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ABSTRACT

Pharmacophore mapping studies were undertaken for a set of 29 flavonoids as a-glucosidase
inhibitors. Four point pharmacophores with two hydrogen bond acceptor, one hydrogen bond
donor and one aromatic ring as pharmacophoric features were developed. Amongst them the
pharmacophore hypothesis AADR1 yielded a statistically significant 3D-QSAR model with 0.903
as R? value and was considered to be the best pharmacophore hypothesis. The developed
pharmacophore model was externally validated by predicting the activity of test set molecules.
The squared predictive correlation coefficient of 0.69 was observed between experimental and
predicted activity values of test set molecules. The geometry and features of pharmacophore
wer e expected to be useful for the design of selective a-glucosidaseinhibitors.

Keywords: Flavonoids, a-glucosidase, 3D-QSAR, pharmacophore hypothesigression
coefficient, squared predictive correlation coedfit.

INTRODUCTION

More than 90% of diabetic patient suffers from t@diabetes, that is non - insulin dependent
diabetes mellitus, which is characterized by imstdisistance and hyperglycemia [1]. Diabetes is
a major and growing public health problem throughbe world, with an estimated worldwide
prevalence in 2000 of 150 million people, expedtedse up to 220 million people by 2010 [2].
There has been an explosion of introduction of r@asses of pharmacologic agents [3]
including insulin and insulin analogues [4, 5], feaylureas [6], bigunides [7], glitazones
(thiazolidinediones) [8, 9], and-glucosidase inhibitors [10] are one of them.

a- glucosidase belong to the glycosyl hydrolasef&mily of hydrolases and its major function
is hydrolysis of terminal, non-reducing 1, 4-linkedD-glucosidase with release @ofD-glucose.

a -glucosidase has drawn a special interest of llaenpaceutical research community because in
earlier studies it was shown that the inhibitiontefcatalytic activity resulted in the retardation
of glucose absorption and decrease in postprabthald glucose level [11]. The-glucosidase
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inhibitors might be a reasonable option as firsélidrug in the treatment of patients with
diabetes mellitus as it specifically targets pamtplial hyperglycaemiar-glucosidase inhibitors
are expected to cause no hypoglycaemic events lwar dife-threatening events, even at
overdoses, and cause no weight gain [12]. Acarbmse,-glucosidase inhibitor, which delays
the absorption of carbohydrate from the small tmes reduces postprandial hyperglycemia in
patients with type 2 diabetes [13].

Flavonoids are widely distributed in plants suchvegetable and fruits. Some of the flavonoids
were known to inhibitr -glucosidase enzyme. The primary structure ofdiferds consists of
two moieties: benzopyran and phenyl ring groupse Vhriation in the phenyl ring and the
linkage between the benzopyran and phenyl groupstle basis for the classification of
flavonoids into six groups: flavones, flavonol, vitmone, isoflavone, flavan-3-ol, and
anthocynidin groups [19].

The pharmacophore modeling is a well establishgutomeh to quantitatively explore common
chemical features among a considerable numberrattates and qualified pharmacophore
model could also be used as a query for searchegiical databases to find new chemical
entities. Pharmacophore modeling correlates aetsvivith the spatial arrangement of various
chemical features [14ligand-based drug design approaches like pharmacephapping [15]
and quantitative structure-activity relationshig][lcan be used in drug discovery in several
ways, e.g. rationalization of activity trends inlewules under study, prediction of the activity of
novel compounds, database search studies in se&rdew hits and to identify important
features for activity [17].

This paper describes the development of a robgahdi-based 3D-pharmacophore hypothesis
using pharmacophore alignment and scoring enginaSEHfor flavonoids as a-glucosidase
inhibitors. The alignment obtained from the pharapdoric points is used to derive a
pharmacophore-based 3D-QSAR mod8uch a pharmacophore model provides a rational
hypothetical picture of primary chemical featuresponsible for activity [18].

