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ABSTRACT 
 
Quantitative structure activity relationship (QSAR) study was performed on a series of 2-(4-(piperidin-1-
yl)piperidin-1-yl)-6-substituted thiazolo[4,5-b]pyridines possessing H3 receptor antagonistic activity for 
establishing quantitative relationship between biological activity and their physicochemical/ structural properties. 
Several statistical regression expressions were obtained using partial least squares regression (PLSR) analysis. 
Three statistical significant models were generated [r2 = 0.8130, q2 = 0.6103, pred_r2 = 0.9818; r2 = 0.8166, q2 = 
0.6213, pred_r2 = 0.9421 and  r2 = 0.8164, q2 = 0.6392, pred_r2 = 0.9399 for model 1, 2 and 3 respectively] 
indicating that biological activity is influenced by the descriptors T_C_N_5, T_N_O_2, 
XKMostHydrophobicHydrophilicDistance and XAHydrophilicArea. 
 
Keywords: 2D-QSAR, H3 receptor antagonists, thiazolo[4,5-b]pyridines 
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INTRODUCTION 
 

Histamine plays a variety of physiological roles in the central nervous system (CNS) and peripheral tissues through 
the four known G protein-coupled receptors, H1, H2, H3 and H4 [1]. H3 receptor is expressed in both the central and 
peripheral nervous system where it is located presynaptically on both histaminergic neurons, as an autoreceptor, and 
other neuronal systems, as a heteroreceptor regulating release of other neurotransmitters e.g., dopamine, 
norepinephrine, acetylcholine, glutamate and serotonin [2-4]. 
 
Activation of histamine H3 receptor (H3R) by the endogenous ligand, histamine reduces neurotransmitter release [2, 
5-8], while antagonism of the H3R leads to enhanced neurotransmitter release [9-10]. This improved 
neurotransmitter release by H3 receptor antagonist offers a promising approach to the treatment of a number of CNS 
disorders [11-14], including attention deficit hyperactivity disorder [15,16], sleep disorders [17], epilepsy [18] and 
schizophrenia [19]. Furthermore, given the role of histamine in regulating appetite, H3 receptor ligands are also 
active in obesity [20-25]. 
 
Thus, H3 receptor antagonists may be potential therapeutic agents for attention deficit/hyperactivity disorder, 
Alzheimer’s disease, mild cognitive impairment or schizophrenia and obesity.  
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Imidazole based H3 antagonists were among the earliest structures investigated [26]. Drug-drug interactions through 
inhibition of hepatic cytochrome P450 enzymes and also relatively poor CNS penetration [27,28] are the two major 
drawbacks to this class of compounds.  
 

More recently, interest in the field has turned to non-imidazole class of H3 antagonists as these compounds offer 
improvements in binding affinity, CNS penetration and reduced potential for CYP inhibition [29]. The majority of 
the reported non-imidazole H3 antagonists possess an aromatic ring-linker-basic amine motif. Notable examples 
include ABT-239 [30-32], GSK-189254 [33], UCL-2190 [34], A-331440 [35] and JNJ-5207852 [36]. 
 
The main objective of the present study is the search of some novel thiazolo[4,5-b]pyridine derivatives that would 
show a promise to become useful H3 receptor antagonist. For this purpose, a series of thiazolo[4,5-b]pyridine 
derivatives [37] as H3 receptor antagonist were selected, in order to develop quantitative structure activity 
relationship (QSAR) model(s), which can be used for drug design. 
 

MATERIALS AND METHODS 
 

Data set: A dataset of 22 molecules has been taken from the literature [37]. Selected data set, their biological 
activity is shown in Table-1. Biological data’s represented as human H3 binding Ki values (nM) were converted into 
log (1/Ki) [pKi]  for computational work. 
 

