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ABSTRACT 
 

The application of first generation nonselective MAO-A inhibitors has been diminished because 
of their severe side effects however lately selective MOA-A inhibitors are being developed for the 
treatment of depression. A series of tricyclic[6,5,6]/[6,6,6] compounds have been reported as 
selective MOA-A inhibitors. In order to understand the structural requirement of these MAO–A 
inhibitors a ligand based pharmacophore and atom-based 3D-QSAR model have been 
developed. A four-point pharmacophore has been generated with three hydrogen bond acceptors 
(A) and one aromatic ring(R) denoted as A1, A2, A3, and R8. The atom based 3D-QSAR model was 
generated with good predictability (q2= 0.6229) as well as fitness (r2= 0.9595). The results of 
ligand-based pharmacophore hypothesis and atom based 3D-QSAR give detailed structural 
insights as well as highlights important binding features of tricyclic derivatives  as selective 
MAO-A inhibitors.  
 
Keywords: PHASE, Ligand based pharmacophore, Atom based 3D-QSAR, Selective MAO-A 
inhibitors 
 

INTRODUCTION 
 

Monoamine oxidase (MAO) is a FAD-containing enzyme of the outer mitochondrial membrane  
and exists as  two isomezyme forms MAO-A and MAO-B. They are responsible for oxidative 
deamination of major neurotransmitter monoamines in the central nervous system and peripheral 
tissues [1, 2]. MAO-A preferably catalyzes the oxidative deamination of serotonin, adrenaline 
and noradrenaline and is selectively inhibited by moclobemide and clorgylene. On the other hand 
MAO-B  selectively catalyzes the oxidative deamination of β-phenylamine and benzylamine and 
is selectively inhibited by selegiline. The MAO inhibitors are used for the treatment of 
psychiatric and neurological disorders [3,4]. Since they are involved in the metabolism of 
neurotransmitters they provide a good target for the design of antidepressant and anti-
parkinsonian drugs [5]. Depression is a common but serious illness characterized by persistent 
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feelings of sadness, hopelessness, pessimism, guilt, loss of interest in activities and decreased 
energy. Combination of these along with many other symptoms severely affects person’s 
professional, social and family life [6]. Most of the antidepressant drugs act by modulation of 
synaptic transmission of monoamines [7]. Iproniazid and tranylcipromine ,  the prototype of 
MAO inhibitors were introduced in early sixties.  
 
They are irreversible and nonselective inhibitors [8] but found responsible for some side effects 
including side reactions with other drugs and food. Because of side effects the application of 
these first generation MAO inhibitors has been diminished. [9,10] Further research on the 
development of more reversible , selective  and safe MAO inhibitors led to  toloxatone[11]. 
 
Unlike conventional tricyclic inhibitors such as imipramine, amytryptine with heptoatomic 
central ring  and which are nonselective  MAO inhibitors with variety of side effects ; new 
tricyclics with pentatomic and hexatomic central ring with at least one heteroatom are being 
developed as selective MAO-A inhibitor [12-14].  
 
Since last few years pharmacophore modeling has been one of the important and successful 
approach for new drug discovery [15-17]. A pharmacophore is concept in rational drug design 
that underlies the importance of   specific   molecular features  that favor the  interaction with a 
particular enzyme or receptor active sight[15]. A pharmacophore hypothesis can be used to know 
the characteristics of the binding site. For a set of active molecules, pharmacophore methods 
involve analyzing the molecules to identify pharmacophoric features like atoms or functional 
groups that can potentially interact with atoms in the binding site and then aligning the active 
conformations of the molecules such that their corresponding pharmacophoric features are 
overlaid. [15–17]. 
 
PHASE, Pharmacophore Alignment and Scoring Engine (PHASE) [18] is a comprehensive, self-
contained system for pharmacophore perception, 3D-QSAR model development, and 3D 
database screening. PHASE uses a range of scoring techniques  and fine-grained conformational 
sampling  to generate and identify common pharmacophore hypothesis, which convey 
characteristics of 3-D chemical structures that are essential for binding. Each hypothesis is 
accompanied by a set of aligned conformations that suggest the relative manner in which the 
molecules are likely to bind to the receptor. Generated hypothesis with the aligned conformations 
may be combined with known activity data to create a 3D-QSAR model that identifies overall 
aspects of molecular structure that govern activity. 
 
