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ABSTRACT

Metabolic disorders, such as obesity and type 2 diabetes, have assumed epidemic proportions
and present major challenges for healthcare systems. The keto sulfones derivatives were
discovered as potent and selective 115-HSD1 inhibitors. The studies show that these compounds
are not active against 114-H3D2 and thus easily surpass the side effects of inhibition of 11/-
HSD2 such as sodium retention, hypokalemia and hypertension. So here we have tried to explore
the series of - keto sulfones derivatives, to develop novel, selective and potent orally active
compounds through QSAR analysis. The QSAR study carried out on 23 keto sulfones derivatives
as inhibitors of 115-HSD. Molecular modeling studies were performed using chemoffice 6.0
supplied by cambridgesoft. The sketched structures were subjected to energy minimization & the
lowest energy structure was used to calculate the physiochemical properties. The regression
analysis was carried out using a computer program called SYSTAT 10.2. The best models were
selected from the various statistically significant equations. The study revealed that the LUMO,
Dipole-dipole energy, NVDW contributed positively, and Heat of formation contributed
negatively. The analysis resulted in 2-D equation, which suggests that, n=16, r=0.953, r*=0.909,
Sandard error of estimate(s)=0.342 & validated r*(g”) =0.7135. This study can help in rational
drug design and synthesis of new selective 115-HSD1 with predetermined affinity.

Keywords: HSD1; 1B-HSD1, Diabetes; Metabolic syndrome; Keto sulfodesvatives;
QSAR.

INTRODUCTION

Glucocorticoids are well-known ubiquitous hormomésying a key role in modulating immune

and inflammatory responses, regulating energy noéitab and cardiovascular homeostasis and

the body's responses to stress. Opposing the aafomsulin, glucocorticoids stimulate
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production of glucose, switching the homeostaticlafmee towards catabolism. Thus,
glucocorticoids promote gluconeogenesis but inHigta-cell insulin secretion and peripheral
glucose uptake.[1,2] They also increase proteimkatewn and lipolysis with consequent fatty
acid mobilisation.[3] Recent investigations haveplicated aberrant glucocorticoid receptor
(GR) signalling in the development of several phgpes associated with metabolic syndrome.
Metabolic syndrome is characterized by abdominaésdl, impaired glucose tolerance,
dyslipidemia, low levels of high density lipopratefHDL) cholesterol, and hypertension[4,5].
The major activator of the GR in humans is cortiaold the adrenal cortex is the major source of
circulating cortisol. Recent evidence suggests tBRt signalling depends not only on the
circulating cortisol levels, but also on the ingHiglar generation of cortisol through reduction of
the inactive glucocorticoid, cortisone [6]. fthydroxysteroid dehydrogenase type 1 is a key
enzyme that acts as an NADPH-dependent reductagsbleaof converting the inactive -1
glucocorticoids such as cortisone into their acforen, (e.g., cortisol) in specific tissues, sush a
liver, adipose, and brain tissues (figure 1). Tfuees 1B-HSD1 regulates tissue specific
glucocorticoid levels.[7-10] Conversely, fthydroxysteroid dehydrogenase type 2-HSD?2),

a structurally related isoenzyme offiHiSD1, catalyzes the conversion of cortisol to isorte
utilizing NAD as a cofactor. BEHSD2 is expressed in cells that contain the mioeaaticoid
receptor (MR) and protects the MR by convertingisol to the inactive form, cortisone.[11]
Aberrant glucocorticoid action in the liver and @mBe tissue has been linked to insulin
resistance and dyslipidemia. Therefore, selectinbition of 13-HSD1 over 1B-HSD2 is a
promising strategy to improve insulin sensitivitgdatreat type2 diabetes, and has attracted
significant attention from the pharmaceutical rese@ommunity[12, 17-23]

Cortisol oOH

(o]
11B-HSD1 11B-HSD2
Liver Adipose Kidney

oOH

Cortisone

Figure 1: Interconversion of cortisone and cortisol by 11p-HSD type 1 and 2 enzymes
QSAR models are mathematical equations relatingnada structure to a wide variety of
physical, chemical and biological properties. lewiof above, and as a part our composite
programme of rational drug design in the presemdystwe report the QSAR studies of keto
sulfones derivatives as inhibitors offfHSD1 enzyme.
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MATERIALSAND METHOD

