Available online at www.der phar machemica.com

I'_Q\@‘ma C/}gl
@ . | SSN 0975-413X Der Pharma Chemica, 2016, 8(4): 137-154

CODEN (USA)Z PCHHAX (http://derpharmachemica.com/archive.html)
l=w= I

\

** De,
*ed

QSAR Analysisof Anticancer Activity of Indolin Derivativesas Vascular
Endothelial Growth Factor Receptor (VEGFR-2) Inhibitors

Siddharth J. Modi and Vithal M. Kulkar ni*

Department of Pharmaceutical Chemistry, Poona @alef Pharmacy, Bharati Vidyapeeth University, Rune
411038, Maharashtra, India

ABSTRACT

A series of indolin derivatives as anticancer ageas examined to determine the structural requirgnoé vascular
endothelial growth factor receptor (VEGFR-2) inhibh by three-dimensional quantitative structuradtisity
relationship (3D-QSAR) using comparative molectileld analysis (CoMFA) and comparative moleculaniarity
indices analysis (CoMSIA) methods. Evaluation ot8mhpounds (training set) served to establishedetachich
was validated by evaluation of a set of 13 compsufiest set). The lowest energy conformer of a racite
molecule obtained from the systematic search was @s the template structure for alignment of dsga The
optimum partial least square analysis (PLS) for G&Wand CoMSIA models exhibited good ‘leave-one-cnatss-
validated coefficient @ of 0.758 and 0.805, the coefficient of determomair’) of 0.950 and 0.934 and good
predictive power of {rpred) of 0.885 and 0.861 respectively. The finablel of QSAR along with information
assembled from contour maps may be used for degigmivel indolin derivatives as potent anticancgerts.
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INTRODUCTION

After over half a century of chemotherapy reseadmcer remains one of the most difficult life-gening
diseases to treat [1]. Extensive studies on camsuogpest that tyrosine kinase receptor play importale in
regulating cancer. Vascular endothelial growthdacgceptor is a type of membrane receptor tyrokimase [2-3].
The membrane receptor tyrosine kinase involveduimarigenesis which consist of epidermal cell gioféctor
receptor (EGFR) tyrosine kinase, and vascular émdiat growth factor receptor (VEGFR) tyrosine ldea[4-
5].When drug binds to the tyrosine kinase recejfitovill be dimerize or couple with the cytoplasmnise and
activate it. after the activation of receptor tyneskinase domains phosphorylate the C terminaisiyie residues,
named as autophosphorylation, after that a subseg@sphorylating activation process occurs ca#lekinase
cascade which results in the amplification of thgnal. Proliferation, division, adhesion, morphogsis,
angiogenesis, metastasis and antiapoptosis ofsugils cellular process occurs due to phosphorylaifgroteins.
So,inhibition of Tyrosine kinase will result in tiseippression of cell activity related to endothetieowth factor
receptor leads to anticancer activity [6].

Currently, large number of VEGFR-2 kinase inhibstaare developed as anticancer agents consistinglymai

pyridazine, indoline ketone, quinoline, quinazolmeleus etc. while, large number of drugs are @gat including
sorafenib, sunitinib, axitinib, vandetanib, pazapagtc. [7-11].
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A series of indolin derivatives with potent andestive inhibitory activity against EGFR-2/KDR rgder has been
reported [12]. In order to derive correlation betwehe structure and inhibitory activity of thesdibitors, we
performed a three-dimensional quantitative structactivity relationship (3D-QSAR) study using comgiave

molecular field analysis, (CoMFA) and comparativelecular similarity indices analysis (CoOMSIA).

3D-QSAR is a wide term including every one of th6®8AR techniques which relate perceptible targeperties
with processed patrticle based descriptors obtaio fthe spatial (3dimensional) representation & #tomic
structures. This technique has advanced as a ¢bastic expansion to the established QSAR metramgie
spearheaded by Hansch and Free-Wilson and otH&rs [1

CoMFA is utilized to determine the correlation betm steric and electrostatic fields of compounds teir
biological activity [14]. The CoMFA is applied toset of compounds which show biological activityttwsame
mechanism. At each part of the molecule and atoagratom the steric and the electrostatic intevactinergies
calculated [15].

