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ABSTRACT 
 
A series of indolin derivatives as anticancer agent was examined to determine the structural requirement of vascular 
endothelial growth factor receptor (VEGFR-2) inhibition by three-dimensional quantitative structural activity 
relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity 
indices analysis (CoMSIA) methods. Evaluation of 31 compounds (training set) served to established model, which 
was validated by evaluation of a set of 13 compounds (test set). The lowest energy conformer of a most active 
molecule obtained from the systematic search was used as the template structure for alignment of data set. The 
optimum partial least square analysis (PLS) for CoMFA and CoMSIA models exhibited good ‘leave-one-out’ cross-
validated coefficient (q2) of 0.758 and 0.805, the coefficient of determination (r2) of 0.950 and 0.934 and good 
predictive power of (r2 pred) of 0.885 and 0.861 respectively. The final model of QSAR along with information 
assembled from contour maps may be used for designing novel indolin derivatives as potent anticancer agents. 
 
Keywords: 3D-QSAR; CoMFA; CoMSIA; VEGFR-2; Indolin derivatives. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

After over half a century of chemotherapy research, cancer remains one of the most difficult life-threatening 
diseases to treat [1]. Extensive studies on cancer suggest that tyrosine kinase receptor play important role in 
regulating cancer. Vascular endothelial growth factor receptor is a type of membrane receptor tyrosine kinase [2-3]. 
The membrane receptor tyrosine kinase involved in tumorigenesis which consist of  epidermal cell growth factor 
receptor (EGFR) tyrosine kinase, and vascular endothelial growth factor receptor (VEGFR) tyrosine kinase [4-
5].When drug binds to the tyrosine kinase receptor it will be dimerize or couple with the cytoplasm kinase and 
activate it. after the activation of receptor tyrosine kinase domains phosphorylate the C terminal tyrosine residues, 
named as autophosphorylation, after that a subsequent phosphorylating activation process occurs called a kinase 
cascade which results in the amplification of the signal. Proliferation, division, adhesion, morphogenesis, 
angiogenesis, metastasis and antiapoptosis of cells such cellular process occurs due to phosphorylation of proteins. 
So,inhibition of Tyrosine kinase will result in the suppression of cell activity related to endothelial growth factor 
receptor leads to anticancer activity [6]. 
 
Currently, large number of VEGFR-2 kinase inhibitors are developed as anticancer agents consisting mainly 
pyridazine, indoline ketone, quinoline, quinazoline nucleus etc. while, large number of drugs are approved including 
sorafenib, sunitinib, axitinib, vandetanib, pazopanib etc. [7-11]. 
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A series of indolin derivatives with potent and selective inhibitory activity against  EGFR-2/KDR receptor has been 
reported [12]. In order to derive correlation between the structure and inhibitory activity of these inhibitors, we 
performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study using comparative 
molecular field analysis, (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). 
 
3D-QSAR is a wide term including every one of those QSAR techniques which relate perceptible target properties 
with processed particle based descriptors obtains from the spatial (3dimensional) representation of the atomic 
structures. This technique has advanced as a characteristic expansion to the established QSAR methodologies 
spearheaded by Hansch and Free-Wilson and others [13].  
 
CoMFA is utilized to determine the correlation between steric and electrostatic fields of compounds and their 
biological activity [14]. The CoMFA is applied to a set of compounds which show biological activity with same 
mechanism. At each part of the molecule and at a probe atom the steric and the electrostatic interaction energies 
calculated [15]. 
 
CoMSIA method was introduced by Klebe et al in 1994, which considers hydrogen bond donor, hydrogen bond 
acceptor and hydrophobic descriptors, in addition to steric and electrostatic features. To calculate similarity indices 
in CoMSIA, a probe atom is utilized at regular spaced grid points for the aligned compounds and Gaussian function 
is used for evaluation of field so, no arbitary definition of cut-off limits. Partial Least Square method is utilized to 
determine cross-validated r2 (r2cv) and conventional r2 values [16-17]. 
 