In the present study, ligand-based pharmacophore hypothesis and an atom-based three-
dimensional quantitative structure activity relationship (3D-QSAR) is performed with for series 
of tricyclic[6,5,6] and tricyclic[6,6,6] compounds [12-14] as selective MAO-A inhibitors. The 
objective of the present study is to develop ligand-based pharmacophore hypothesis and to derive 
atom-based 3D-QSAR model to update the designed process for new tricyclic selective MAO-A 
inhibitors.  
 

MATERIALS AND METHODS 
 
Pharmacophore modeling 
Pharmacophore modeling was carried out in Maestro 9.0 (Schrödinger ltd) [19]. A set of 65 
tricyclic[6,5,6] / [6,6,6] analogs synthesized and evaluated  by Harfenist et.al [12-14] as selective  
MAO-A inhibitors  (Table 1,2,3,4,5,6,7) with available IC50 data was taken from literature for 
the development of ligand-based pharmacophore hypothesis and atom-based 3D-QSAR model . 
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The biological activity data was reported as IC50 (µM) and was converted to 1/Log IC50 (pIC50) 
in moles to get the linearity. The dataset consists of some highly active and inactive molecules. 
From the total 65 compounds, 52   were randomly chosen for training set and 13 were selected as 
test set (Table 1,2,3,4,5,6,7), by using the “Automated Random Selection” option present in the 
PHASE software.  
 
Generation of common pharmacophore hypothesis 
The 3D structure of each compound was built using Build module with the default maestro 
settings. The 3D structures were minimized by default universal force field within maestro. The 
pharmacophore generation and atom based 3D-QSAR were performed using the PHASE 
module. PHASE is a versatile product of Schrödinger for pharmacophore perception, structure 
alignment, activity prediction, and 3D database searching. Given a set of molecules with affinity 
for a particular target, PHASE utilizes fine-grained conformational sampling and a range of 
scoring techniques to identify common pharmacophore hypothesis, which convey characteristics 
of 3D chemical structures that are reported to be critical for binding. Each hypothesis is 
accompanied by a set of aligned conformations that suggests the relative manner in which the 
molecules are likely to bind to the receptor. A given hypothesis may be combined with known 
activity data to create a 3D-QSAR model that identifies overall aspect of molecular structure that 
govern activity. The pharmacophore model was developed using a set of pharmacophore features 
to generate sites for all the compounds. Each structure is represented by a set of points in 3D 
space, which coincides with various chemical features that may make easy non-covalent binding 
among the ligand and its binding pocket [20]. PHASE provides a standard set of six 
pharmacophore features, hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic 
group (H), negatively ionizable (N), positively ionizable (P), and aromatic ring (R).[ 21] 
 
Initially conformational space of all the molecules was explored through combination of Monte-
Carlo Multiple Minimum (MCMM) / Low Mode (LMOD) with maximum number of conformers 
2500 per structure and minimization steps 100 [22]. Each minimized conformer was filtered 
through a relative energy window of 50 kJ/mol. by through sampling and redundancy check of 
2Å in the heavy atom positions. Active compounds are normally considered during common 
pharmacophore hypothesis generation and thus pharmaset was defined by setting threshold for 
actives of pIC50 > 0.65 and a threshold for inactives of pIC50 < 0.34. The above mentioned 
pharmacophore features were introduced in all conformations by pharmacophore create site.  
Four point common pharmacophore hypotheses were identified from all conformation of the 
active ligands having identical set of features with very similar spatial arrangement keeping 
minimum intersite distance 2.0 A0 in a final box size of 2.0 A0. These common pharmacophore 
hypotheses were examined using a scoring function to yield the best alignment of the active 
ligands using an overall maximum root mean square deviation (RMSD) value of 1.2Å with 
default options for distance tolerance.  
 