Table-1: General structure of 2-[4-(piperidin-1-yl)piperidin-1-yl]-6-substituted thiazolo[4,5-b]pyridines and their biological activities 
(data set of 22 molecules) 

N N

S
N N

R

 

S. No. Compounds R pKi 
1 12a -H 6.856 
2 12b -NH2 7.102 
3 12c -CN 7.443 
4 12d -Cl 6.903 
5 12e -NHCOMe 7.508 

6 12f 

NC

 

7.552 

7 12g 
F

CN

 

7.638 

8 12h 

H3C O

 

7.481 

9 12i 

OCH3

 

6.853 

10 12j 

HO

 

7.229 

11 12k 

NF

 

7.200 
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12 12l N

F

 

7.886 

13 12m 

N F

 

7.376 

14 12n 

N

CN

 

7.795 

15 12o 

NH3CO

 

7.455 

16 12p N

OCH3

 

8.397 

17 12q 

NH3C

 

6.876 

18 12r 

NHO

 

7.376 

19 12s 

NH2N

 

7.795 

20 12t 
N

H
NH3C

O
 

8.000 

21 12u 
N

N

 

7.602 

22 12v 

N

NH2N

 

7.180 

 

QSAR Analysis: Structure of the compounds of selected series were drawn using 2D Draw application option of 
QSAR Plus [38] and converted to 3D structure by exporting to QSAR Plus window. Energy minimizations of the 
compounds were done by using Merck Molecular Force Field (MMFF) method [Charge-Modified Qeq charge; 
Maximum number of cycles = 10,000; Convergence criteria (root mean square gradient) = 0.01; Gradient 
type=analytical and 1.0 as constant (medium’s dielectric constant which is 1 for in vacuo) in dielectric properties. 
The default values of 20.0 and 10.0 Kcal/mol were used for electrostatic and steric energy cutoff] followed by batch 
optimization. After optimization, number of physicochemical (Individual (HAcceptorcount, H-Donor count , X 
logP, SMR, polarisablity, etc.), retention index (Chi), atomic valence connectivity index (ChiV), Path count, Chi 
chain, Chiv chain, Chain Path Count, Cluster, Path cluster, Kapa, Element count (H, N, C, S, O, Cl, Br, I), Estate 
numbers (SsCH3 Count, SdCH2 Count, SssCH2 Count, StCH count etc.), Estate contribution (SsCH3-index., 
SdCH2- index, SssCH2- index, StCH index) and Polar surface area), alignment (for example, T_2_O_7, T_2_N_5, 
T_2_2_6, T_C_O_1, T_O_Cl_5 etc.) and atom type (based on MMFF atom types and their count in each molecule. 
In MMFF, there are 99 atom types and hence 99 descriptors indicating number of times that atom has occurred in a 
given molecule are generated) independent descriptors were calculated for the data set. Calculated descriptors and 
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biological activity were taken as independent and dependent variables respectively. Random, manual and sphere 
exclusion methods were used for creation of training and test data set. Partial least squares regression (PLSR) 
statistical method was used to generate QSAR models. Following statistical parameters were considered to select the 
statistical significance QSAR models: squared correlation coefficient (r2), F-test (F-test for statistical significance of 
the model), and cross-validated squared correlation coefficient (q2). 
 
Generation of training and test set of compounds: In order to evaluate the QSAR model, data set was divided into 
training and test set using Sphere Exclusion, random and manual data selection methods. Training set is used to 
develop the QSAR model for which biological activity data are known. Test set is not included in model generation, 
used to assess the predictive power of the model. 
 
Sphere Exclusion method: In this method dissimilarity value provides an idea to handle training and test set size. It 
needs to be adjusted by trial and error until a desired division of training and test set is achieved. Increase in 
dissimilarity value results in increase in number of molecules in the test set. 
 
Random selection: In order to construct and validate the QSAR models, both internally and externally, the data sets 
were divided into training (85% of total data set) set and test sets (15%) in a random manner. Ten trials were run. 
 
Manual data selection: Whole range of activities was sorted on the basis of results obtained in sphere exclusion 
and random methods. 
 
