydrophobic 
feature. 

 
 Hydrophobicity field prediction: The 3-D QSAR model based on molecule 9 of the training set 
using hydrophobicity feature is shown in Figure 9. Blue region around hydrogens at position 3, 
and position 8, ortho hydrogen of phenyl ring at position 2 and hydrogen of OH at para position 
of phenyl ring favours α-glucosidase inhibitory activity and substitutions at these positions by 
more hydrophobic groups will result in increase in α-glucosidase inhibitory activity. This is 
inconsistent with the observation that the replacement of hydrogen at position 3 of benzopyran 
by gallat results in increase in α-glucosidase inhibitory activity e.g. molecule 14 of training set 
having gallat at position 3 of benzopyran is more active (IC50 = 2 µM) as compared to the 
molecule 9 (IC50 = 75 µM) of training set. Similarly, replacement of hydrogen at position 8 of 
benzopyran by more hydrophobic groups result in good α-glucosidase inhibitory activity as 
exemplified by the observation that molecule 6 of test set (IC50 = 45 µM) and molecule 17, 18 of 
training set (IC50 = 68, 37 µM respectively) having alkene group at position 8 of benzopyran are 
more active as compared to the molecule 9 (IC50 = 75 µM) of training set.                                                           
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CONCLUSION  
 
The study shows the generation of a pharmacophore model AADR1 for flavonoids acting as α-
glucosidase inhibitors. Pharmacophore modeling correlates activities with the spatial 
arrangement of various chemical features. Hypothesis AADR1 represents the best 
pharmacophore model for determining α-glucosidase inhibitory activity. AADR1 consists of two 
hydrogen bond acceptor, one hydrogen bond donor, and one aromatic ring features. This 
pharmacophore model was able to accurately predict α-glucosidase inhibitory activity and the 
validation results also provide additional confidence in the proposed pharmacophore model. 
Results suggested that the proposed 3-D QSAR model can be useful to rationally design new 
flavonoid molecules as α-glucosidase inhibitors and also to identify new promising molecules as 
α-glucosidase inhibitors in large 3-D database of molecules. 
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