In this paper, 3D-QSAR studies using CoMFA and CoMSIA methods are applied to generate quantitative models 
and to specify the region where modification can be carried out to improve the inhibitory activity of compounds. 
The predictive ability of generated model was validated by external validation method. The model was further 
accessed to generate contour maps for providing information regarding the interaction of compounds and study the 
structure activity relationship. 
 

MATERIALS AND METHODS 
 

Datasets 
A set of 44 indolin derivatives reported as tyrosine kinase inhibitors were taken from literature for this study [12]. 
Using the ‘create set and random method’ option in QSAR project of SYBYL-X 2.0, the compounds were divided 
arbitrarily into a training set of 31 compounds (70%) and a test set of 13 compounds (30%) [18-20]. Training set and 
test set were used to generate 3D-QSAR models and validation of generated models. The activity of compounds 
were assessed with IC values i.e. IC50 (nM) which was converted into pIc50(-logIC50). Using Partial Least Square 
regression analysis the logarithmic affiliation aids to obtain symmetrically distributed data [21]. The Structure of 
indolin derivatives and its inhibitory activity data are specified in Table 1. 
 
Alignment and Molecular modeling 
In the study of 3D-QSAR, alignment is one of the most important steps. There are various alignment techniques in 
which molecules are aligned with comparable orientation and space conformation. SYBYL-X 2.0 (Tripos Associates 
Inc, St Louis, Mo, USA) was utilized to perform all the molecular modeling study. Sketch function was used to 
design the 3D structure and subsequently Gasteiger-Huckel charges applied to all compounds. Energy minimization 
was performed using the Standard tripos molecular mechanism force field. Here, the distill alignment function was 
performed [22]. The compound 44 having the highest activity was selected as template for alignment in the data set. 
Therefore, all the conformers were superimposed on each other and the common core structure formed which has 
been represented in Figure 1. All the molecules are aligned and represented in Figure 2. 
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Table 1. Indolin derivatives (1-44) used for training and test sets 
 

Compound no Compound VEGFR-2/ KDR inhibitory activity (nM) pIC50 

1* N
H

N

HN

O

 

97 7.013 

2 N
H

N

HN

O

 

119 6.924 

3 N
H

N

HN

O

 

88 7.055 

4* N
H

N

HN

O

F

 

633 6.198 

5 N
H

N

HN

O

F

 

125 6.903 

6 N
H

N

HN

O

F

F

 

106 6.974 

7 N
H

N

HN

O

F F

 

290 6.537 
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8* N
H

N

HN

O

CF3

 

19903 4.701 

9* N
H

N

HN

O

Cl Cl

 

2180 5.661 

10 N
H

N

HN

O

OCH3

 

327 6.485 

11* N
H

N

HN

O

OC2H5

 

9876 5.000 

12 N
H

N

HN

O

NH2

 

68 7.162 

13 N
H

N

HN

O
Br

 

51 7.292 

14 
N
H

N

HN

O

Br  

4880 5.311 
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15 

N
H

N

HN

O

Br  

4880 5.311 

16 N
H

N

HN

O
COOH

 

4 8.397 

17 
N
H

N

HN

O

COOH  

213 6.671 

18 

N
H

N

HN

O

HOOC  

23633 4.626 

19 N
H

N

HN

O
NH2

 

32 7.494 

20 N
H

N

HN

O
COOH

 

5 8.301 

21 N
H

N

HN

O
NH2

 

82 7.086 
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22* N
H

N

HN

O
COOH

H3CO

 

3 8.522 

23 N
H

N

HN

O
NH2

H3CO

 

60 7.221 

24 N
H

N

HN

O

O

NH
 

15 7.823 

25 N
H

N

HN

O

O

NH

O

 

69 7.161 

26 
N
H

N

HN

O

O

N

N
 

157 6.804 

27* N
H

N

HN

O S
O

O
NH

 

1134 5.945 

28* N
H

N

HN

O S
O

O
NH

O

 

660 6.180 
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29 
N
H

N

HN

O S
O

O
N

N
 

1950 5709 

30* N
H

N

HN

O O

N

H3CO

 

22 7.657 

31 N
H

N

HN

O
H
N

N

H3CO

 