CoMSIA method was introduced by Klebe et al in 19&#ich considers hydrogen bond donor, hydrogendbon
acceptor and hydrophobic descriptors, in additmsteric and electrostatic features. To calculatélarity indices

in CoMSIA, a probe atom is utilized at regular sgghgrid points for the aligned compounds and Gausfginction

is used for evaluation of field so, no arbitaryidigion of cut-off limits. Partial Least Square rhed is utilized to
determine cross-validateti (r’cv) and conventionaf values [16-17].

In this paper, 3D-QSAR studies using CoMFA and CéMBiethods are applied to generate quantitative eteod
and to specify the region where modification canchgied out to improve the inhibitory activity obmpounds.
The predictive ability of generated model was \athdl by external validation method. The model waghér
accessed to generate contour maps for providirayrirdtion regarding the interaction of compounds studly the
structure activity relationship.

MATERIALSAND METHODS

Datasets

A set of 44 indolin derivatives reported as tyreskinase inhibitors were taken from literature thuis study [12].
Using the ‘create set and random method’ optio@8AR project of SYBYL-X 2.0, the compounds wereidiéd
arbitrarily into a training set of 31 compounds¥@)0and a test set of 13 compounds (30%) [18-2@inTmg set and
test set were used to generate 3D-QSAR models alidbtion of generated models. The activity of coonpds
were assessed with IC values i.esol M) which was converted into plc50(-loglC50). bigiPartial Least Square
regression analysis the logarithmic affiliation satth obtain symmetrically distributed data [21].eT8tructure of
indolin derivatives and its inhibitory activity daare specified in Table 1.

Alignment and M olecular modeling

In the study of 3D-QSAR, alignment is one of thestrimportant steps. There are various alignmeritrigcies in
which molecules are aligned with comparable origorieand space conformation. SYBYL-X 2.0 (TripossAsiates
Inc, St Louis, Mo, USA) was utilized to perform #fie molecular modeling study. Sketch function waed to
design the 3D structure and subsequently Gastelgekel charges applied to all compounds. Energyimigation
was performed using the Standard tripos molecukchanism force field. Here, the distill alignmennbdtion was
performed [22]. The compound 44 having the highesivity was selected as template for alignmerth@éndata set.
Therefore, all the conformers were superimpose@anh other and the common core structure formedhwimas
been represented in Figure 1. All the moleculesaigeed and represented in Figure 2.
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Table 1. Indolin derivatives (1-44) used for training and test sets

Compound no| Compound VEGFR-2/ KDR inhibitory ad$iinM) | plCso
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22* 3 8.522
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24 15 7.823

25 \ 0 69 7.161
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Figure 1. Fragment used asa common structurefor aligning database for generation of CoM FA and CoM SIA models

Figure 2. For COMFA and CoM SI A study 1-44 aligned compounds

*indicate test set compound

145




Vithal M. Kulkarni et al Der Pharma Chemica, 2016, 8 (4):137-154

CoMFA and CoM Sl A fields Generation

For each alignment, the steric and electrostatitergial fields for CoMFA were calculated at eaclitita
intersection of a regularly spaced grid of 2.0 Aaih X, Y and Z directions. The van der Waals ptitsdrand
columbic term, which represent respectively, etestatic and steric fields, were calculated by us@&ripos force
field. A sp’ carbon atom with van der Waals radius of 1.52 & &f.0 charges was served as the probe atom to
calculate steric and electrostatic fields. Theistand electrostatic contributions were truncateddéfault +30
kcal/mol, and the electrostatic contribution wasaiged at lattice intersections with maximum sterteraction.

CoMSIA is an extension of COMFA on the same assignghat changes in binding affinities of ligands eelated

to changes in molecular properties representethéyield. Besides, steric and electrostatic, hydroond donor,
hydrogen bond acceptor and hydrophobic descriptwes calculated in CoMSIA. A Gaussian function was
introduced to determine the distance between pabtw® and molecular atom at all grid point similaiitdices at
the molecular surface can be calculated in COMS3A[Zhe equation for COMSIA is as follow:

—ar?
Ag'K(j) =X Worove x Wike @Tig (1)

where, A is the similarity index at grid point gynsmed over all atoms i of the molecule j under gtigation.
Worobe K is the probe atom with radius 1 A, charge #Hrbphobicity +1, hydrogen bond donating +1 andrbgen
bond accepting +1. Wis the actual value of the physicochemical propkrof atom i. g is the mutual distance
between the probe atom at grid point g and atomthe test moleculeu is the attenuation factor whose optimal
value is normally between 0.2 and 0.4, with a défaalue of 0.3 [24].