The quality of alignment was measured by a survival score, defined as: 
 

S = WsiteSsite + WvecSvec + WvolSvol+WselSsel +Wmrew, 
 
Where W are weights and S are scores; Ssite represents alignment score, the RMSD in the site 
point position; Svec represents vector score, and averages the cosine of the angles formed by 
corresponding pairs of vector features in aligned structures; Svol represents volume score based 
on overlap of van der waals models of non-hydrogen atoms in each pair of structures; and Ssel 
represents selectivity score, and accounts for what fraction of molecules are likely to match the 
hypothesis regardless of their activity toward the receptor. Wsite, Wvec, Wvol, and Wmrew have 
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default values of 1.0, while Wsel has a default value of 0.0. In hypothesis generation, default 
values have been used. Wmrew represents reward weights defined by m − 1, where m is the 
number of actives that match the hypothesis. Common pharmacophore was examined, and a 
scoring procedure was applied to identify the pharmacophore from each box that yielded the best 
alignment of the active ligands. The scoring procedure provided a ranking of different hypothesis 
from which further investigation was carried out for appropriate hypothesis with rational choice. 
The hypotheses were ranked according to survival values for active and inactive compounds. The 
phamacophoric features involved in hypothesis were increased by two factor for active scoring.  
 
An atom-based 3D-QSAR model is more useful in explaining the structure activity relationship 
than Pharmacophore-based 3D-QSAR as latter do not consider ligand features beyond the 
pharmacophore model. In atom-based 3D-QSAR, a molecule is treated as a set of overlapping 
van der Waals spheres. Each categories according to a simple set of rules:  hydrogens attached to 
polar atoms are classified as hydrogen bond donors (D); carbons, halogens, and C–H hydrogens 
are classified as hydrophobic/non-polar (H); atoms with an explicit negative ionic charge are 
classified as negative ionic (N); atoms with an explicit positive ionic charge are classified as 
positive ionic (P); non-ionic atoms are classified as electron withdrawing (W); and all other types 
of atoms are classified as miscellaneous (X). For purposes of 3D-QSAR development, van der 
Waals models of the aligned training set molecules were placed in a regular grid of cubes, with 
each cube allotted zero or more ‘bits’ to account for the different types of atoms in the training 
set that occupy the cube. This representation gives rise to binary-valued occupation patterns that 
can be used as independent variables to create partial least-squares (PLS) 3D-QSAR models. 
Atom-based 3D-QSAR models were generated for all hypotheses using the 52-member training 
set using a grid spacing of 1.0Å. The best 3D-QSAR model was validated by predicting activities 
of the 13 test set compounds. 3D-QSAR models containing one to nine PLS factors were 
generated, and the models were validated by predicting the activity of test set ligands. The 3D-
QSAR was evaluated by cross validated correlation coefficient (r2cv), standard error of estimation 
(s), Fisher test (F), correlation coefficient (r2), Person (R). The predicted pIC50 are tabulated in 
Tables 1,2,3,4,5,6,7. The correlation graph between predicted and actual pIC50 of both training 
and test set are depicted in Figure 3.              .     
 

Table 1: In vitro MAO-A inhibitory activity of comp ound 1-7 

 
Comp X 2 3 7 

IC 50 
(µM) 

Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

1 O NHAc   0.3 0.40 0.41 -0.006 
2 C=O NHAc   0.04 0.62 0.61 0.014 
3i C=O NHAc  NO2 1.3 0.32 0.36 -0.039 
4t, i SO2  NH2  1.0 0.33 0.04 0.293 
5i SO2  NHCHO  1.0 0.33 0.37 -0.037 
6t SO2  NHAc  0.26 0.41 0.41 0.004 
7i SO2  NHCOEt  1.2 0.32 0.35 -0.025 
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Table 2: In vitro MAO-A inhibitory activity of comp ound 8-14 

 
Comp Z Y 2 3 7 

IC 50 
(µM) 

Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

8t SO2 C=O NHAc   0.12 0.48 0.38 0.101 
9 SO2 C=O  NHAc  0.06 0.56 0.49 0.072 
10 SO2 C=O  NHAc Me 0.7 0.35 0.45 -0.099 
11t,a SO2 C=O  NHAc Et 0.01 1.00 0.61 0.39 
12a SO2 C=O  NHAc Pr 0.02 0.77 0.74 0.029 
13a SO2 O  NHAc  0.014 0.87 0.82 0.053 
14 C=O C=O NHAc   0.16 0.45 0.39 0.064 

 
Table 3: In vitro MAO-A inhibitory activity of comp ound 15-28 

 
Comp Substituent IC 50 

(µM) 
Experimental pIC50 

(M) 
Predicted 
pIC 50 (M) Residual 

15i 2-Br 1.0 0.33 0.52 -0.187 
16 3-CONHMe 0.06 0.56 0.71 -0.148 
17t 2,6-(CONHMe)2 0.05 0.58 0.72 -0.131 
18 5-Me-3-CONHMe 0.05 0.59 0.63 -0.041 
19a 7-Me-3-CONHMe 0.008 1.07 0.92 0.187 
20 7-i-Pr-3-CONH2 0.7 0.35 0.6 -0.249 
21a 7-i-Pr-3-CONHMe 0.006 1.28 1.04 0.245 
22 7-PrO-3- CONH2 0.45 0.38 0.45 -0.073 
23a 7-PrO-3- CONHMe 0.002 0.32 0.39 -0.068 
24 7-OAc-3-CONHMe 0.13 0.47 0.42 0.053 
25 7-OCH2COOMe-3-CONHMe 0.3 0.40 0.26 0.144 
26a 7-NMe2-3-CONHMe 0.03 0.68 0.76 -0.083 
27t,a 5,7-Me2-3-CONHMe 0.02 0.77 0.74 0.029 
28 3-C(=NH)NHMe 0.06 0.56 0.35 0.212 

 
Table 4: In vitro MAO-A inhibitory activity of comp ound 29-36 

 
Comp Substituent 

IC 50 
(µM) 

Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

29 ---- 0.05 0.59 0.52 0.069 
30 2-CN 0.2 0.43 0.42 0.015 
31a 2-CONHMe 0.03 0.68 0.64 0.037 
32 3-CN 0.06 0.56 0.55 0.012 
33t 3-CONHMe 0.6 0.36 0.37 -0.01 
34 3-C(O)NHC2H4NHAc 0.3 0.40 0.45 -0.046 
35 2-OCONHMe 0.2 0.43 0.44 -0.005 
36 2,7-DiAc 0.5 0.37 0.42 -0.049 
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Table 5: In vitro MAO-A inhibitory activity of comp ound 37-38 
 

Comp Structure IC50 

(µM) 
Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

37 

 

0.3 0.40 0.41 -0.006 

38 

 

0.6 0.36 0.37 -0.01 

 
Table 6: In vitro MAO- A inhibitory activity of compound 39-61 

 
Comp Substituent IC50 (µM) 

Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

39a 1-Me 0.03 0.68 0.59 0.087 
40 3-Me 0.2 0.43 0.54 -0.105 
41 4-Me 0.8 0.34 0.35 -0.006 
42 1-Et 0.07 0.54 0.53 0.012 
43a 2-Et 0.007 1.18 1.03 0.153 
44t,a 3-Et 0.006 1.29 1.36 -0.274 
45i 4-Et 1.0 0.33 0.37 -0.037 
46 1-CH=CH2 0.04 0.62 0.58 0.044 
47 1-C≡CH2 0.1 0.50 0.57 -0.07 
48t 1-CF3 0.08 0.52 0.58 -0.054 
49 1-CH2OH 0.14 0.46 0.47 -0.004 
50a 1-CH2CH2OH 0.02 0.77 0.77 -0.001 
51i 2-C(O)Me 1.0 0.33 0.41 -0.077 
52 1-C(O)COOMe 0.6 0.36 0.39 -0.03 
53 1-CH2Br 0.1 0.50 0.52 -0.02 
54t 2-OMe 0.2 0.43 0.52 -0.085 
55 2-OEt 0.04 0.62 0.69 -0.066 
56 1-Br 0.06 0.56 0.55 0.012 
57a 3-Br 0.02 0.76 0.77 -0.001 
58 1-I 0.05 0.59 0.57 0.019 
59t 1,9-Me2 0.05 0.59 0.62 -0.031 
60 1-Et-7-OH 0.11 0.49 0.5 -0.01 
61 1-Et-2-OMe 0.6 0.36 0.34 0.02 
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Table 7: In vitro MAO-A inhibitory activity of comp ound 62-65 