279 6.560 

32 N
H

N

HN

O
H
N

N

H3CO

 

10 8.000 

33 N
H

N

HN

O
H
N

N O  

9 8.095 

34* N
H

N

HN

O
H
N

N
 

6 8.221 

35 N
H

N

HN

O
H
N

N
 

8 8.096 
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36* N
H

N

HN

O
H
N

N

O

 

13 7.886 

37* N
H

N

HN

O
H
N

N

F

 

3 8.522 

38* N
H

N

HN

O
H
N

N

F

F

 

4 8.397 

39 N
H

N

HN

O
H
N

N
 

16 7.795 

40 N
H

N

HN

O
H
N

N

F

 

7 8.154 

41 N
H

N

HN

O
H
N

N

Cl

 

4 8.397 

 
42 
 

N
H

N

HN

O
H
N

N

F

 

20  7.698 
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43 N
H

N

HN

O
H
N

N

F

F

 

11 7.958 

44 N
H

N

HN

O
H
N

N

F

 

29 7.537 

*indicate test set compound 
 

 
Figure 1. Fragment used as a common structure for aligning database for generation of CoMFA and CoMSIA models 

 

 
Figure 2. For CoMFA and CoMSIA study 1-44 aligned compounds 
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CoMFA and CoMSIA fields Generation  
For each alignment, the steric and electrostatic potential fields for CoMFA were calculated at each lattice 
intersection of a regularly spaced grid of 2.0 Å in all X, Y and Z directions. The van der Waals potential and 
columbic term, which represent respectively, electrostatic and steric fields, were calculated by use of Tripos force 
field. A sp3 carbon atom with van der Waals radius of 1.52 Å and +1.0 charges was served as the probe atom to 
calculate steric and electrostatic fields. The steric and electrostatic contributions were truncated to default ±30 
kcal/mol, and the electrostatic contribution was ignored at lattice intersections with maximum steric interaction. 
 
CoMSIA is an extension of CoMFA on the same assumption that changes in binding affinities of ligands are related 
to changes in molecular properties represented by the field. Besides, steric and electrostatic, hydrogen bond donor, 
hydrogen bond acceptor and hydrophobic descriptors are calculated in CoMSIA. A Gaussian function was 
introduced to determine the distance between probe atom and molecular atom at all grid point similarity indices at 
the molecular surface can be calculated in CoMSIA[23]. The equation for CoMSIA is as follow: 
 

��,�(�)
�

= ∑ ��
���,�� ����
��
��

�

 
 

where, A is the similarity index at grid point q, summed over all atoms i of the molecule j under investigation. 
Wprobe, k is the probe atom with radius 1 Å, charge +1, hydrophobicity +1, hydrogen bond donating +1 and hydrogen 
bond accepting +1. Wik is the actual value of the physicochemical property k of atom i. riq is the mutual distance 
between the probe atom at grid point q and atom i of the test molecule. α is the attenuation factor whose optimal 
value is normally between 0.2 and 0.4, with a default value of 0.3 [24]. 
 
Partial least square analysis and model validation 
For development of 3D-QSAR, CoMFA and CoMSIA studies were carried out using partial least square (PLS) 
approach which is an extension of multiple regression analysis [25-26]. All the data set of definite molecules was 
further treated by using PLS analysis technique and development of 3D contour maps with an optimum number of 
components 6 equally. PLS algorithm was used to develop the correlation between the structural property and 
biological activity. By use of PLS leave one out (LOO) and cross-validation analysis was performed. In cross- 
validation method one molecule is subtracted from the data set and its activity is predicted referencing the model 
obtain from rest of the data set. The cross-validation coefficient is represented as q2. The models were accepted if 
model provides value of q2 > 0.5 and r2> 0.641 [27]. It is generally estimated as: 
 

( )
( )

predicted observed2

observed mean

 Y Y
q 1   

 Y Y−

∑ −
= −

∑
 

 
While, the validation of conventional correlation co-efficient r2, standard error of estimate (SEE) and F values were 
carried out in non-cross validation method. At the end bootstrap analysis was performed to check the robustness of 
the generated model, It is a method which carried out numerous times (for good statistical information 100 times 
required) in which n random selections are carried out from the original set of n object,. During every run, certain 
molecules can be omitted from the Partial Least Square analysis, while remaining molecule must be involved many 
times. Bootstrap r2 (r2

bs) represented mean correlation coefficient. For CoMFA and CoMSIA analysis cross-
validation (r2cv) was carried out by two groups (‘leave half out’ method) [28]. 
 