After the creation of training and test set, Min and Max value of the test and training set is checked, using the QSAR 
tool, if the values are not following the Min – Max, then the training / test set is again set and procedure is repeated. 
If the Min – Max is following, then Partial Least Squares Regression (PLSR) used for model building (Cross 
correlation Limit – < 0.5; No. of variables – 1/5th of total training set; Term selection – r2; F test: In – 4.00, Out – 
3.99; Model building criteria – Cross validation). 
 
Partial least square regression (PLSR): PLSR was used for model generation. PLSR is an expansion of the 
multiple linear regression (MLR). PLSR is probably the least restrictive of the various multivariate extensions of the 
multiple linear regression models. PLSR can be used as an exploratory analysis tool to select suitable predictor 
variables and to identify outliers before classical linear regression. All the calculated descriptors were considered as 
independent variable and biological activity as dependent variable. 
 

RESULTS AND DISCUSSION 
 

When all the 22 molecules of the selected series were subjected to partial least squares regression (PLSR) analysis, 
the following significant QSAR models with equations were obtained for H3 receptor antagonistic activity (Table-2). 
 
In the above QSAR models, n is the number of molecules (Training set) used to derive the QSAR model, r2 is the 
squared correlation coefficient, q2 is the cross-validated correlation coefficient, pred_r2 is the predicted correlation 
coefficient for the external test set, F is the Fisher ratio, reflects the ratio of the variance explained by the model and 
the variance due to the error in the regression. High values of the F–test indicate that the model is statistically 
significant. r2 se, q2 se and pred_r2se are the standard errors terms for r2, q2 and pred_r2 (smaller is better). R2 is the 
correlation coefficient for observed vs. predicted biological activity. 
 
From this table, the equation of Model-01 explains 82% (r2=0.8163) of the total variance in the training set as well 
as it has internal (q2) and external (pred_r2) predicative ability of 61 % and 99% respectively. Model-02 explains 
81% (r2= 0.81) of the total variance in the training set as well as it has internal (q2) and external (pred_r2) 
predicative ability of 62% and 94% respectively. Model-03 explains 82% (r2= 0.8164) of the total variance in the 
training set as well as it has internal (q2) and external (pred_r2) predicative ability of 64 % and 94 % respectively. 
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Table-2: List of predictive QSAR models with equation generated from PLSR 
 

Model Method Test 
set 

Equation 

1 Manual selection method/ 
trial 27/ PLS 

 

12a 
12h 
12k 

pKi=  0.2714 T_C_N_5 + 0.4399 T_N_O_2 - 0.0723 
XKMostHydrophobicHydrophilicDistance - 0.0058 
XAHydrophilicArea + 5.3094                
Optimum Components = 3  
n = 19             Degree of freedom = 15           F test = 21.737 
r2 = 0.8130     q2 = 0.6103                            pred_r2 = 0.9818 
 r2 se = 0.1911      q2 se = 0.2759               pred_r2se = 0.0643  
Alpha Rand R^2 = 0.000      Alpha Rand Q^2 = 0.001        
Alpha Rand Pred R^2 = 0.05 

2 Manual selection method/ 
trial 32/ PLS 

 

12a 
12g 
12h 
12j 

pKi = 0.2782 T _C_N_5 + 0.4285 T_N_O_2 -0.0717 
XKMostHydrophobicHydrophilicDistance -0.0061 XAHydrophilicArea + 5.2529              
Optimum Components = 3 
n = 18              Degree of freedom = 14           F test = 20.7769 
r2 = 0.8166       q2 = 0.6213                          pred_r2 = 0.9421 
r2 se = 0.1954   q2 se = 0.2808                   pred_r2se = 0.0934  
Alpha Rand R^2 = 0.000      Alpha Rand Q^2 = 0.05        
Alpha Rand Pred R^2 = 0.1 

3 Manual selection method/ 
trial 31/ PLS 

 