MATERIALS AND METHODS

Dataset

The in vitro biological data of a series of 29 fiaweids [19] havingu-glucosidase inhibitory
activity was used for the present studies. d¥gucosidasenhibitory activity was expressed as
ICsp i.€., concentration imm required for 50% inhibition of enzyme activityhd dataset was
divided randomly into training set and test setcbysidering the 70% of the total molecules in
the training set and 30% in the test set. Twentgymwolecules forming the training set were used
to generate pharmacophore models and predictiothefactivity of test set (08 analogues)
molecules was used as a method to validate theopeojpmodels.

Pharmacophore modeling

Pharmacophore modeling and 3-D database searchiegnaw recognized as integral
components of lead discovery and lead optimizatibhe continuing need for improved
pharmacophore based tools has driven the develdpphdHASE’ (20). To reach our research
objectives we have used ‘PHASE’: a module of Scim@gel's drug design software [21].

Ligand Preparation
The first step for pharmacophore mapping was liganegharation. The chemical structures of all
the compounds were drawn in maestro gadmetrically refined using LigPrep modulggPrep
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is a robust collection of tools designed to pregagh quality, all-atom 3D structures for large
numbers of drug-like molecules, starting with 2D3@r structures in SD or Maestro format. The
simplest use of LigPrep produces a single, low-gne8D structure with correct chiralities for
each successfully proposed input structure.

While performing this step, chiralities were detared from 3D structure and original states of
ionization were retained. Tautomers were generatdg Macro Model method discarding
current conformers. Theonformations were generated by ente Carlo (MCMM)methodas
implemented in Macro Model version 9uing a maximum of 2,000 steps with a distance-
dependent dielectric solvent model and an OPLS-200& field. All the conformers were
subsequently minimized using Truncated Newton Ggatel Gradien(TNCG) minimization up

to 500 interactions. For each molecule, a set nfamers with a maximum energy difference of
30 kcal/mol relative to the global energy minimunonformers were retainedThe
conformational searches were done for aqueousi@olutsing the generalized born/solvent
accessible surface (GB/SA) continuum solvation rh{#i.For molecule 15, 16, 17 the original
stereochemistry were maintained.

Creation of Pharmacophoric Sites

The next step in developing a pharmacophore madel iise a set of pharmacophoric features to
create pharmacophore sites (site points) for al ligpands. In the present study, an initial
analysis revealed that three chemical feature typeshydrogen-bond acceptor (Ajydrogen
bond donor (D), and aromatic ring (R)utd effectively map all critical chemical featuresall
molecules in the data set. The minimum and maxirsites for all the features were kept 3 and 4
respectively. These features were selected andtodewild a series of hypothesis with find the
common pharmacophore option in Phase.

Searching Common Pharmacophore

In this step, pharmacophores from all conformatiohghe ligands in the training set were

examined and those pharmacophores that contaitigdesets of features with very similar

spatial arrangements were grouped together. Ilivanggroup is found to contain at least one
pharmacophore from each ligand, then this groupgyise to a common pharmacophore. Any
single pharmacophore in the group could ultimategcome a common pharmacophore
hypothesis. Common pharmacophores are identifiéayus tree-based partitioning technique
that groups together similar pharmacophores aaagrtlh their inter site distances, i.e., the
distances between pairs of sites in the pharmaceepho

Scoring Hypothesis

In this step, common pharmacophore hypothesis eaminedusing a scoring function to yield
the best alignment of the active ligangsng an overall maximum root mean square deviation
(RMSD) value of 1.2 A for distance tolerancEhe quality of alignment was measured by
survival score (23).

Generation of 3D-QSAR Model

Phase provides the means to build 3D-QSAR modela feet of ligands that are aligned to a
selected hypothesiThe Phase 3D-QSAR model partitions the space oedupy the ligands
into a cubic grid. Any structural component canumc part of one or more cubes. A cube is
occupied by a feature if its centroid is within tlaglius of the feature. We can set the size of the
cubes by changing the value in the Grid spacingliex. The regression is done by constructing
a series of models with an increasing number of Rlc®rs. In present case, the pharmacophore
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based model was generated by keeping 1A grid spamil 3 as maximum number of PLS
factors.

CH, CH; OH O

21
Figure 1: Chemical structure of the 21 training seimolecules

Validation of Pharmacophore Model
Validation is a crucial aspect of pharmacophoreghegparticularly when the model is built for
the purpose of predicting activities of moleculeskternal test series (24). In the present case,
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the developed pharmacophore model was validatedoredicting the activity of test set
molecules. The correlation between the experimeata predicted activities of the test set
molecules was determined.