Partial least square analysis and model validation

For development of 3D-QSAR, CoMFA and CoMSIA stgdigere carried out using partial least square (PLS)
approach which is an extension of multiple regm@ssinalysis [25-26]. All the data set of definiteletules was
further treated by using PLS analysis technique gexlopment of 3D contour maps with an optimum benof
components 6 equally. PLS algorithm was used teeldevthe correlation between the structural prgpartd
biological activity. By use of PLS leave one outO@Q) and cross-validation analysis was performedcrbss-
validation method one molecule is subtracted frbm data set and its activity is predicted refemegp¢he model
obtain from rest of the data set. The cross-vabdatoefficient is represented as §he models were accepted if
model provides value ofg 0.5 and %> 0.641 [27]. It is generally estimated as:

Z (Y redicted Y observe)
q2 - l_ P 2
Z (Yobserved-Y meaa ( )

While, the validation of conventional correlation-efficient ?, standard error of estimate (SEE) and F valueg wer
carried out in non-cross validation method. At ém&l bootstrap analysis was performed to checkdhestness of
the generated model, It is a method which carrigdnmmerous times (for good statistical informatit®0 times
required) in which n random selections are caraetifrom the original set of n object,. During eweun, certain
molecules can be omitted from the Partial LeastBganalysis, while remaining molecule must be lvad many
times. Bootstrap r (%, represented mean correlation coefficient. For €AMand CoMSIA analysis cross-
validation (f.,) was carried out by two groups (‘leave half ougthod) [28].

Predictive correlation coefficient (rzp,ed)

The test set of nine compounds was used to deterthiea predictive power of generated 3D-QSAR model.
Template structure was used to align the compoandstheir plG, values were predicted. Based on the test set
compounds, the predictive correlation coefficieﬁ;e(j) was determined by the following equation:

rpred _ (SD—;’RESS) (3)

D
where, SD is the totality of squared deviation hestw biological activity of the test set compoundsl wicau
activities of the training set compounds, and PRiES8e totality of squared deviations between expental and
predicted activity values for each compound inttst set [29].
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RESULTSAND DISCUSSION

CoMFA studies

The training set and test set was utilized to dgvéloMFA model. For model, Partial Least Squarehatwas
carried out with Leave One leave out which dematstt the value of°q0.758 through optimum 6 components.
Column filtering 2.0 and same five components walized for Non cross-validated () PLS analysis, which
gives Fnoy = 0.952, significance value = 122.338, standard error of estimation (SEE)258.and predictive power
rzpred of 0.885. A contribution of Steric and electrogtafields were found to be 4.626 and 1.189, respelgti
Results obtained throw CoMFA analysis is repregkimieTable 2. The Cross-validation and bootstragpigsult
strongly support reliability of the CoMFA model. experimental and predicted p§®@alues for the training set
and test set are shown in Table 4 and 5 respegtigetl the experimental and predicted activitiasetation in the
form of scatter graphs are presented in Figuresdarespectively.

Table 2. Statistical parameter by using PLS analysisfor CoOMFA

PLS analysis parameter CoMFA
o0 (0F) 0.758
ONC 6

SEE 0.25¢
Poes 0.952

F value 122.338
Steric field contribution 4.626
Electrostatic field contribution 1.189
e 0.984
SER,: 0.154
e 0.746
Test setfrec 0.885

