
Available online at www.derpharmachemica.com 
 

 
 

 
 

 
Scholars Research Library 

 

Der Pharma Chemica, 2010, 2(4): 369-377  
(http://derpharmachemica.com/archive.html) 

 

 
ISSN 0975-413X 

 

369 

www.scholarsresearchlibrary.com 

QSAR Studies on Keto Sulfones Derivatives as Inhibitors of 11β-
Hydroxysteroid Dehydrogenase Type 1 

 
Shashank Trivedi, Prakash C. Patidar, Pradeep K. Chaurasiya, Rajesh S. Pawar,  

Umesh K. Patil, Pradeep K. Singour* 

 
 
Computational & Synthetic Chemistry Division, Department of Pharmaceutical Chemistry, VNS 

Institute of Pharmacy, Barkheda nathu, Neelbud, Bhopal (M.P.) India 
______________________________________________________________________________ 
 
ABSTRACT 
 
Metabolic disorders, such as obesity and type 2 diabetes, have assumed epidemic proportions 
and present major challenges for healthcare systems. The keto sulfones derivatives were 
discovered as potent and selective 11β-HSD1 inhibitors. The studies show that these compounds 
are not active against 11β-HSD2 and thus easily surpass the side effects of inhibition of 11β-
HSD2 such as sodium retention, hypokalemia and hypertension. So here we have tried to explore 
the series of β- keto sulfones derivatives, to develop novel, selective and potent orally active 
compounds through QSAR analysis. The QSAR study carried out on 23 keto sulfones derivatives 
as inhibitors of 11β-HSD. Molecular modeling studies were performed using chemoffice 6.0 
supplied by cambridgesoft. The sketched structures were subjected to energy minimization & the 
lowest energy structure was used to calculate the physiochemical properties. The regression 
analysis was carried out using a computer program called SYSTAT 10.2. The best models were 
selected from the various statistically significant equations. The study revealed that the LUMO, 
Dipole-dipole energy, NVDW contributed positively, and Heat of formation contributed 
negatively. The analysis resulted in 2-D equation, which suggests that, n=16, r=0.953, r2=0.909, 
Standard error of estimate(s)=0.342 & validated r2(q2) =0.7135. This study can help in rational 
drug design and synthesis of new selective 11β-HSD1 with predetermined affinity. 
 
Keywords: HSD1; 11β-HSD1; Diabetes; Metabolic syndrome; Keto sulfones derivatives; 
QSAR. 
______________________________________________________________________________ 
 

INTRODUCTION 
 
Glucocorticoids are well-known ubiquitous hormones playing a key role in modulating immune 
and inflammatory responses, regulating energy metabolism and cardiovascular homeostasis and 
the body’s responses to stress. Opposing the action of insulin, glucocorticoids stimulate 
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production of glucose, switching the homeostatic balance towards catabolism. Thus, 
glucocorticoids promote gluconeogenesis but inhibit beta-cell insulin secretion and peripheral 
glucose uptake.[1,2] They also increase protein breakdown and lipolysis with consequent fatty 
acid mobilisation.[3] Recent investigations have implicated aberrant glucocorticoid receptor 
(GR) signalling in the development of several phenotypes associated with metabolic syndrome. 
Metabolic syndrome is characterized by abdominal obesity, impaired glucose tolerance, 
dyslipidemia, low levels of high density lipoprotein (HDL) cholesterol, and hypertension[4,5]. 
The major activator of the GR in humans is cortisol, and the adrenal cortex is the major source of 
circulating cortisol. Recent evidence suggests that GR signalling depends not only on the 
circulating cortisol levels, but also on the intracellular generation of cortisol through reduction of 
the inactive glucocorticoid, cortisone [6]. 11β-hydroxysteroid dehydrogenase type 1 is a key 
enzyme that acts as an NADPH-dependent reductase capable of converting the inactive 11β-
glucocorticoids such as cortisone into their active form, (e.g., cortisol) in specific tissues, such as 
liver, adipose, and brain tissues (figure 1). Therefore, 11β-HSD1 regulates tissue specific 
glucocorticoid levels.[7-10] Conversely, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), 
a structurally related isoenzyme of 11β-HSD1, catalyzes the conversion of cortisol to cortisone 
utilizing NAD as a cofactor. 11β-HSD2 is expressed in cells that contain the mineralocorticoid 
receptor (MR) and protects the MR by converting cortisol to the inactive form, cortisone.[11] 

Aberrant glucocorticoid action in the liver and adipose tissue has been linked to insulin 
resistance and dyslipidemia. Therefore, selective inhibition of 11β-HSD1 over 11β-HSD2 is a 
promising strategy to improve insulin sensitivity and treat type2 diabetes, and has attracted 
significant attention from the pharmaceutical research community. [12, 17-23] 
 