RESULTS AND DISCUSSION

The a-glucosidase inhibitors can retard the liberatidnudD-glucose of oligosaccharides and
disaccharides from dietary complex carbohydratedayd glucose absorption, and, therefore
suppress postprandial hyperglycaemia [25]. Suclbitans, including acarbose and voglibose,
are currently used clinically in combination witlither diet or other anti-diabetic agents to
control blood glucose levels of patients [26]. Aimarawback of the curreni-glucosidase
inhibitors (such as acarbose) is the presence a# siffects such as abdominal bacterial
fermentation of undigested carbohydrates in thercqR7] To either avoid or decrease the
adverse effects of current agents and also to geowiore candidates of drug choices, it is still
necessary to search for nemglucosidase inhibitors for further drug developmgt8]. Some
flavonoids from natural sources are studied whiohspss the-glucosidase inhibitory activity
[19].

Ligand-based drug design relies on knowledge oérotholecules that bind to the biological

target of interest. These molecules may be useatktive a pharmacophore which defines the
minimum necessary structural characteristics a cutdemust possess in order to bind to the
target [29]. In other words, a model of the biotaditarget is built based on the knowledge of
what binds to it and this model in turn may be usedesign new molecular entities that interact
with the target.

Twenty one molecules forming the training set wesed to develop the pharmacophore models.
The pharmacophoric features selected for creatitegg svere hydrogen bond acceptor (A),
hydrogen bond donor (D), and aromatic ring ®)armacophore models containing three to four
features were generated. The three featured phaphare hypotheses were rejected due to low
value of survival scoteas they were unable to define the complete bgqndpace of the selected
molecules. Four featured pharmacophore hypotheses selected and subjected to stringent
scoring function analysis.

Figure 2: PHASE generated pharmacophore model AADR1llustrating hydrogen bond
acceptor (Al, A2; pink), hydrogen bond donor (D7; kue) and aromatic ring (R9; orange)
features with distances (in A) between different sés of AADR1.

The results of four featured pharmacophore hypethdabeled AADR1, AADR2, and AADR3
are presented in Table. The first hypothesis AADR1 is the best hypothesighis study,
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characterized by highest survival score (3.084¢, biest regression coefficient (0.903) and
Pearson-R (0.8332). The pharmacophore hypothesiDR¥Ais presented in Figure Zhe
features represented by this hypothesis are twoolggth bond acceptor (A), one hydrogen bond
donor (D), and one aromatic ring (R). The distanard angles between different sites of
AADRL1 are given in Table 2 and 3 respectively.

Table 1: Parameters of four featured pharmacophorédnypotheses

Sr.  Hypothesis Survival R? Pearson-R
No. Score

1 AADR1 3.084 0.903 0.8332
2 AADR2 3.007 0.814 0.7935
3 AADR3 2.864 0.728 0.7754

Table 2: Distances between different sites of modalADR1

Site-1 Site-2 Distance  Site-1 Site-2 Distance
A A
A2 Al 4.100 Al D7 5.658
A2 D7 3.709 Al R9 2.789
A2 R9 3.781 D7 R9 3.258

For each ligand, one aligned conformer based ornotiest RMSE of feature atom coordinates
from those of the corresponding reference featwa® superimposed on AADRL1.

Table 3: Angles between different sites of model ABR1

Site Site Site Angl Site Site Site Angl

1 2 3 e 1 2 3 e

Al A2 D7 92.7 A2 D7 Al 46. 4
Al A2 R9 41. 2 A2 D7 R9 65. 4
D7 A2 R9 51.9 Al D7 R9 19.0
A2 Al D7 40. 9 A2 R9 Al 75.5
A2 Al R9 63. 3 A2 R9 D7 63.1
D7 Al R9 22. 4 Al RO D7 138.6

Figure 3: Best pharmacophore model AADR1 aligned wih molecule 9. Pharmacophore
features are color coded: hydrogen bond acceptor & A2; pink), hydrogen bond donor
(D7; blue) and aromatic ring (R9; orange).