Predictive correlation coefficient (r2

pred) 
The test set of nine compounds was used to determine the predictive power of generated 3D-QSAR model. 
Template structure was used to align the compounds and their pIC50 values were predicted. Based on the test set 
compounds, the predictive correlation coefficient (r2

pred) was determined by the following equation: 
 

�
�
��	�	

(��� !"��)

��

#

 
where, SD is the totality of squared deviation between biological activity of the test set compounds and mean 
activities of the training set compounds, and PRESS is the totality of squared deviations between experimental and 
predicted activity values for each compound in the test set [29]. 
 

(1) 

(2) 

(3) 
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RESULTS AND DISCUSSION 
 

CoMFA studies 
The training set and test set was utilized to develop CoMFA model. For model, Partial Least Square method was 
carried out with Leave One leave out which demonstrated the value of q2 

=0.758 through optimum 6 components. 
Column filtering 2.0 and same five components was utilized for Non cross-validated (r2

ncv) PLS analysis, which 
gives r2ncv = 0.952, significance value F = 122.338, standard error of estimation (SEE) = 0.255 and predictive power 
r2

pred of 0.885. A contribution of Steric and electrostatic fields were found to be 4.626 and 1.189, respectively.  
Results obtained throw CoMFA analysis is represented in Table 2. The Cross-validation and bootstrapping result 
strongly support reliability of the CoMFA model. The experimental and predicted pIC50 values for the training set 
and test set are shown in Table 4 and 5 respectively, and the experimental and predicted activities correlation in the 
form of scatter graphs are presented in Figures 3 and 4 respectively. 

 
Table 2. Statistical parameter by using PLS analysis for CoMFA 

 
PLS analysis parameter  CoMFA 
r2

loo (q2)  0.758 
ONC  6 
SEE 0.255 
r2

ncv 0.952 
F value 122.338 
Steric field contribution 4.626 
Electrostatic field contribution  1.189 
r2

bs 0.984 
SEEbs 0.154 
r2

cv 0.746 
Test set r2pred 0.885 

 
Table 3. Statistical parameter by using PLS analysis for CoMSIA 

 

Sr. No. Descriptors* 
r2

LOO(q2)/ 
ONC r2

ncv/ SEEncv F value r2
cv r2

bs/ SEEbs  

        
1 S and E 0.729/6 0.835/0.473 31.103 0.744 0.938/0.284  
2 D and A 0.569/6 0.911/0.348 62.817 0.563 0.957/0.255  
3 S, E and H 0.805/6 0.934/0.299 87.329 0.714 0.971/0.196  
4 S, E and A 0.751/6 0.883/0.398 46.558 0.767 0.978/0.137  
5 S, E and D 0.688/6 0.907/0.355 60.266 0.687 0952/0.240  
6 D, A and H 0.737/6 0.945/0.273 106.04 0.737 0.971/0.200  
7 D, A and S 0.648/6 0.920/0.330 70.656 0.641 0.952/0248  
8 D, A and E 0.635/6 0.916/0337 67.223 0.642 0.950/0.254  
9 S, D and H 0.643/6 0.940/0.285 96.400 0.592 0.979/0.164  
10 S, E, D and A 0.666/6 0.916/0.201 67.365 0.665 0.963/0.223  
11 S, E, D and H 0.750/6 0.929/0.311 80.397 0.770 0.963/0.217  
12 S, E, A and H 0.782/6 0.931/0.307 82.615 0.737 0.961/0.220  
13 D, A, H and S 0.711/6 0.943/0.278 101.97 0.755 0.975/0.194  
14 D, A, H and E 0.722/6 0.943/0.278 101.58 0.761 0.969/0.201  
15 S, E, D, A and H 0.731/6 0.937/0.293 91.130 0.725 0.967/0.215  