 

Figure 1: Interconversion of cortisone and cortisol by 11β-HSD type 1 and 2 enzymes 
 

QSAR models are mathematical equations relating chemical structure to a wide variety of 
physical, chemical and biological properties. In view of above, and as a part our composite 
programme of rational drug design in the present study, we report the QSAR studies of keto 
sulfones derivatives as inhibitors of 11β-HSD1 enzyme. 
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MATERIALS AND METHOD 
 

2.1 Data Set for Analysis 
The in-vitro biological activity data reported as IC50 for inhibition of 11β-hydroxysteroid 
dehydrogenae type 1 by a series of keto sulfones derivatives [2] was used for the current study. A 
total of 23 compounds were selected for the study (Table 1). As biological activities are 
generally skewed, the reported IC50 values were converted into the corresponding pIC50 using the 
following formula: 

 
pIC50 = -log IC50 

 
 

Table 1: Biological activities of keto sulfones 
 
 

 
 
 

COMPOUND R1 11 β-HSD1 IC50 

(µm) 
Biological Activity 

1.  4-CF3-Ph 0.187 0.72816 
2. * 4-Me-Ph 0.102 -0.99139 
3.  4-MeO-Ph 0.075 1.12494 
4.  4-F-Ph 0.09 1.04576 
5.  4-Cl-Ph 0.2 0.69897 
6.  3-MeO-Ph 0.06 1.22185 
7.  3,4-DiCl-Ph 0.101 0.995679 
8. * 4-NO2-Ph 1.31 -0.11727 
9.  4-NEt2-Ph 4.4 -0.64345 
10.  2,4-DiMe-Ph 1.2 -0.07918 
11.  2,5-DiMeO-Ph 9.3 -0.96848 
12.  Benzhydryl 2.9 -0.46239 
13. * Et 15 -1.17609 
14.  t-Bu 90 -1.95424 
15.  C(CH3)2CH2CO2Et 5.0 -0.69897 
16.  3-Thienyl 0.345 0.46218 
17. * 2-(3-Me)Benzothiophene 0.525 0.27984 
18.  2-(5-Phenyl)thiophene 0.134 0.87289 
19.  2-(2,4-DiCl-phenyl)5-furan 0.169 0.77211 
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Compound R2 R3 11 β-HSD1 IC50 (µm) Biological Activity 
20. H H 17.4 -1.24055 
21. H F 19.6 -1.29226 
22.* H Cl 24 -1.38021 
23. H Br 25 -1.39794 
* Test Set 
 
2.2 Software 
A Core2duo personal computer (CPU at 1.83 GHz, HP) with the Windows Vista Home Premium 
operating system was used. Sketching of structures was performed with ChemDraw ultra 6.0 
(Cambridgesoft, USA)[25]. Geometry optimisation was performed with Chem3D Ultra (Version 
6.0, Cambridgesoft, USA)[25] and was utilized to calculate the molecular descriptors. The 
SYSTAT software (Version 10.2)[26] was employed for the Pearson Correlation Matrix and 
simple multiple linear regression model (MLR) analysis.[13] 
 
2.3 Molecular Modelling 
The structures were sketched using ChemDraw Ultra 6.0 and were exported to Chem3D 
software. The molecular mechanics (MM2) method was applied to search for lower energy 
conformation for each molecule. The energy minimised molecules were subjected to re-
optimization via the Austin model -1 method until the root mean square gradient attained a value 
smaller than 0.001 kcal/mol using Molecular Orbital Property Accompany Name (MOPAC).  
 
2.4 Descriptors Generation 
The thermodynamic, spatial and electronic parameters are shown in table 2 were calculated for 
QSAR analysis (The values of different descriptors calculated are given in supplementary data 
which can be downloaded from www.molinf.com). Thermodynamics parameters describe free 
energy change during drug receptor complex formation. Spatial parameters were quantified for 
steric features of drug molecules required for its complimentary fit with the receptor. Electronic 
parameters describe weak non-covalent bonding between drug molecules and the receptor.[14] 
 