2.1 Data Set for Analysis

The in-vitro biological activity data reported a€sd for inhibition of 13-hydroxysteroid
dehydrogenae type 1 by a series of keto sulfonegati®es [2]was used for the current study. A
total of 23 compounds were selected for the stufigble 1). As biological activities are
generally skewed, the reportedsd@alues were converted into the correspondingl€ing the
following formula:

pICso= -log 1G5
Table 1. Biological activities of keto sulfones
o]
||/\H/R1
S

[s] [s]

COMPOUND R1 11 B-HSD1 ICs Biological Activity
(pm)

1. 4-CK-Ph 0.187 0.72816
2. * 4-Me-Ph 0.102 -0.99139
3. 4-MeO-Ph 0.075 1.12494
4. 4-F-Ph 0.09 1.04576
5. 4-Cl-Ph 0.2 0.69897
6. 3-MeO-Ph 0.06 1.22185
7. 3,4-DiCl-Ph 0.101 0.995679
8. * 4-NO,-Ph 1.31 -0.11727
9. 4-NEb-Ph 4.4 -0.64345
10. 2,4-DiMe-Ph 1.2 -0.07918
11. 2,5-DiMeO-Ph 9.3 -0.96848
12. Benzhydryl 2.9 -0.46239
13.* Et 15 -1.17609
14. t-Bu 90 -1.95424
15. C(CHg),CH,CO,Et 5.0 -0.69897
16. 3-Thienyl 0.345 0.46218
17.* 2-(3-Me)Benzothiophene 0.525 0.27984
18. 2-(5-Phenyl)thiophene 0.134 0.87289
19. 2-(2,4-DiCl-phenyl)5-furan 0.169 0.77211
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Compound R, R3 11 B-HSD1 | Cso (um) Biological Activity
20. H H 17.4 -1.24055
21. H F 19.6 -1.29226
22.* H Cl 24 -1.38021
23. H Br 25 -1.39794

* Test Set

2.2 Software

A Core2duo personal computer (CPU at 1.83 GHz, wit) the Windows Vista Home Premium
operating system was used. Sketching of structwaes performed with ChemDraw ultra 6.0
(Cambridgesoft, USA)[25]. Geometry optimisation vpesformed with Chem3D Ultra (Version
6.0, Cambridgesoft, USA)[25] and was utilized tdcakate the molecular descriptors. The
SYSTAT software (Version 10.2)[26] was employed the Pearson Correlation Matrix and
simple multiple linear regression model (MLR) arsay[13]

2.3 Molecular Modelling

The structures were sketched using ChemDraw Ultfa éhd were exported to Chem3D
software. The molecular mechanics (MMnethod was applied to search for lower energy
conformation for each molecule. The energy minichisaolecules were subjected to re-
optimization via the Austin model -1 method untiétroot mean square gradient attained a value
smaller than 0.001 kcal/mol using Molecular OrbRabperty Accompany Name (MOPAC).

2.4 Descriptors Generation

The thermodynamic, spatial and electronic parareetsz shown in table 2 were calculated for
QSAR analysis (The values of different descriptwakulated are given in supplementary data
which can be downloaded from www.molinf.com). Thedynamics parameters describe free
energy change during drug receptor complex format®patial parameters were quantified for
steric features of drug molecules required focdamplimentary fit with the receptor. Electronic
parameters describe weak non-covalent bonding leetarig molecules and the receptor.[14]

Table2: List of descriptorsused in QSAR Analysis

SNO. Abbr. Descriptors Type
1. CSA Connolly Solvent Accessible Surface Area (#ingms2) Steric
2. CMA Connolly Molecular Surface Area (Angstroms2) erst
3. CSE Connolly Solvent- Excluded Volume (Angstroins3 Steric
4, EM Exact Mass (g/mole) Steric
5. MW Molecular Weight (atomic mass units) Steric
6. oV Ovality Steric
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7. PMX Principal Moments of Inertia, X Steric

