

Scholars Research Library

Der Pharma Chemica, 2011, 3(1): 300-305 (http://derpharmachemica.com/archive.html)

Potential antibacterial agents: Phenylpyrazolines, cyanopyridines and isoxazoles

A. N. Solankee*, S. H. Solankee, G. A. Patel, K. P. Patel and R. B. Patel

Department of Chemistry, B. K. M. Science College, Valsad

ABSTRACT

A series of 2-(4'-chloro phenyl amino)-4-(4'-fluoro phenyl amino)-6-[4'-{1"-phenyl-5"substitutedphenyl-2"-pyrazolin-3"-yl}phenylamino]-s-triazine(**7a-e**), 2-(4'-chlorophenylamino)-4-(4'fluorophenylamino)-6-[4'-{2"-amino-3"-cyano-4"-substitutedphenyl-pyridin-6"-yl}phenylamino]-striazine (**8a-e**) and 2-(4'-chloro phenyl amino)-4-(4'-fluoro phenyl amino)-6-[4'-{5"-substituted phenyl-isoxazole-3"-yl}phenylamino]-s-triazine (**9a-e**) were prepared. The structures of synthesized were confirmed on the basis of spectral data. The compounds were screened for their in vitro antibacterial activity using Gram-positive and Gram-negative bacteria.

Keywords: Phenylpyrazolines, Cyanopyridines, Isoxazoles, Spectral data, Antibacterial activity.

INTRODUCTION

Synthesis and characterization of pyrazoline derivatives has been developing field in the realm of heterocyclic chemistry for the past several decads due to their wide range of biological activities such as anticancer [1], anticonvulsant [2], antibacterial [3] etc. Substituted pyridine derivatives like cyanopyridine have been found to possess analgesic [4], antiproferative [5] and antifungal [6] activities. Isoxazoles have found to be effective as antimicrobial [7], anti–inflammatory [8] and antiprotozoal [9] agents. In view of this and in continuation of our work [10-12] on synthetic heterocycles, we herein report the synthesis of phenylpyrazolines (**7a-e**), cyanopyridines (**8a-e**) and Isoxazoles (**9a-e**). All the synthesized compounds were established on the basis of their spectral data and physical data. These compounds were screened for their antibacterial activity.

MATERIALS AND METHODS

All melting points were determined in an open capillary and are uncorrected. The IR spectra were recorded on a FTIR - 8400 spectrophotometer. ¹H NMR spectra on a Bruker Avance DPX 400 MHz spectrometer with DMSO as a solvent and tetramethylsilane (TMS) as

internal standard. The chemical shifts are expressed in part per million (ppm) downfield from the internal standard and signals are quoted as *s* (singlet), *d* (doublet) and *m* (multiplate). Thin Layer Chromatography (TLC) analytical separation was conducted with Silica Gel 60 F-254 (Merck) plates of 0.25mm thickness eluted with toluene : actone (10 : 4 v/v) and visualized with UV (254nm) or iodine to check the purity of the synthesized compounds.

General procedure for the compounds (3), (4), (5) and (6). Compounds (3), (4), (5) and (6) were prepared by the reported method [13].

Preparation of 2-(4'-chlorophenylamino)-4-(4'-fluorophenylamino)-6-[4'-{1''-phenyl-5''-(3'''-methoxyphenyl)-2''-pyrazolin-3''-yl} phenylamino]-*s*-triazine (7a):

2-(4'-Chloro phenyl amino)-4-(4'-fluoro phenyl amino)-6-[4'-{3"-(3"'-methoxy phenyl)-2"propenon-1"-yl}phenyl amino]-*s*-triazine **6a** (0.01 mole) and phenyl hydrazine hydrochloride (0.01mole) in alcohol (30 ml) was added to it. Then solution of 40% KOH (8 ml) was added to the reaction mixture and refluxe for 12 hours. The progress of reaction was monitored on TLC plate. After compilation, the reaction mixture was then cooled, poured into crushed ice and neutralized with diluted HCL. The product separated out was filtered, washed with water, dried and recrystallized from alcohol to give **7a**.