329
www.scholarsresearchlibrary.com



Vipin Kumar et al Der Pharma Chemica, 2010, 2 (4):324-335

Then fithess scores for all ligands were observedihe best scored pharmacophore model
AADRL1. The greater the fitness score, the greduerattivity prediction of the compound. The
fit function does not only check if the featuremapped or not, it also contains a distance term,
which measures the distance that separates thedeat the molecule from the centroid of the
hypothesis feature. Table 4 shows the fitness doorall the molecules of training set. Figure 3
shows the AADRL1 aligned with ligand having maximiitness score, i.e. molecule 9 (4=
75um) of the training set.

Beside this survival score analysis, another vabdamethod to characterize the quality of
AADRL1 is represented by its capacity for corredivély prediction of training set molecules.

AADR1 was regressed against the training set comgodable 4 shows the actual and
estimated inhibitory activities of the 21 moleculé®m the training set based on the
pharmacophore hypothesis AADR1. The prediaieglucosidase inhibitory activity of training

set moleculeexhibited a correlation of 0.903 with reported-glucosidase inhibitory activity

using model AADR1 (Figure 4).

Table 4: Experimental and predicted 1Ggvalues of training set molecules based on

hypothesis AADR1
Conp Experinen Predict Fitne Conp Experinmen Predict Fitne
: tal 1GCso ed |1 G Ss . tal 1Gs ed |1 G SS
No. (uM (uM Score No. (uM (uM Score
1 12 94. 75 2. 80 12 201 240. 41 1.63
2 501 414 2.52 13 75 116. 94 1.74
3 301 387 2.51 14 2 13. 77 1. 66
4 21 53. 08 2.81 15 4 -16. 43 1.45
5 201 138. 81 2.78 16 501 497. 07 2.33
6 201 95. 74 2. 80 17 68 31.18 1.23
7 7 -5.88 2.75 18 37 22. 30 2.46
8 12 20. 41 2.78 19 179 172. 54 1.35
9 75 69. 40 3.00 20 57 71.11 2.18
10 14 40. 45 1.44 21 185 179. 30 1.35
11 7 24.53 2.46
200 - R2 = 0.903
150 -

100
Predicted

activities
50

0 T T T T T 1
I 50 100 150 200 250 300

_50 _
Experimental activities

Figure 4: Relation between experimental and predi@d a-glucosidasanhibitory activity
values of training set molecules using model AADRL1.

330
www.scholarsresearchlibrary.com



Vipin Kumar et al Der Pharma Chemica, 2010, 2 (4):324-335

The validity and predictive character of AADR1 wdtether assessed by using the test set
prediction. The test set having eight molecules was analyzddthA test set molecules were
built and minimized as well as used in conformadioanalysis like all training set molecules.
Then the activities of test set molecules were ipted using AADR1 and compared with the
actual activity. Actual and predicted activity vafuof test set molecules are given in Table 5.
The predictedh-glucosidase inhibitory activity of test molecwdghibited a correlation of 0.69
with reporteda -glucosidase inhibitory activitusing model AADR1 (Figure 6). For a reliable
model, the squared predictive correlation coeffitghould be >0.60 [30, 31]. The results of this
study reveal that model AADR1 can be used for thedigtion of a-glucosidase inhibitory
activity.

Table 5: Experimental and predicted IGgvalues of test set molecules based on hypothesis

AADR1
Conp Experinent Predicte Fitnes Conp Experinent Predicte Fitnes
No al | Gso d | Gso S . al | G50 d | Gso S
(uM (vM  Score No. (uM (nM  Score
1 5 15. 65 2.72 5 501 306.36 2.35
2 13 102. 37 1.50 6 45 79. 44 2.42
3 150 100.69 2.65 7 150 124. 71 1.21
4 201 152.61 1.54 8 358 106. 85 1.27

Figure 5: Chemical structures of the 8 test set metules

3-D QSAR analysis

Additional insight into ther-glucosidase inhibitory activity can be gained lgualizing the 3-D
QSAR model in the context of one or more ligandghie series with varying activity. This
information can then be used to design new or raotwe analogues. 3-D QSAR models based
on the molecules of training and test set usingouar features, i.e., hydrogen bond donor,
hydrogen bond acceptors and aromatic ring has $teeliied.
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400 RZ=0.694
) 300 .
Pre‘dl‘cFed 500
activities
100 & L 2
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0 200 400 600

Experimental Activities

Figure 6: Relation between experimental and predi@d a-glucosidasanhibitory activity
values of test set molecules using model AADRL1.