8. PMY Principal Moments of Inertia, Y Steric

9. PMZ Principal Moments of Inertia, Z Steric

10. BP Boiling Point (Kelvin) Thermodynamic
11. HOF Heat of Formation(kcals/mole) Thermodynamic
12. HR Henry's Law Constant Thermodynamic
13. LogP LogP Thermodynamic
14. MRCM Molar Refractivity (cm3/mole) Thermodynamic
15. BE Bending Energy (kcal/mol) Thermodynamic
16. CCE Charge-Charge Energy (kcal/mol) Thermodynamic
17. CDE Charge-Dipole Energy (kcal/mol) Thermodynamic
18. DM Dipole Moment (Debye) Thermodynamic
19. DDE Dipole-Dipole Energy (kcal/mol) Thermodynamic
20. NVDW Non-1,4 van der Waals Energy (kcal/mol) Thedynamic
21. SBE Stretch-Bend Energy(kcal/mol) Thermodynamic
22. TRE Torsion Energy(kcal/mol) Thermodynamic
23. TE Total Energy (kcal/mol) Thermodynamic
24. VDW van der Waals Energy (kcal/mol) Thermodynamic
25. AP Alpha Coefficients Electronic

26. BC Beta Coefficients Electronic

27. GP Gamma Coefficients Electronic

28. EE Electronic Energy Electronic

29. HOMO HOMO Energy(eV) Electronic

30. LUMO LUMO Energy (eV) Electronic

31. RE Repulsion Energy (eV) Electronic

32. E Total Energy (eV) Electronic

33. STR Stretch Steric

34. MR Molar Refractivity Steric

35. D Dipole Steric

36. PR Probe Radius Steric

2.5 Division of Test and Training Set

It is proven that the only way to estimate the tpuedictive power of a model is to test it on a
sufficiently large collection of compounds from external test set. The test set must include not
less than five compounds, whose activities andcgira must cover the range of activities and
structures of compounds from the training set. Hpiglication is necessary for obtaining trustful
statistics for comparison between the observedpaedictive activities for these compounds. In
this series 5 compounds were selected as a teahdatemaining 18 compounds were used as
training set. The test set used for the validatibmodel.

2.6 Statistical Analysis

First, the descriptors were checked for constamtear constant values and those detected were
discarded from the original data matrix. Then, descriptors were correlated with each other
and with the activity data. Among the collinear agsors detected, the one most highly
correlated with activity was retained and the veste omitted. The contribution of descriptors to
biological activity was studied using simple linegrgression analysis by SYSTAT 10.2
Software and, due to the problem of collinearityoag descriptors, different combinations of
descriptors were subjected to sequential and ssepumultiple regression analysis. The
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intercorrelation matrix of the descriptors of QSARuations, (1) to (3) is given in Table 3.
Descriptors having intercorrelation above |r|>0dravnot considered while deriving the QSAR
model. The predictor variables with p value >0.0&raveliminated whilst deriving the QSAR
models in order to assure their statistical religbi Statistical quality of the models was
evaluated by using the parameters; number of comgmouyn), correlation coefficient (r),
coefficient of determination {x, standard error of estimate (s), variance, Fisdhéest for
quality of fit, and Student’s t-test for test ofisificance . Figures within parentheses indicage th
confidence interval (95% significant) of the regies coefficient and the intercept. The level of
significance of each regression term was assessid t-test and is reflected through the
minimum value of the standard error term. Resiqgliais derived by plotting residuals, i.e., the
difference between the predicted and the obseresgonse as a function of the dependent
variable, are used to identify outliers from theABRSmodels. A compound is considered as an
outlier when the residual value exceeds twice thedard error of the estimate of the model.

Table 3: Pearson Correlation Matrix of the descriptorsused in model 1to 3

Parameters LUMO NVDW DDE HOF
LUMO 1.000

NVDW 0.247 1.000

DDE -0.330 -0.247 1.000

HOF 0.362 0.227 0.121 1.000

In order to validate the derived QSAR models, #avé-one-out (LOO) method, also known as
the jack-knife validation test, was used. Once adehovas derived, each compound was
eliminated from the remaining compounds and thaiakted compound was predicted from this
model. The same procedure was repeated after alfimmof another compound, until all the
compounds had been eliminated once. The preditjabfleach model was evaluated by using
cross validated correlation coefficienf)§L5]

RESULT AND DISCUSSION

The correlation between the different physicochamaescriptors and indicator variables as
independent variable and the negative log of theenked activity as dependent variable was
determined using SYSTAT while exploring the statadty significant relationships to study the
selectivity requisites among these compounds. Tterdorrelation between all the descriptors
was also checked and good orthogonality was ensiinedg quantitative model building. Some
of the statistically significant models are dis@dbelow:

Model 1:
BA = -2.183(0.711) + 0.393¢0.130)NVDW + 0.345¢0.075)DDE — 0.004(0.004)HOF +
0.322¢0.763)LUMO
n=18,r=0.818%= 0.669, s = 0.685, F = 6.577, P = 0.004,

Where n represents the number of data pointstheisnultiple correlation coefficient, s is the
standard error of the estimate, and F is the ksstatatio. Compound 14 behave as an outlier
which has a t-butyl group at R position. Its outlhaviour may be due to its bulky nature,
having high heat of formation, it indicates tha¢ tmore rigid compounds will have a smaller
chance of adapting to the preferred conformatiam ttonformationally flexible compounds.[16]
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SAR studies also shows that the presence of butkyps decreases the enzyme inhibition
activity significantly. The LUMO energy is the ciatindicator of molecular reactivity and
properties, a high value of LUMO for the compoutagmprove its activity. The significance of
LUMO indicates, high electrophilicity of the compuis, and there by accepting electrons to its
lowest unoccupied molecular orbital, would helpnthed improve the biological activity.[24]
The negative contribution of HOF indicates the sitesnt should have low heat of formation, it
indicates that the more rigid compounds will havaraller chance of adapting to the preferred
conformation than conformationally flexible compast{16] The positive contribution of
Dipole-Dipole energy suggests that the moiety whiareases the charge distribution over the
molecule is favourable for the activity and it isedto the sulfonyl group present in the nucleus.
The compounds might be involved in making fruitbihding interactions with the amino acids
present at the catalytic site of the enzyme, thncaidnydrogen type of bonding. The molecular
properties like LUMO and dipole-dipole energy playcritical role in modulating the activity
profile for these classes of compounds. The pasitontribution of Non-1,4 van der Waals
Energy also important for the biological activity.

Model 2:
BA =-1.763¢0.463) + 0.87660.502)LUMO + 0.37%0.083)NVDW + 0.35#0.048)DDE —
0.006¢0.002)HOF
n=17,r=0.918%=0.843,s = 0.437, F = 16.120, P = 0.000
Outlier: R = 2-(2, 4-DiCl-phenyl)-5-furan

In model 2, removing the outlier compound 14 inse=athe value of significantly from 0.669
to 0.843. Compound 19 behave as an outlier whiste lea2-(2, 4-DiCl-phenyl)-5-furan at R
position. The outlier behaviour of this compoundyrba due to its rigidity in its structure which
may make the compound conformationally unfavour&rehe binding of the enzyme.

Mode 3:
BA = -1.6560.364) + 1.19%0.408)LUMO + 0.399£0.065)NVDW + 0.363¢0.038)DDE —
0.007¢0.002)HOF
n=16,r=0.9532=0.909, s =0.342, F = 27.330, P = 0.0(?@Dq7135

1 -
y = 1.2497x Experimental B.A.
RZ=0.7135 e
0.5 —
1.5 @ 0.5 0 0.5
&5 =
o
)
1 7
[
=]
-1.5 4
L
@ 2
.25 _
Figure 2: Calculated B.A. vs Experimental B.A. for Best Multiple Linear Regression
model
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In model 3, removing the outlier compound 19, iases the value of significantly from 0.843
to 0.909. The7value accounts for 90% variance in observed dgtisdlue. Model 3 is the best
model for the inhibition of 13-HSD1 enzyme. As the’value can be easily increased by
increasing the number of descriptors in the mastelcross validated correlation coefficient)(q
was used as a parameter to select the optimum muohkmescriptors. The variation in cross
validation correlation coefficient §gjas a function of number of descriptors is showRigure 2.

To conclude, all types of descriptors like electtpnhermodynamic, and steric must be fully
optimized for better 13#HSD1 inhibitory activity. The findings suggestsatithe presence of
bulky group decreases the enzyme inhibition agtivithe presence of conformationally rigid
structure is unfavourable for the binding of compasiwith the enzyme and the presence of high
electrophilicity groups such as methoxy group ia ghenyl ring increases the activity of the
compound towards the enzyme. The moiety which as@e the charge distribution over the
molecule is favourable for the activity. The simitasult has been given in the SAR study of this
series of compounds by Xiang et al. (2007), withany physicochemical relevance. Our study
supplements this by QSAR analysis of the substitpesition for better biological activity. The
present study provides better insight into desigmrore potent 1&HSD 1 inhibitors in future
prior to their synthesis.
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