Similarly the remaining compounds (**7b-e**) were prepared by this method. Their molecular formula, melting point and analytical data are shown in **Table I**

Compound (7a) Yield 65%, m.p 105°C. (IR, KBr, cm⁻¹) : =CH str. (3050),1580 (C=N str), 1037 (C-O-C), 1018 (C-F str.), 809 (C-N, *s* –triazine), 740 (C-Cl str.), ¹H NMR (DMSO, δ , ppm) : 3.1 (1H, *dd*, -CH_{2 pyraz}), 3.3 (1H, *dd*, -CH_{2 pyraz}), 3.88 (3H, *s*, m-OCH₃), 3.74 (1H, *dd*, -CH), 6.9-7.81 (24H, *m*, Ar-H+NH). Anal, Calcd. For C₃₇H₃₀ClFN₈O: C, 67.63; H,4.56 ; N, 17.03. Found: C, 67.66; H,4.52; N, 17.01%.

Preparation of 2-(4'-chlorophenylamino)-4-(4'-fluorophenylamino)-6-[4'-{2"-amino-3"-cyano-4"-(3"'-methoxyphenyl)-pyridine-6"-yl} phenylamino]-s-triazine (8a):

Compound **6a** (0.01 mole) was dissolved in alcohol (25ml), malanonitrile (0.01 mole) and ammonium acetate (0.08 mole) was added to it and refluxed for 8 hours. The progress of reaction was monitored on TLC plate. The reaction mixture was then cooled, poured into crushed ice and product separated out was filtered, washed with water, dried and recrystallized from alcohol to give **8a**

Remaining compounds (8b-e) were synthesized by the same procedure and their molecular formula, melting point and analytical data are shown in Table I

Compound (8a) Yield 68%, m.p 96°C. (IR, KBr, cm⁻¹) : 3468 (-NH₂), 2207 (C=N), 1230(C-O-C). 1013 (C-F), 803 (C-N, *s*-triazine), 780 (C-Cl); ¹H NMR (DMSO, δ , ppm) : 3.82 (3H, s, m-OCH₃), 6.9 (2H, s, -NH₂), 7.2 to 8.4 (20H, m, Ar-H +NH). Anal, Calcd. For C₃₄H₂₅ClFN₉O: C, 64.81; H,3.97; N, 20.01. Found: C, 64.76; H, 3.93; N, 20.08%.

Preparation of 2-(4'-chloro phenyl amino)-4-(4'-fluoro phenyl amino)-6-[4'-{5''-(3'''- methoxy phenyl)-isoxazole-3''-yl}phenylamino]-s-triazine (9a):

Compound **6a** (0.01 mole) was dissolved in alcohol (25ml) and hydroxylamine hydrochloride (0.01mole) was added to it. Then solution of KOH was added to the reaction mixture and refluxed for 6 hours. The progress of reaction was monitored on TLC plate. The reaction mixture was then cooled, poured into crushed ice and product separated out was filtered, washed with water, dried and recrystallized from alcohol to give **9a**.

Remaining compounds (9b-e) were synthesized by the same procedure and their molecular formula, melting point and analytical data are shown in Table I

Compound (9a) Yield 70%, m.p 160°C. (IR, KBr, cm⁻¹) : 1575 (C=N, isoxazole moiety), 1012 (C-F), 805 (C-N, *s*-triazine), 785 (C-Cl)];); ¹H NMR (DMSO, δ , ppm) : 3.80 (3H, s, m-OCH₃), 6.90 (lH,s,-CH of isoxazolemoiety), 7.0–8.0(19H, m, Ar-H+NH). Anal, Calcd. For C₃₁H₂₃ClFN₇O₂: C, 64.19; H,3.96; N, 16.91 . Found: C, 64.22; H,3.92; N, 16.85%.