 
CoMSIA studies 
Same training set and test set was utilized for CoMSIA model development because, significant results were found 
with CoMFA. Steric, electrostatic, hydrophobic, hydrogen bond acceptor and hydrogen bond donor fields were used 
for generation of CoMSIA model with various combinations of these molecular descriptors as shown in Table 6. 
The statistical quality of hybrid models was examined by studying the corresponding q2 values. The model‒3 
generated using descriptors steric, electrostatic and a hydrophobic field was found to be best CoMSIA model. So 
this model was further utilized for analysis. The cross-validation (q2) value for corresponding CoMSIA model was 
obtained 0.805 by six optimum numbers of components (ONC). Column filtering 2.0 and Similar six components 
was utilized for non-cross-validated (r2

ncv) PLS analysis, resulting in r2
ncv= 0.934 and SEE = 0.299. The steric 

contribution = 1.113, electrostatic contribution = 1.498, hydrophobic contribution = 2.573 predictive power of 
CoMSIA r2pred was found to be 0.961. Leave half out cross-validation method and boot strapping analysis was 
performed to determine the quality of developed model. For the CoMSIA, r2cvwas found to be 0.714. To analyze the 
internal reliability within the dataset the mean r2value of bootstrapping analysis (bootstrapped r2

bs) and SEEbs were 
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performed which was found to be 0.971 and 0.196 respectively. Statistical parameter obtained throws CoMSIA 
model is represented in Table.3. 
 
According to the CoMSIA model, experimental and predicted pIC50 values for training set and test set are 
represented in Table. 4 and 5 respectively while, the relationships between experimental and predicted inhibitory 
activities are represented in the form of scatter graphs in Figures 3 and 4 respectively. 

 
Table 4. Experimental, predicted pIC50 and residual values of training set compounds by CoMFA and CoMSIA analysis 

 
    CoMFA CoMSIA 
Compound   no. Experimental   value   Predicted  Residual     Predicted     Residual 
 

2 6.924 6.436 0.488 6.653 0.271 
3 7.055 6.725 0.330 6.838 0.217 
5 6.903 6.967 -0.064 6.929 -0.026 
6 6.974 6.826 0.148 6.566 0.408 
7 6.537 6.232 0.305 6.164 0.373 
10 6.485 6.495 -0.009 6.548 -0.062 
12 7.167 6.936 0.231 6.726 0.441 
13 7.292 6.846 0.446 6.608 0.684 
14 5.311 6.099 -0.787 7.051 -1.739 
15 5.311 5.404 -0.092 5.605 -0.293 
16 8.397 8.709 -0.311 8.365 0.032 
17 6.670 6.361 0.310 5.841 0.830 
18 4.626 5.045 -0.418 5.281 -0.654 
19 7.494 7.771 -0.276 7.428 0.066 
20 8.301 8.404 -0.103 8.446 -0.145 
21 7.086 7.184 -0.098 7.656 -0.570 
23 7.221 7.308 -0.086 7.436 -0.214 
24 7.823 7.785 0.038 7.368 0.455 
25 7.161 7.552 -0.390 7.250 -0.088 
26 6.804 6.919 -0.119 7.032 -0.227 
29 5.709 5.576 0.133 5.578 0.131 
31 6.560 6.431 0.129 7.276 -0.715 
32 8.000 8.074 -0.074 7.444 0.556 
33 8.090 8.165 -0.075 8.272 -0.182 
35 8.096 8.035 0.061 7.916 0.180 
39 7.795 7.968 -0.172 8.026 -0.230 
40 8.154 8.242 -0.0871 8.362 -0.207 
41 8.397 8.312 0.085 7.794 0.603 
42 7.698 7.706 -0.0071 7.735 -0.036 
43 7.958 7.814 0.144 7.746 0.212 
44 7.537 7.523 0.014 7.449 0.088 
      

 
Table 5. Experimental, predicted pIC50 values and residual values of test set compound by CoMFA and CoMSIA analysis 

 
   CoMFA CoMSIA 

Compound no. Experimental       value   Predicted      Residual        Predicted        Residual 