Table 3. Statistical parameter by using PL S analysisfor CoM SIA

2 2
Sr.No.  Descriptors* Foo(q)/ r2oSEEn  Fvalue r%,  r?%ySEEps

ONC

1 SandE 0.729/6  0.835/0.473 31.103 0.744 0.93340.
2 Dand A 0.569/6 0.911/0.348 62.817 0.563 0.9238.
3 S,EandH 0.805/6  0.934/0.299 87.329 0.714 0.971/0.196
4 S,Eand A 0.751/6  0.883/0.398 46.558 0.767 (M0I87
5 S,Eand D 0.688/6 0.907/0.355 60.266 0.687  @OB20
6 D,Aandt 0.737/¢  0.945/0.27 106.0¢ 0.737 0.971/0.20
7 D,AandS 0.648/6 0.920/0.330 70.656 0.641 Q=B
8 D,AandE 0.635/6 0.916/0337  67.223 0.642 0M@3264
9 S,Dandt 0.643/¢  0.940/0.28 96.40( 0.59: 0.979/0.16
10 S,E,Dand A 0.666/6 0.916/0.201 67.365 0.665963)0.223
11 S,E,Dand H 0.750/6 0.929/0.311  80.397 0.770963J0.217
12 S,E,Aand H 0.782/6 0.931/0.307  82.615 0.73796100.220
13 D,A/Hand S 0.711/6 0.943/0.278  101.97 0.75597%0.194
14 D,A,Hand E 0.722/6  0.943/0.278 101.58 0.7619690.201

15 S,E,D,Aand H 0.731/6 0.937/0.293  91.130 9.72.967/0.215

CoM Sl A studies

Same training set and test set was utilized for SVmodel development because, significant resuéige found
with CoMFA. Steric, electrostatic, hydrophobic, hygen bond acceptor and hydrogen bond donor figkte used
for generation of CoOMSIA model with various comtinas of these molecular descriptors as shown ipleT&.
The statistical quality of hybrid models was exaeqinby studying the corresponding wplues. The modeB
generated using descriptors steric, electrostamit e hydrophobic field was found to be best CoM&iAdel. So
this model was further utilized for analysis. Thess-validation (8 value for corresponding CoMSIA model was
obtained 0.805 by six optimum numbers of componé@t$C). Column filtering 2.0 and Similar six comps
was utilized for non-cross-validated’,(r) PLS analysis, resulting iff.5,= 0.934 and SEE = 0.299. The steric
contribution = 1.113, electrostatic contribution1498, hydrophobic contribution = 2.573 predictippewer of
CoMSIA rzpred was found to be 0.961. Leave half out cross-vitidamethod and boot strapping analysis was
performed to determine the quality of developed ehofor the CoMSIA, F,was found to be 0.714. To analyze the
internal reliability within the dataset the medwatue of bootstrapping analysis (bootstrapfed and SEE; were
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performed which was found to be 0.971 and 0.19fewts/ely. Statistical parameter obtained throwsvViIGeA
model is represented in Table.3.

According to the CoMSIA model, experimental anddicted plGy values for training set and test set are
represented in Table. 4 and 5 respectively while, relationships between experimental and predictieidbitory
activities are represented in the form of scattaplgs in Figures 3 and 4 respectively.

Table 4. Experimental, predicted pl Cs, and residual values of training set compounds by CoMFA and CoM SIA analysis

CoMFA CoMSIA
Compound no. Experimental value Predicted Residual Predicted Residual
2 6.924 6.436 0.488 6.653 0.271
3 7.055 6.725 0.330 6.838 0.217
5 6.903 6.967 -0.064 6.929 -0.026
6 6.974 6.826 0.148 6.566 0.408
7 6.537 6.232 0.305 6.164 0.373
10 6.485 6.495 -0.009 6.548 -0.062
12 7.167 6.936 0.231 6.726 0.441
13 7.292 6.846 0.446 6.608 0.684
14 5311 6.099 -0.787 7.051 -1.739
15 5.311 5.40¢ -0.09: 5.60¢% -0.29:
16 8.397 8.709 -0.311 8.365 0.032
17 6.670 6.361 0.310 5.841 0.830
18 4.62¢ 5.04¢ -0.41¢ 5.281 -0.65¢
19 7.494 7.771 -0.276 7.428 0.066
20 8.301 8.404 -0.103 8.446 -0.145
21 7.08¢ 7.18¢ -0.09¢ 7.65¢ -0.57(
23 7.221 7.308 -0.086 7.436 -0.214
24 7.823 7.785 0.038 7.368 0.455
25 7.161 7.552 -0.390 7.250 -0.088
26 6.804 6.919 -0.119 7.032 -0.227
29 5.709 5.576 0.133 5.578 0.131
31 6.560 6.431 0.129 7.276 -0.715
32 8.000 8.074 -0.074 7.444 0.556
33 8.090 8.165 -0.075 8.272 -0.182
35 8.096 8.035 0.061 7.916 0.180
39 7.795 7.968 -0.172 8.026 -0.230
40 8.154 8.242 -0.0871 8.362 -0.207
41 8.397 8.312 0.085 7.794 0.603
42 7.698 7.706 -0.0071 7.735 -0.036
43 7.958 7.814 0.144 7.746 0.212
44 7.53i 7.52% 0.01¢ 7.44¢ 0.08¢