	R	M. F	m.p °C	Elemental Analysis		
Compd				% C	% N	% H
				Found	Found	Found
				(Calcd)	(Calcd)	(Calcd)
7.0	3-Methoxyphenyl	C ₃₇ H ₃₀ ClFN ₈ O	105	67.66	17.03	4.52
/a				(67.63)	(17.06)	(4.56)
7b	4-Methoxyphenyl	C ₃₇ H ₃₀ ClFN ₈ O	110	67.69	17.08	4.59
				(67.63)	(17.03)	(4.56)
7c	3-Phenoxyphenyl	C ₄₂ H ₃₂ ClFN ₈ O	112	70.19	15.53	4.40
				(70.14)	(15.58)	(4.45)
74	2-Nitrophenyl	C ₃₆ H ₂₇ ClFN ₉ O ₂	80	64.36	18.72	4.04
7u				(64.33)	(18.76)	(4.02)
7e	3-Nitrophenyl	C ₃₆ H ₂₇ ClFN ₉ O ₂	86	64.37	18.73	4.06
				(64.33)	(18.76)	(4.02)
8a	3-Methoxyphenyl	C ₃₄ H ₂₅ ClFN ₉ O	96	64.78	19.99	3.94
				(64.81)	(20.03)	(3.97)
8b	4-Methoxyphenyl	C ₃₄ H ₂₅ ClFN ₉ O	140	64.85	19.98	3.93
				(64.81)	(20.03)	(3.97)
8c	3-Phenoxyphenyl	C ₃₉ H ₂₇ ClFN ₉ O	105	67.64	18.18	3.86
				(67.67)	(18.22)	(3.90)
84	2 Nitrophonyl	C H CIEN O	140	61.40	21.77	3.37
80	2-Introprienyi	$C_{33}\Pi_{22}CIFN_{10}O_2$		(61.44)	(21.72)	(3.41)
8e	3-Nitrophenyl	C ₃₃ H ₂₂ ClFN ₁₀ O ₂	195	61.39	21.74	3.38
				(61.44)	(21.72)	(3.41)
9a	3-Methoxyphenyl	C ₃₁ H ₂₃ ClFN ₇ O ₂	160	64.19	16.87	3.92
				(64.21)	(16.91)	(3.96)
9b	4-Methoxyphenyl	C ₃₁ H ₂₃ ClFN ₇ O ₂	250	64.18	16.86	3.93
				(64.21)	(16.91)	(3.96)
9c	3-Phenoxyphenyl	C ₃₆ H ₂₅ ClFN ₇ O ₂	170	67.38	15.31	3.84
				(67.34)	(15.30)	(3.89)
9d	2-Nitrophenyl	C ₃₀ H ₂₀ ClFN ₈ O ₃	160	60.51	18.79	3.33
				(60.55)	(18.83)	(3.36)
9e	3-Nitrophenyl	C30H20ClFN8O3	172	60.52	18.78	3.40
				(60.55)	(18.83)	(3.36)

Table -I Characterization data of compounds (7a-e), (8a-e) and (9a-e)

RESULTS AND DISCUSSION

Antibacterial activity

The antibacterial activity of the synthesized compounds have been assayed against *S. aureus* (MTCC 96), *B. subtilis* (MTCC 441) (Gram- positive bacteria), and *E. coli* (MTCC 443), *S. paratyphi-B* (MTCC 733) (Gram-negative bacteria) by using agar diffusion method of A. L. Barry [14]. Known antibiotic like ciprofloxacin used for comparison (**Table-II**). Antibacterial activity data of the tested compounds revealed that compounds **7b**, **9a and 9b** were found to be active against *S. aureus* (MTCC 96).

SCHEME -1

Compounds **7a** ,**7d** and **8a** were found to be moderately active against *S. aureus* (MTCC 96); where as reamaning compounds were found to be less or inactive against *S. aureus* (MTCC 96). Compounds **7d**, **7e**, **8c** and **9b** were found to be active against *B. subtilis* (MTCC 441). Compound **7c**, **8b**, **8e**, **9a** were found to be moderately active against *B. subtilis* (MTCC 441) where as reamaning compounds were found to be less or inactive against *B. subtilis* (MTCC 441). Compounds **7a**, **7b**, **7c**, **7d**, **7e**, **8a**, **8b**, **8c**, **8d**, **8e**, **9a**, **9b**, **9c**, **9d** and **9e** were found to be moderately active against *S. paratyphi-B* (MTCC 733). Compounds **7a**, **7c**, **8a**, **8b**, **8c**, **8e**, **9a**, **9b**, **9d** and **9e** were found to be moderately active against *S. paratyphi-B* (MTCC 733).