Table 2: List of descriptors used in QSAR Analysis 
 

S.NO. Abbr. Descriptors Type 
1.   CSA Connolly Solvent Accessible Surface Area (Angstroms2) Steric 
2.     CMA Connolly Molecular Surface Area (Angstroms2) Steric 
3.   CSE Connolly Solvent- Excluded Volume (Angstroms3) Steric 
4.  EM Exact Mass (g/mole) Steric 
5.  MW Molecular Weight (atomic mass units) Steric 
6.   OV Ovality Steric 
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7.   PMX Principal Moments of Inertia, X  Steric 
8.   PMY Principal Moments of Inertia, Y Steric 
9.   PMZ Principal Moments of Inertia, Z Steric 
10.   BP Boiling Point (Kelvin) Thermodynamic 
11.  HOF Heat of Formation(kcals/mole) Thermodynamic 
12.  HR Henry’s Law Constant  Thermodynamic 
13.  LogP LogP Thermodynamic 
14.  MRCM Molar Refractivity (cm3/mole) Thermodynamic 
15.  BE Bending Energy (kcal/mol) Thermodynamic 
16.  CCE Charge-Charge Energy (kcal/mol) Thermodynamic 
17.  CDE Charge-Dipole Energy (kcal/mol) Thermodynamic 
18.  DM Dipole Moment (Debye) Thermodynamic 
19.  DDE Dipole-Dipole Energy (kcal/mol) Thermodynamic 
20.  NVDW Non-1,4 van der Waals Energy (kcal/mol) Thermodynamic 
21.  SBE Stretch-Bend Energy(kcal/mol) Thermodynamic 
22.  TRE Torsion Energy(kcal/mol) Thermodynamic 
23.  TE Total Energy (kcal/mol) Thermodynamic 
24.  VDW van der Waals Energy (kcal/mol) Thermodynamic 
25.  AP Alpha Coefficients Electronic 
26.  BC Beta Coefficients Electronic 
27.  GP Gamma Coefficients Electronic 
28.  EE Electronic Energy  Electronic 
29.  HOMO HOMO Energy(eV) Electronic 
30.  LUMO LUMO Energy (eV) Electronic 
31.  RE Repulsion Energy (eV) Electronic 
32.  E Total Energy (eV) Electronic 
33.  STR Stretch          Steric 
34.  MR Molar Refractivity Steric 
35.  D Dipole Steric 
36.  PR Probe Radius Steric 

 
2.5 Division of Test and Training Set 
It is proven that the only way to estimate the true predictive power of a model is to test it on a 
sufficiently large collection of compounds from an external test set. The test set must include not 
less than five compounds, whose activities and structure must cover the range of activities and 
structures of compounds from the training set. This application is necessary for obtaining trustful 
statistics for comparison between the observed and predictive activities for these compounds. In 
this series 5 compounds were selected as a test set and remaining 18 compounds were used as 
training set. The test set used for the validation of model. 
 
2.6 Statistical Analysis 
First, the descriptors were checked for constant or near constant values and those detected were 
discarded from the original data matrix. Then, the descriptors were correlated with each other 
and with the activity data. Among the collinear descriptors detected, the one most highly 
correlated with activity was retained and the rest were omitted. The contribution of descriptors to 
biological activity was studied using simple linear regression analysis by SYSTAT 10.2 
Software and, due to the problem of collinearity among descriptors, different combinations of 
descriptors were subjected to sequential and stepwise multiple regression analysis. The 
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intercorrelation matrix of the descriptors of QSAR Equations, (1) to (3) is given in Table 3. 
Descriptors having intercorrelation above |r|>0.5 were not considered while deriving the QSAR 
model. The predictor variables with p value >0.05 were eliminated whilst deriving the QSAR 
models in order to assure their statistical reliability. Statistical quality of the models was 
evaluated by using the parameters; number of compounds (n), correlation coefficient (r), 
coefficient of determination (r2), standard error of estimate (s), variance, Fischer F-test for 
quality of fit, and Student’s t-test for test of significance . Figures within parentheses indicate the 
confidence interval (95% significant) of the regression coefficient and the intercept. The level of 
significance of each regression term was assessed using t-test and is reflected through the 
minimum value of the standard error term. Residual plots derived by plotting residuals, i.e., the 
difference between the predicted and the observed response as a function of the dependent 
variable, are used to identify outliers from the QSAR models. A compound is considered as an 
outlier when the residual value exceeds twice the standard error of the estimate of the model. 
 

Table 3: Pearson Correlation Matrix of the descriptors used in model 1 to 3 
 

Parameters LUMO NVDW DDE HOF 
LUMO 1.000    
NVDW 0.247 1.000   
DDE -0.330 -0.247 1.000  
HOF 0.362 0.227 0.121 1.000 
 
In order to validate the derived QSAR models, the leave-one-out (LOO) method, also known as 
the jack-knife validation test, was used. Once a model was derived, each compound was 
eliminated from the remaining compounds and the eliminated compound was predicted from this 
model. The same procedure was repeated after elimination of another compound, until all the 
compounds had been eliminated once. The predictability of each model was evaluated by using 
cross validated correlation coefficient (q2).[15] 
 