 
1 7.013 6.818 -0.804 7.000 0.132 
4 6.198 6.250 -0.051 6.525 -0.051 
8 4.701 5.004 -0.300 4.936 -0.235 
9 5.661 5.300 0.361 5.184 0.477 
11 5.005 5.143 -0.138 5.272 -0.267 
22 8.522 8.475 0.047 8.008 0.514 
27 5.945 5.961 -0.015 6.205 -0.259 
28 6.180 6.261 -0.081 6.244 -0.063 
30 7.657 7.773 -0.115 7.839 -0.181 
34 8.221 8.164 0.057 8.000 0.221 
36 7.880 7.74 0.146 7.964 -0.078 
37 8.522 8.414 0.108 8.537 -0.014 
38 8.397 8.313 0.08 8.363 0.034 
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Figure 3. Graph of actual and predicted pIC50 value for training set by CoMFA and CoMSIA analysis 
 

 
 

Figure 4. Graph of actual and predicted pIC50 value for test set by CoMFA and CoMSIA analysis 
 
3D-QSAR visualization 
CoMFA 
The significant feature of CoMFA model is the outcomes obtained by 3D coefficient contour maps which are 
calculated as the variation in the molecular fields multiplied by the 3D-QSAR coefficient by using Model 
stDev*Coeff. CoMFA contour maps were generated to identify the important regions in 3D space surrounding the 
molecules, so that modification can be carried out in those areas to increase the inhibitory activity, which may be 
utilized to improve VEGFR-2 inhibitory activity. 
 
The most active compound 44 and least active compound 18 were used to generate contour maps by managing style 
of contour to transparent for better analysis of contour surrounding compound 44 which represented in Figures 6 (a, 
b) and for compound 18 represented in Figure 6 (c, d) includes steric and electrostatic region respectively. The steric 
region signs two colours in contour maps i.e. green and yellow. In which green color indicates the favourable part, 
keeping the bulkier group which leads to an increase in the biological activity whereas; yellow color indicates a 
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decrease in the biological activity due to the bulkier region. Further, the electrostatic contour map shows red and 
blue color. The red color and blue color indicates the favourable and unfavourable region respectively. Here, red 
color region indicate that biological activity enhanced by negative charge while, blue color region indicates positive 
charge leads to increase in biological activity. 
 
CoMSIA 
CoMSIA contour maps were generated similarly as contour maps generated by CoMFA. For the CoMSIA total 5 
contour maps were generated; for steric, electrostatic, hydrophobic, donor and acceptor fields. The steric and 
electrostatic region has the same description like CoMFA. Whereas; the hydrophobic has yellow and white color 
codes in which yellow color indicate hydrophobic group favorable; while white color indicates hydrophobic group 
unfavorable. The donor has cyan and purple color; cyan color indicates donor group favorable; while purple 
indicates acceptor group favorable. They show which part/substitute can help to find out the favorable and 
unfavorable region. 
 
Analysis of CoMFA and CoMSIA contour map 
CoMFA 
Figure 6 (a, c) depicts the CoMFA steric contour plot. Whereas, Figure 5 represents most active compound 44 is 
divided into three major regions (A, B and C). A large cloud of green contour found surrounding C region at 
oxiindole ring indicates that the introduction of a bulky group in this region is favored which explains the 
importance of steric interaction of ligand with receptor. 
 
Similarly, green contour near B region at phenyl ring indicate that bulky group is favored at this region. This is 
evident from the experimental activity values for compounds 34-44 in which at both regionB and C large bulky 
group, than other compound 1-34 leads to potent VEGFR-2 inhibitory activity. 
 
A yellow contour at A region in imidazole ring at C-3 position indicate the bulky group is not favored at this region 
which leads to decrease in activity. While at C region in oxiindole ring very large bulky group leads to decrease in 
activity. 
 