		Antibacterial Activity						
Compd	R	Diameter of zone of inhibition (in mm)						
Compu	K	S. aureus MTCC 96	B. Subtilis MTCC 441	<i>E. coli</i> MTCC 443	S. paratyphi-B MTCC 733			
7a	3-Methoxyphenyl	15	-	16	18			
7b	4-Methoxyphenyl	18	10	17	21			
7c	3-Phenoxyphenyl	-	15	15	19			
7d	2-Nitrophenyl	17	18	17	20			
7e	3-Nitrophenyl	10	19	17	20			
8a	3-Methoxyphenyl	15	13	18	18			
8b	4-Methoxyphenyl	-	15	15	19			
8c	3-Phenoxyphenyl	12	18	16	16			
8d	2-Nitrophenyl	-	-	16	20			
8e	3-Nitrophenyl	12	17	15	18			
9a	3-Methoxyphenyl	19	17	15	17			
9b	4-Methoxyphenyl	19	19	18	19			
9c	3-Phenoxyphenyl	-	-	17	20			
9d	2-Nitrophenyl	-	12	17	17			
9e	3-Nitrophenyl	-	11	18	19			

Table -II Antibacterial activity of compounds (7a-e), (8a-e) and (9a-e)

Acknowledgement

We are grateful to B. K. M. Science College, Valsad for providing research facilities and to Microbiology Department for carrying out antibacterial activity.

REFERENCES

[1] F. Manna, F. Chimenti, R. Fioravanti, A. Bolasco, D. Secci, P. Chimenti, C. G. Ferlini Scambia, *Bioorg. Med. Chem. Letters*, **2005**, 15(20), 4632.

[2] P. Iyidogan, Z. Ozdemir, B. Kandilci, B. U.Gumusel, Calis, A. Bilgin, J. Pharmacy (Istanbul University), 2006, 38(1), 47.

[3] V. Barot, S. Desai, Int. J. Chem. Sci., 2007, 5(2), 776.

[4] M. Cocco, C. Congiu, V. Onnis, M. Morelli, V. Felipo, O. Cauli, *Bioorg. Med. Chem.*, **2004**, 12(15), 4169.

[5] M. Cocco, C. Congiu, V. Lilliu, V. Onnis, Eur. J. Med. Chem., 2005, 40, 1365.

[6] P. Tripathi, S. Pandey, Asian J. Chem., 2008, 20(4), 3304.

[7] A. Dobaria, J. Patel, H. Parekh, Indian J. Chem., 2003, 42B, 2019.

[8] B. Shivakumar, L. Nargund, Indian J. Heterocycl. Chem., 1998, 8(1), 27.

[9] D. Patrick , S. Bakunov, S. Bakunova, E. Kumar, R. Lombardy, S. Jones, A. Bridges, O.

Zhirnov, J. Hall, T. Wenzler, R. Brun, R. Tidwell, J. Med. Chem., 2007, 50, 2468s.

[10] A. Solankee, S. Lad, G. Patel, S. Solankee, Orient. J. Chem., 2009, 25(1), 147.

[11] A. Solankee, K. Kapadia, S. Solankee, G. Patel, J. Indian Chem. Soc., 2009, 86, 837.

[12] A. Solankee., G. Patel, R. Patel, K. Patel, Der Pharma Chemica, 2010, 2(4), 336.

[13] A. Solankee, S. Solankee, G. Patel, Rasayan J. Chem., 2008, 1(3), 581.

[14] A. Barry, The Antimicrobic susceptibility test: Principles and practices, Illus Lea and

Febiger : Philadelphia, Pa., USA. 1976, 180; Bio. Abstr., 1977, 64(5), 25183.