S
Figure 7: 3-D QSAR model based on molecule 9 of tirdng set illustrating hydrogen bond
donor feature

Hydrogen bond donor field predictions. The 3-D QSAR model based on molecule 9 of the
training set using hydrogen bond donor featurehisws in Figure 7. Blue region near and
around the ortho and meta hydrogen of phenyl rifgstituted at position 2; hydrogen of OH
group at position 5; and hydrogens at position 6f Benzopyran indicates that the substitutions
at these positions by groups having more hydrogendbdonor property favours the-
glucosidase inhibitory activity. Red region aroiuhd OH group at para position of phenyl ring,
oxygen of carbonyl group at position 4, oxygen dfi @t position 5 and oxygen of OH at
position 7 of benzopyran indicates that substihgicat these positions by groups having
hydrogen bond donor property do not faverglucosidase inhibitory activity.

Hydrogen bond acceptor field prediction: The 3-D QSAR model based on molecule 9 of the
training set using hydrogen bond acceptor featsrghiown in Figure 8. Blue region around
oxygen at position 1, oxygen of carbonyl group @s$ifpon 4, oxygen of OH at positionand
oxygen of OH group at position 7 of benzopyranaatks that the substitutions at these positions
by groups having more hydrogen bond acceptor ptpgavours theua-glucosidase inhibitory
activity. Red region around the para OH group adm ring at position 2 of benzopyran do not
favor the a-glucosidase inhibitory activity. Replacement ofsttOH group by any electron
withdrawing group such as NOOCH;, CI. F, Br etc. will result in increase mglucosidase
inhibitory activity.
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Figure 8: 3-D QSAR model based on molecule 9 of trang set illustrating hydrogen bond
acceptor feature

Figure 9: 3-D QSAR model based on molecule 9 of tirang set illustrating hydrophobic
feature.

Hydrophobicity field prediction: The 3-D QSAR model based on molecule 9 of thimitrg set
using hydrophobicity feature is shown in FigureBue region around hydrogens at position 3,
and position 8, ortho hydrogen of phenyl ring asipon 2 and hydrogen of OH at para position
of phenyl ring favoursi-glucosidase inhibitory activity and substitutiosisthese positions by
more hydrophobic groups will result in increaseahglucosidase inhibitory activity. This is
inconsistent with the observation that the replam@nof hydrogen at position 3 of benzopyran
by gallat results in increase églucosidase inhibitory activity e.g. molecule l#4t@ining set
having gallat at position 3 of benzopyran is moctive (IGo = 2 uM) as compared to the
molecule 9 (IG = 75uM) of training set. Similarly, replacement of hydeogat position 8 of
benzopyran by more hydrophobic groups result indgealucosidase inhibitory activity as
exemplified by the observation that molecule 6est tset (IGo = 45uM) and molecule 17, 18 of
training set (IGy = 68, 37uM respectively) having alkene group at position ®ehzopyran are
more active as compared to the molecule 9(#C75uM) of training set.
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CONCLUSION

The study shows the generation of a pharmacophooehAADRL1 for flavonoids acting as
glucosidase inhibitors. Pharmacophore modeling etates activities with the spatial
arrangement of various chemical features. HypotheBIADR1 represents the best
pharmacophore model for determinimgylucosidase inhibitory activity. AADR1 consiststafo
hydrogen bond acceptor, one hydrogen bond donat, e aromatic ring features. This
pharmacophore model was able to accurately predgiticosidase inhibitory activity and the
validation results also provide additional confidenn the proposed pharmacophore model.
Results suggested that the proposed 3-D QSAR nuatiebe useful to rationally design new
flavonoid molecules ag-glucosidase inhibitors and also to identify newrpising molecules as
a-glucosidase inhibitors in large 3-D database olemdes.
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