RESULT AND DISCUSSION 
 

The correlation between the different physicochemical descriptors and indicator variables as 
independent variable and the negative log of the observed activity as dependent variable was 
determined using SYSTAT while exploring the statistically significant relationships to study the 
selectivity requisites among these compounds. The intercorrelation between all the descriptors 
was also checked and good orthogonality was ensured during quantitative model building. Some 
of the statistically significant models are discussed below: 
 
Model 1: 

BA = -2.183(±0.711) + 0.393(±0.130)NVDW + 0.345(±0.075)DDE – 0.004(±0.004)HOF + 
0.322(±0.763)LUMO 

    n = 18, r = 0.818, r2 = 0.669, s = 0.685, F = 6.577, P = 0.004,  
 
Where n represents the number of data points, r is the multiple correlation coefficient, s is the 
standard error of the estimate, and F is the F-statistic ratio. Compound 14 behave as an outlier 
which has a t-butyl group at R position. Its outlier behaviour may be due to its bulky nature, 
having high heat of formation, it indicates that the more rigid compounds will have a smaller 
chance of adapting to the preferred conformation than conformationally flexible compounds.[16] 
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SAR studies also shows that the presence of bulky groups decreases the enzyme inhibition 
activity significantly. The LUMO energy is the crucial indicator of molecular reactivity and 
properties, a high value of LUMO for the compounds to improve its activity. The significance of 
LUMO indicates, high electrophilicity of the compounds, and there by accepting electrons to its 
lowest unoccupied molecular orbital, would help them to improve the biological activity.[24] 
The negative contribution of HOF indicates the substituent should have low heat of formation, it 
indicates that the more rigid compounds will have a smaller chance of adapting to the preferred 
conformation than conformationally flexible compounds.[16] The positive contribution of 
Dipole-Dipole energy suggests that the moiety which increases the charge distribution over the 
molecule is favourable for the activity and it is due to the sulfonyl group present in the nucleus. 
The compounds might be involved in making fruitful binding interactions with the amino acids 
present at the catalytic site of the enzyme, through a hydrogen type of bonding. The molecular 
properties like LUMO and dipole-dipole energy play a critical role in modulating the activity 
profile for these classes of compounds. The positive contribution of Non-1,4 van der Waals 
Energy also important for the biological activity. 
 
Model 2: 

BA = -1.763(±0.463) + 0.876(±0.502)LUMO + 0.379(±0.083)NVDW + 0.357(±0.048)DDE – 
0.006(±0.002)HOF 

n = 17, r = 0.918, r2 = 0.843, s = 0.437, F = 16.120, P = 0.000 
Outlier: R = 2-(2, 4-DiCl-phenyl)-5-furan 

 
In model 2, removing the outlier compound 14 increases the value of r2 significantly from 0.669 
to 0.843. Compound 19 behave as an outlier which have a 2-(2, 4-DiCl-phenyl)-5-furan at R 
position. The outlier behaviour of this compound may be due to its rigidity in its structure which 
may make the compound conformationally unfavourable for the binding of the enzyme. 
 
Model 3: 

BA = -1.656(±0.364) + 1.199(±0.408)LUMO + 0.399(±0.065)NVDW + 0.363(±0.038)DDE – 
0.007(±0.002)HOF 

 n = 16, r = 0.953, r2 = 0.909, s = 0.342, F = 27.330, P = 0.000, q2=0.7135 
 

 
Figure 2: Calculated B.A. vs Experimental B.A. for Best Multiple Linear Regression 

model 
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In model 3, removing the outlier compound 19, increases the value of r2 significantly from 0.843 
to 0.909. The r2 value accounts for 90% variance in observed activity value.  Model 3 is the best 
model for the inhibition of 11β-HSD1 enzyme. As the r2 value can be easily increased by 
increasing the number of descriptors in the model, so cross validated correlation coefficient (q2) 
was used as a parameter to select the optimum number of descriptors. The variation in cross 
validation correlation coefficient (q2) as a function of number of descriptors is shown in Figure 2. 

 
To conclude, all types of descriptors like electronic, thermodynamic, and steric must be fully 
optimized for better 11β-HSD1 inhibitory activity. The findings suggests that the presence of 
bulky group decreases the enzyme inhibition activity, the presence of conformationally rigid 
structure is unfavourable for the binding of compounds with the enzyme and the presence of high 
electrophilicity groups such as methoxy group in the phenyl ring increases the activity of the 
compound towards the enzyme. The moiety which increases the charge distribution over the 
molecule is favourable for the activity. The similar result has been given in the SAR study of this 
series of compounds by Xiang et al. (2007), without any physicochemical relevance. Our study 
supplements this by QSAR analysis of the substituent position for better biological activity. The 
present study provides better insight into designing more potent 11β-HSD 1 inhibitors in future 
prior to their synthesis. 
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