N
H

N

HN

O
H
N

N

F

 
 
 
 
 

 
 

Figure 5. Most potent compound 44 divided into (A), (B) and (C) regions 
 

(B) (A) 

(C) 
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Figure 6. Steric contour maps (a, c) and electrostatic contour maps (b, d) generated by comparative molecular field analysis (CoMFA) 
for the most active compound 44 (a, b) and the less active compound 18 (c, d), respectively 

 
Figure 6(b, d) displays the electrostatic contour map using CoMFA. The electrostatic fields are represented by blue 
and red contour map. Compound 44 was again selected as the reference standard as seen in figure 6b, blue contour 
near B and C region indicates that need for positively charged substituent for electrostatic interaction with the 
receptor to show potent inhibitory activity. While, red contour at A region at imidazole ring indicates that 
introduction of negatively charged group leads to increase in the biological activity. 
 
CoMSIA 
Contour map for steric and electrostatic fields in CoMSIA models are almost the same as those in the CoMSIA 
model. Few more contours are seen for the steric and electrostatic fields which are elaborated here. The yellow 
contour seen at B region near the carbonyl group in oxiindole ring shows that the large bulky group is not favored in 
this region for better activity.While, green contour at phenyl ring in B region and C region suggest that presence of 
large bulky group leads to increase in inhibitory activity.  
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(b) 
 

(d) 
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Figure 7. Comparative molecular similarity indices analysis (CoMSIA) for most active compound 44 (a) Steric map (green, bulky group 
desirable; yellow, bulky group not desirable), (b) electrostatic map contour map (blue, electropositive group desirable; red, 

electronegative group desirable), (c) hydrophobic map (yellow, hydrophobic group desirable; white, hydrophilic group desirable) 
 
In Figure 7b, the red contour in phenyl ring at B region indicating that replacement of hydrogen atoms with 
negatively charged atoms leads to increase in the activity. This is evident from experimental activity of compounds 
37-44 in which negatively charged group present leads to potent inhibitory activity. While at B region in oxiindole 
ring introduction of positively charged substituents leads to increase in activity. 
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Figure 8. Comparative molecular similarity indices analysis (CoMSIA) for least active compound 18 (a) Steric map (green, bulky group 
desirable; yellow, bulky group not desirable), (b) electrostatic map contour map (blue, electropositive group desirable; red, 

electronegative group desirable), (c) hydrophobic map (yellow, hydrophobic group desirable; white, hydrophilic group desirable) 
 
The yellow region in CoMSIA hydrophobic contour plot indicates that hydrophobic substituent in this region 
enhance inhibitory activity while white contour map indicates that hydrophilic substituent will improve activity. In 
figure 7c, the yellow contours for compound 44 observed in B region at phenyl ring indicate bulky and hydrophobic 
substituent are favorable in this region.  
 
While, in C region white contour map indicates that hydrophilic substituent are favored in this region. This is 
evident from experimental activity values for compound 34 to 44 in which hydrophobic substituent at phenyl ring 
which shows potent inhibitory activity. 
 

CONCLUSION 
 

In the present study, CoMFA and CoMSIA are performed using set of vascular endothelial growth factor receptor 
inhibitors. Partial Least Square (PLS) analysis was performed in order to correlate the CoMFA and CoMSIA 
descriptors with the observed experimental inhibitory activity. A significant 3D-QSAR model was generated. This 
model was further validated by various statistical parameters and all were found to be significant with excellent 
predictability. The model obtained from CoMFA and CoMSIA have the values of q2=0.758, r2ncv=0.952,     ONC= 6; 
q2=0.805, r2ncv=0.934, ONC=6 respectively. The predictive power of the model was validated by using test set of 
nine 13 compound and was found to be the values of r2

predas 0.885and 0.861 of CoMFA and CoMSIA respectively. 
To check the robustness and statistical confidence of the derived models, the boot-strapping analysis was performed. 

(c)   
 

(a)   
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From the contour map study from each model it was observed that bulky group is favored at B and C region in 
phenyl ring and oxiindole ring respectively. But not at A region. Similarly negatively charged substituent at phenyl 
ring in B region leads to potent inhibitory activity. Hence the CoMFA and CoMSIA models can be used further to 
design novel indolin derivatives as the potent vascular endothelial growth factor receptor inhibitor for treatment of 
cancer. 
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