Table 5. Experimental, predicted pl Cso values and residual values of test set compound by CoMFA and CoM SIA analysis

CoMFA CoMSIA
Compound no. Experimental value Predicted Residual Predicted Residual
1 7.013 6.818 -0.804 7.000 0.132
4 6.198 6.250 -0.051 6.525 -0.051
8 4.701 5.004 -0.300 4.936 -0.235
9 5.661 5.300 0.361 5.184 0.477
11 5.005 5.143 -0.138 5.272 -0.267
22 8.522 8.47¢ 0.047 8.00¢ 0.51¢
27 5.945 5.961 -0.015 6.205 -0.259
28 6.180 6.261 -0.081 6.244 -0.063
30 7.657 7.77: -0.11¢ 7.83¢ -0.181
34 8.221 8.164 0.057 8.000 0.221
36 7.880 7.74 0.146 7.964 -0.078
37 8.522 8.41¢ 0.10¢ 8.531 -0.01¢
38 8.397 8.313 0.08 8.363 0.034
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Figure4. Graph of actual and predicted pl Csovalue for test set by CoM FA and CoM SIA analysis

3D-QSAR visualization

CoMFA

The significant feature of CoMFA model is the outms obtained by 3D coefficient contour maps which a
calculated as the variation in the molecular fietdsiltiplied by the 3D-QSAR coefficient by using Mad
stDev*Coeff. COMFA contour maps were generateddentify the important regions in 3D space surrongdhe
molecules, so that modification can be carriedinuhose areas to increase the inhibitory actiwijch may be
utilized to improve VEGFR-2 inhibitory activity.

The most active compound 44 and least active conpp@8 were used to generate contour maps by mamagijte
of contour to transparent for better analysis aftoar surrounding compound 44 which representdeigares 6 (a,
b) and for compound 18 represented in Figure @)(mcludes steric and electrostatic region respelgt The steric
region signs two colours in contour maps i.e. graea yellow. In which green color indicates thedarable part,
keeping the bulkier group which leads to an inaeeiasthe biological activity whereas; yellow colodicates a
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decrease in the biological activity due to the mrlkegion. Further, the electrostatic contour rshpws red and
blue color. The red color and blue color indicates favourable and unfavourable region respectivdbre, red
color region indicate that biological activity emitad by negative charge while, blue color regiaticates positive
charge leads to increase in biological activity.

CoMSIA

CoMSIA contour maps were generated similarly as@manmaps generated by CoMFA. For the CoMSIA tétal
contour maps were generated; for steric, electiostaydrophobic, donor and acceptor fields. Theristand
electrostatic region has the same description GkMFA. Whereas; the hydrophobic has yellow and &visiblor
codes in which yellow color indicate hydrophobiogp favorable; while white color indicates hydropleogroup
unfavorable. The donor has cyan and purple colganccolor indicates donor group favorable; whilerpbe
indicates acceptor group favorable. They show whpeht/substitute can help to find out the favorahled
unfavorable region.

Analysis of CoM FA and CoM Sl A contour map

CoMFA

Figure 6 (a, c) depicts the CoMFA steric contowtpWhereas, Figure 5 represents most active contpdd is
divided into three major region#\( B and C). A large cloud of green contour found surround@gegion at
oxiindole ring indicates that the introduction ofbalky group in this region is favored which exphkithe
importance of steric interaction of ligand with eptor.

Similarly, green contour ned region at phenyl ring indicate that bulky groupfasored at this region. This is
evident from the experimental activity values fempounds 34-44 in which at both reg®bmandC large bulky
group, than other compound 1-34 leads to potent M&Q inhibitory activity.

A yellow contour afA region in imidazole ring at C-3 position indicaite bulky group is not favored at this region
which leads to decrease in activity. WhileGategion in oxiindole ring very large bulky grouptts to decrease in
activity.