 
Comp Substituent IC50 (µM) 

Experimental 
pIC 50 (M) 

Predicted 
pIC 50 (M) 

Residual 

62 4-Me 0.06 0.56 0.35 0.212 
63 4-Et 0.4 0.38 0.36 0.024 
64 4,5-Me2 0.3 0.40 0.38 0.024 
65t,i 2-Br 1.0 0.33 0.51 -0.177 
a = active pharmaset, i= inactive pharmaset, t = test set.  
 

Table 8:  Best Pharmacophore hypothesis according to scoring values 
 

Hypothesis Survival Active Survival Inactive Post-hoc #Matches 

AARR.1 
AARR.2 
AARR.4 
AARR.5 
AARR.3 
AARR.6 
AAAR.31 
AAAR.22 
AAAR.10 
AARR.10 
AARR.8 
AARR.7 
AARR.9 
AAAR.4 
AAAR.7 
AAAR.19 
AAAR.5 
AAAR.6 
AAAR.20 
AAR.21 

7.280 
7.173 
7.173 
7.173 
7.173 
6.987 
6.875 
6.875 
6.875 
6.863 
6.863 
6.863 
6.863 
6.843 
6.843 
6.843 
6.738 
6.738 
6.738 
6.738 

4.859 
4.721 
4.721 
4.721 
4.721 
5.155 
4.847 
4.847 
4.847 
5.055 
5.055 
5.055 
5.055 
4.675 
4.675 
4.675 
4.609 
4.609 
4.609 
4.609 

3.708 
3.602 
3.602 
3.602 
3.602 
3.401 
3.409 
3.409 
3.409 
3.287 
3.287 
3.287 
3.287 
3.401 
3.401 
3.401 
3.297 
3.297 
3.297 
3.297 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

 
Table 9: Statistic parameters for best pharmacophore hypothesis 

 
 

PLS Factors 
SD r2 F P RMSE q2 Pearson-R 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0.3982 
0.2998 
0.2016 
0.1572 
0.1203 
0.0951 
0.0766 
0.0662 
0.0576 

0.2047 
0.5581 
0.8043 
08835 
0.9332 
0.9592 
0.9742 
0.9811 
0.986 

12.9 
30.9 
65.8 
89.1 
128.6 
176.1 
236.5 
279.3 
329 

0.0007574 
2.042e-009 
5.049e-017 
2.514e-021 
7.473e-026 
7.473e-029 
1.496e-033 
1.753e-034 
5.678e-036 

0.7206 
0.1724 
-0.0485 
-0.0749 
-0.0976 
-0.117 
-0.1303 
-0.1301 
-0.1333 

0.114 
-0.2439 
-0.0185 
0.3528 
0.5954 
0.6229 
0.593 
0.587 
0.5811 

0.3089 
0.4693 
0.6006 
0.7038 
0.811 
0.838 
0.8327 
0.8309 
0.8316 
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Figure 1: Pharmacophore hypothesis and distance between pharmacophoric sites, all distances are in A0 unit 
 

 
 

Figure 2: Pharmacophore hypothesis aligned on the reference ligand 19 
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Figure 3: Correlation graph of Experimental versus predicted pIC50 of training (a) and test sets (b) 

 
 

    
(a) (b) 

 
Figure 4: Visual representation of atom-based 3D-QSAR on most active ligand 23 
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Figure 5: Visual representation of atom-based 3D-QSAR on least active ligand 3 
 

 
 

RESULTS AND DISCUSSION 
 

After completion of common pharmacophore we were able to identify a total of 20 different 
hypotheses (Table 8). The best model was found to be associated with four-point hypothesis 
(Figure 1), which consists of three hydrogen bond acceptors (A) and one aromatic ring(R) 
denoted as A1, A2, A3, and R8. The pharmacophore hypothesis aligned on reference ligand 16 is 
depicted in Figure 2. Pharmacophore sites spatial distribution of AAAR. 22 models show three 
acceptor sites intercalated by a aromatic site in a tetrahedral space of about 4 A0. The three 
hydrogen bond acceptor A1, A2 and A3 form scalene triangle. The distances between A1- A2, A1-
A3and A2-A3 are 2.554, 4.520 and 5.602 A0 respectively. The aromatic ring (R8) is slightly 
orientated towards the site A1.  