12a 
12g 
12h 
12k 

pKi = 0.2790   T_C_N_5 + 0.4326 T_N_O_2 - 0.0724   
XKMostHydrophobicHydrophilicDistance ‒ 0.0061XAHydrophilicArea + 5.2480                  
Optimum Components = 3 
n = 18             Degree of freedom = 14           F test = 20.7460 
r2 = 0.8164       q2 = 0.6392                           pred_r2 = 0.9399 
r2 se = 0.1950   q2 se = 0.2734                   pred_r2se = 0.0968  
Alpha Rand R^2 = 0.001      Alpha Rand Q^2 = 0.001        
Alpha Rand Pred R^2 = 0.05 

 
Table-03 represents the predicted biological activity by the model for training and test set. The plot of observed vs. 
predicted activity provides an idea about how well the model was trained and how well it predicts the activity of the 
external test set. From the plot (Figure-01 to 3) it can be seen that the model is able to predict the activity of the 
training set quiet well as well as external test set, providing confidence of the model. 
 

Table-03: Actual and predicted activity for Training set and test set 
 

S. No. Compounds Actual 
Model-1 Model-2 Model-3 

Predicted Predicted Predicted 
1 12a 6.856 6.790* 6.781* 6.777* 
2 12b 7.102 6.878 6.871 6.867 
3 12c 7.443 7.280 7.282 7.281 
4 12d 6.903 6.974 6.968 6.966 
5 12e 7.508 7.436 7.416 7.417 
6 12f 7.552 7.406 7.432 7.427 
7 12g 7.638 7.747 7.778* 7.775* 
8 12h 7.481 7.503* 7.508* 7.507* 
9 12i 6.853 7.262 7.279 7.275 
10 12j 7.229 7.202 7.221* 7.216 
11 12k 7.200 7.142* 7.156 7.151* 
12 12l 7.886 7.782 7.811 7.808 
13 12m 7.376 7.177 7.190 7.186 
14 12n 7.795 7.644 7.668 7.665 
15 12o 7.455 7.494 7.497 7.495 
16 12p 8.397 8.145 8.162 8.163 
17 12q 6.876 7.093 7.107 7.102 
18 12r 7.376 7.551 7.554 7.553 
19 12s 7.795 7.930 7.944 7.945 
20 12t 8.000 8.146 8.142 8.146 
21 12u 7.602 7.578 7.582 7.582 
22 12v 7.180 7.240 7.239 7.235 

*indicates compounds are in the test set for the corresponding model and rest are in the training set. 
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Figure-01: Graph between actual and predicted biological activity of training and test set for Model-1. 
 

   
 

Figure-02: Graph between actual and predicted biological activity of training and test set for Model-2. 
 

 
 

Figure-03: Graph between actual and predicted biological activity of training and test set for Model-3. 
 

 
Model-1     Model-2    Model-3 

Figure-04: Contribution plot for Model 1-3. 
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Model-1     Model-2    Model-3 

Figure-05: Data fitness plot for Model 1-3. 
 

Interpretation of the Model 01 (Most significant) 
Among the three significant models generated (Table-02), model 1 is the most significant one as it is having the 
highest predicted correlation coefficient value.  
 
The equation 1 explains 82% (r2 = 0.8163) of the total variance in the training set and has an internal (q2) and 
external (pred_r2) predictive ability of ~61% and ~99% respectively. The F test shows the statistical significance of 
99.99 % of the model which means that probability of failure of the model is 1 in 10000. In addition, the 
randomization test shows confidence of 95 (Alpha Rand Pred R^2 = 0.05) that the generated model is not random 
and hence may be chosen as the QSAR model.  
 
