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ABSTRACT 

 

Angiotensin-Converting Enzyme (ACE) 1 shows myriad activities that can be associated with the rennin-angiotensin system. From hypertension and 

electrolyte balance to oxidative stress, ACE contributes to various functions in the body. The versatility of these inhibitors makes them an 

interesting subject to ponder upon. However, the purpose of this paper is to study a series of ACE inhibitors and predict yet better compounds of the 

series. Hence a series of hydroxypyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione compounds have been taken, and a quantitative structure-activity 

relationship (QSAR) study followed by modeling of molecules has been performed upon them, Obtained a cross-validated result (r2 
cv) of 0.713 

carried out by Leave one out method (LOO), and predicted (r2 
press)=0.716 with the coefficient of correlation of (r) obtained by the multiple 

regression analysis is 0.944. A new series of compounds have been thus proposed based upon the QSAR model generated. These compounds were 

docked with the protein and ADME properties of each of the newly proposed compounds were studied using Swiss ADME that highlights 

physiochemical properties of the compounds, their lipophilicity, solubility, drug likeliness, pharmacokinetics, etc. Toxicity prediction of these 

compounds is also made, making them suitable leads against ACE 1. 
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INTRODUCTION 

 

ACE (angiotensin I converting enzyme 1) act as a key component of the renin-angiotensin system. It involves formation of angiotensin II from 

angiotensin I along with the degradation of bradykinin. As a part of renin-angiotensin system, it was found that ACE plays a key role in homeostatic 

mechanism of mammals, thus regulates blood pressure and electrolytic balance in the body [1]. Hypertension can be controlled by the regulating the 

ACE activity along with that, ACE also plays an important role in the therapies for heart failure and Diabetes nephropathy[2]. They change the 

balance between the salt-retentive, vasoconstrictive, and hypertrophic properties of angiotensin II and the vasodilatory and natriuretic properties of 

bradykinin [3]. In addition to the aforementioned activities, emerging evidence suggests that ACE inhibitors have important implications for 

vascular oxidative stress [4]. These inhibitors are different from each other in terms of the chemical structure of their active components, in their 

potency, in bioavailability, in plasma half-life, in their route of elimination, in distribution and their affinity for tissue-bound ACE, and in whether 

or not they are administered as prodrugs [5]. The versatility of these inhibitors makes them an interesting subject to ponder upon. However, the 

purpose of this paper is to study a series of ACE inhibitors and predict yet better compounds. A number of ACE inhibitors are already being used to 

combat high blood pressure and heart ailments, some of which are Benazepril, Captopril and Lisinopril.  

 

The process of drug discovery has always been an extremely time consuming, labour intensive, and expensive process. A more cost-effective 

solution to this problem is rational designing of drugs using in-silico methods via molecular modelling, simulation, and virtual screening for the 

identification of promising candidates even before their chemical synthesis [6]. Quantitative structure-activity relationship (QSAR) modelling is one 

of the most widely used computer-aided tools used in medicinal chemistry for drug discovery and lead optimization [7]. In a previous study, Dinesh 

Addla and co-workers have reported 10-substituted 2-hydroxypyrrolobenzodiazepine-5,11-dione analogues as potent Angiotensin converting 

enzyme (ACE) inhibitors [8]. In the current study we have created a QSAR model to introduce some new compounds of this series that are expected 

to show better activity and lesser toxicity. The ADME properties and toxicity of these compounds have also been studied and evaluated. 
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MATERIALS AND METHODS 

 

We have taken a series of hydroxypyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione (5a–w) compounds. All the compounds of this series are listed in 

Table 1 along with some parameters that were found to regulate their activities. The most significant parameters were found to be PPSA (Atomic 

charge weighted positive surface area), MATSV (Moran autocorrelation-lag3/weighted by atomic van der Waals volumes), TD (Topological 