 
For the 3D-QSAR models generation, non-modeled (inactive or moderately active) molecules in 
the dataset were then aligned on the basis of their matching with at least four pharmacophore 
features. The pharmacophore hypothesis yielded a 3D-QSAR model with good PLS statistics. 
The 3D-QSAR was evaluated by cross validated correlation coefficient (r2cv), standard error of 
estimation (s), Fisher test (F), correlation coefficient (r2) and Pearson-R. The predicted pIC50 are 
tabulated in Tables 1,2,3,4,5,6,7. The goodness of the model was validated by q2 for test set 
(Table 9).The training set correlation is characterized by PLS factor 6 (r2 = 0.9592, SD=0.0951,F 
=176.1 Pearson-R =7.437e−29). The test set correlation is characterized by PLS factors 6 (q2 
=0.6229, RMSE=-0.117, Pearson-R =0.838). Results of PLS statistics of atom-based 3D-QSAR 
are shown in Table 8. Correlation graph of Experimental versus predicted pIC50 of training and 
test sets are shown in Figure 3. Additional insights into the inhibitory activity can be gained by 
visualizing the 3D-QSAR model in the context of one or more ligands in the series with diverse 
activity. A pictorial representation of the cubes generated in the present 3D-QSAR for most 
active ligand 44 and least active ligand 3 is shown in Figure 4 and 5 respectively. In these 
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generated cubes, the blue cubes indicate favorable features, while red cubes indicate unfavorable 
features for biological activity.  
 
The blue cubes around aromatic C7 of the most active compound 23 suggest that substitution at 
C7 aromatic carbon is favorble for biological activity. Further substitution with aliphatic chain at 
C7 aromatic carbon significantly increased the activity. Thus compounds having aliphatic 
substitution at C7 position (compound 19, 21, 26, 27) are more active than substitution by other 
group at C7 position in the ring (compound 22, 24, 25). Moreover, the most significant favorable 
and unfavorable features observed at the C3 of the aromatic ring which indicated that presence of 
N-methyl amide group is essential for biological activity. Therefore compounds having N-methyl 
amide group are more active than the compound having unsubstituted amide group. 
 
In Figure 6 the red cube adjacent to the nitro group of the least active compound 3 indicates that 
presence of  polar substitution on C7 carbon of the aromatic ring diminish the biological activity.  
The blue cubes around keto of the anilide group indicate that presence of anilides at C2  position 
of the aromatic  ring favors the biological activity relatively  as seen in  compound 1 and 2, while  
the compounds having substitution at C3 position of the aromatic ring  in compounds 4,5,7  
exhibit weak activity.  
 

CONCLUSION 
 

In conclusion, a highly predictive pharmacophore hypothesis was generated using a training set 
of 65 molecules. It is a four-point pharmacophore hypothesis with three hydrogen bond acceptors 
(A) and one aromatic ring (R) denoted as A1, A2, A3, and R8. An  atom-based 3D-QSAR models 
were generated for all hypotheses using the 52-member training set. The predictive power of the 
atom based 3D-QSAR was well validated using 13 member of test set. The developed atom-
based 3D-QSAR model can provide insights into the structural requirement of novel tricyclic 
[6,5,6] / [6,6,6] compounds as selective MAO- A inhibitors. The present study aimed to develop 
ligand-based pharmacophore hypothesis and atom-based 3D-QSAR gives detailed structural 
insights as well as highlights important binding features of tricyclic derivatives as selective 
MAO-A inhibitors, which can provide guidance for the rational design of novel potent selective 
MAO-A inhibitors. 
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