In the QSAR model 1, the positive coefficient value of T_C_N_5 [This  is the count of number of Carbon atoms 
(single, double or triple bonded) separated from any Nitrogen atom (single, double or triple bonded) by 5 bond 
distance in a molecule] and T_N_O_2 [this  is the count of number of Nitrogen atoms (single, double or triple 
bonded) separated from any Oxygen atom (single or double bonded) by 2 bonds in a molecule] on the biological 
activity indicated that higher value leads to better H3 receptor antagonistic activity (compound 12p, 12t, 12l, 12s, 
etc.) whereas lower value leads to decrease activity (compound 12b, 12d, 12q, 12i, etc.). Negative coefficient value 
of XKMostHydrophobicHydrophilicDistance [this descriptor signifies distance between most hydrophobic and 
hydrophilic point on the vdW surface] and XAHydrophilicArea [vdW surface descriptor showing hydrophilic area] 
on the biological activity indicated that lower values leads to good H3 receptor antagonistic activity (compound 12e, 
12s, 12t, 12u, etc.) while higher value leads to reduced activity (compound 12i, 12q, etc.).  
 
Figure-04 represents the contribution chart showing contribution of the various descriptors playing important role in 
determining the histamine H3 receptor antagonistic activity and Figure-05 represents the data fitness plot for model 
01-03. Contribution chart for model 1 reveals that the descriptors T_C_N_5, T_N_O_2, 
XKMostHydrophobicHydrophilicDistance and XAHydrophilicArea contributing 38%, 20%, 25% and 17 % 
respectively. 
 
The observed vs. predicted activity provides an idea about how well the model was trained and how well it predicts 
the activity of the external test set. From the plot it can be seen that model is able to predict the activity of training 
set quite well (all points are close to the regression line) as well as external test set providing confidence in the 
predictive ability of the model. From Figure 1-3, it is seen that the plots of observed vs. predicated activity for 
different models provide an idea about how well the models were trained and how well they predict the activity of 
the external test set. 
 

CONCLUSION 
 

A quantitative structure activity relationship study was performed on a series of 2-(4-(piperidin-1-yl)piperidin-1-yl)-
6-substituted thiazolo[4,5-b]pyridines possessing H3 receptor antagonistic activity for establishing quantitative 
relationship between biological activity and their physicochemical / structural properties. 
 
Two dimensional quantitative structure activity relationship (2D QSAR) study by means of partial least square 
regression (PLSR) method was performed on a series of 2-(4-(piperidin-1-yl)piperidin-1-yl)-6-substituted 
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thiazolo[4,5-b]pyridines possessing H3 receptor antagonistic activity using molecular design suite (VLifeMDS). This 
study was performed with 22 compounds (data set) using sphere exclusion (SE) algorithm, random and manual 
selection methods for the division of the data set into training and test set. PLSR methodology with stepwise (SW) 
forward-backward variable selection method was used for building the QSAR models. Statistically significant 
QSAR models were generated. Among them most significant model has squared correlation coefficient (r2), cross 
validated correlation coefficient (q2) and predictive correlation coefficient (pred_r2) 0.813, 0.6103 and 0.9818 
respectively. The QSAR model indicates that the descriptors T_C_N_5, T_N_O_2, 
XKMostHydrophobicHydrophilicDistance and XAHydrophilicArea contributing 38%, 20%, 25% and 17 % 
respectively to biological activity. The positive coefficient value of T_C_N_5 and T_N_O_2 on the biological 
activity indicated that higher value leads to better H3 receptor antagonistic activity whereas lower value leads to 
decrease activity. Negative coefficient value of XKMostHydrophobicHydrophilicDistance and XAHydrophilicArea 
indicates that lower value leads to better H3 receptor antagonistic activity whereas higher value leads to decrease 
activity. 
 
In present study an attempt has been made to identify the necessary structural and substituent requirements. From 
the present QSAR analysis, three best models were generated among which any one can be used for predicting the 
activity of the newly designed compounds in finding some more potent molecules. Finally, it is concluded that the 
work presented here will play an important role in understanding the relationship of physiochemical parameters with 
structure and biological activity. By studying the QSAR model one can select the suitable substituent for active 
compounds with maximum potency. 
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