F
N
(A) ]\ ®)
H)
~

O

ZT

HN—]

(©)

g _/

Figure 5. Most potent compound 44 divided into (A), (B) and (C) regions
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207080 !

Figure 6. Steric contour maps (a, c) and electrostatic contour maps (b, d) generated by compar ative molecular field analysis (CoMFA)
for themost active compound 44 (a, b) and the less active compound 18 (c, d), respectively

Figure 6(b, d) displays the electrostatic contoaprusing CoMFA. The electrostatic fields are repnésd by blue
and red contour map. Compound 44 was again selastdlte reference standard as seen in figure 6b,dantour
nearB and C region indicates that need for positively chargedstituent for electrostatic interaction with the
receptor to show potent inhibitory activity. Whileed contour atA region at imidazole ring indicates that
introduction of negatively charged group leadsitwréase in the biological activity.

CoMSIA
Contour map for steric and electrostatic fieldsSCoMSIA models are almost the same as those in 1 dSTA

model. Few more contours are seen for the sterdcedectrostatic fields which are elaborated hetee Yellow
contour seen @ region near the carbonyl group in oxiindole rilgws that the large bulky group is not favored in
this region for better activity.While, green cont@t phenyl ring irB region andC region suggest that presence of
large bulky group leads to increase in inhibitocyiaty.
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Figure 7. Compar ative molecular similarity indices analysis (CoM SIA) for most active compound 44 (a) Steric map (green, bulky group
desirable; yellow, bulky group not desirable), (b) electrostatic map contour map (blue, electropositive group desirable; red,
electronegative group desirable), (c) hydrophobic map (yellow, hydrophobic group desirable; white, hydrophilic group desirable)

In Figure 7b, the red contour in phenyl ring Batregion indicating that replacement of hydrogenmetowith

negatively charged atoms leads to increase indhigitg. This is evident from experimental activitf compounds
37-44 in which negatively charged group preserddeta potent inhibitory activity. While & region in oxiindole
ring introduction of positively charged substituelgads to increase in activity.
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Figure 8. Compar ative molecular similarity indices analysis (CoM SIA) for least active compound 18 (a) Steric map (green, bulky group
desirable; yellow, bulky group not desirable), (b) electrostatic map contour map (blue, electropositive group desirable; red,
electronegative group desirable), (c) hydrophobic map (yellow, hydrophobic group desirable; white, hydrophilic group desirable)

The yellow region in CoMSIA hydrophobic contour plioadicates that hydrophobic substituent in thigioa
enhance inhibitory activity while white contour mimglicates that hydrophilic substituent will impeactivity. In
figure 7c, the yellow contours for compound 44 obed inB region at phenyl ring indicate bulky and hydropicob
substituent are favorable in this region.

While, in C region white contour map indicates that hydrophdlubstituent are favored in this region. This is
evident from experimental activity values for corapd 34 to 44 in which hydrophobic substituent agrph ring
which shows potent inhibitory activity.

CONCLUSION

In the present study, COMFA and CoMSIA are perfatrsing set of vascular endothelial growth factareptor
inhibitors. Partial Least Square (PLS) analysis wasgformed in order to correlate the CoMFA and CoMS
descriptors with the observed experimental inhilyitactivity. A significant 3D-QSAR model was gente This
model was further validated by various statistigatameters and all were found to be significanhvekcellent
predictability. The model obtained from CoMFA and\ISIA have the values ofg0.758, f,.,=0.952, ONC= 6;
q°=0.805, f,.,=0.934, ONC=6 respectively. The predictive powetts model was validated by using test set of
nine 13 compound and was found to be the vaIue%,,,gjas 0.885and 0.861 of COMFA and CoMSIA respectively.
To check the robustness and statistical confidefitee derived models, the boot-strapping analysis performed.
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From the contour map study from each model it waseoved that bulky group is favored at B and Caedn

phenyl ring and oxiindole ring respectively. Butt @A region. Similarly negatively charged substituenplaenyl

ring in B region leads to potent inhibitory activiHence the CoMFA and CoMSIA models can be useithdéu to
design novel indolin derivatives as the potent ukscendothelial growth factor receptor inhibitor treatment of
cancer.
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