Diameter) and NALC (Number of atoms in the largest chain). A QSAR model was thus designed based upon these parameters. All of these 

parameters were calculated using Chem Des, which is a free web-based platform for the calculation of molecular descriptors and fingerprints. Each 

of the significant parameters is found to have negligible mutual correlation (Table 2). 10 new compounds of the series were also designed using 

Swiss ADME. Molecular docking has been performed to study the interactions between the protein taken from Protein Databank (PDB ID 1O86) 

and the proposed compounds (Table 3) and also with the licensed compounds. ADME properties were checked to see if these compounds can serve 

as a potent drug. Water solubility, pharmacokinetics, drug likeliness, Medicinal chemistry and Lipophilicity were checked using 'swiss ADME'. 

Further, the toxicity of each of these compounds was checked using 'Pro Tox'. This web server has an easy-to-use interface and it only requires a 2D 

structure of the molecule whose toxicity has to be predicted [9]. Hepatotoxicity, carcinogenicity, cytotoxicity, mutagenicity and immunotoxicity of 

each of the proposed compounds were specifically checked. 

 

Table 1: 2-hydroxypyrrolobenzodiazepine-5, 11-dione analogues, their physiochemical parameters and ACE inhibition activity. 

 

 

S.no R PPSA MATSV NALC T D 
log(1/IC50) 

      Calculated Pred (LOO) 

1. H 24.186 -0.045 37 10 6.04 6.10 6.13 

2. 

 

23.801 0.012 32 10 6.03 6.02 6.13 

3. 

 

32.751 0.057 41 12 6.05 6.08 5.96 

4. 

 

25.874 -0.014 42 12 6.15 6.09 6.11 

    

 

30.42 -0.001 42 12 5.92 6.17 - 
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S.no R PPSA MATSV NALC T D 
log(1/IC50) 

      Calculated Pred (LOO) 

  . 

 

29.44 0.044 42 12 6.24 6.11 - 

7. 

 

25.502 0.044 42 12 6.17 6.16 6.17 

    

 

30.06 -0.049 46 13 5.90 6.18 - 

  . 

 

31.09 -0.049 46 14 6.05 5.95 - 

10. 

 

26.433 -0.111 44 13 5.95 5.96 5.97 

11. 

 

29.894 -0.045 44 13 6.01 6.00 6.01 
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S.no R PPSA MATSV NALC T D 
log(1/IC50) 

      Calculated Pred (LOO) 

12. 

 

48.852 -0.097 48 15 5.7 5.72 5.76 

13. 

 

36.119 -0.082 45 13 5.98 5.93 5.94 

     

 

26.97 -0.082 42 12 6.09 6.00 - 

15. 

 

32.109 -0.106 44 13 5.96 5.91 5.92 

16. 

 

28.287 -0.101 42 12 6.03 5.98 5.99 

17. 

 

31.809 -0.103 42 12 5.91 5.94 5.94 
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S.no R PPSA MATSV NALC T D 
log(1/IC50) 

      Calculated Pred (LOO) 

18. 

 

37.53 0.039 54 14 6.25 6.21 6.15 

19. 

 

28.186 -0.111 42 12 5.95 5.97 6.00 

20. 

 

28.924 0.024 44 13 6.03 6.08 6.09 

     

 

28.23 0.058 44 13 6.07 6.11 - 

22. 

 

24.189 0.048 39 11 6.18 6.17 6.16 

23. 

 

32.221 -0.055 51 14 6 6.08 6.12 
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Table 2: Some proposed compounds belonging to the series of Table 1 and their activities predicted from (1). 

 

S.no Predicted Compounds PPSA MATSV NALC T D log(1/IC50) 

1. 

 

25.735 -0.038 44 10 6.27 

2. 

 

21.526 -0.038 42 10 6.25 

3. 

 

21.348 -0.077 44 10 6.27 

4. 

 

24.60 0.216 40 10 6.44 

5. 

 

21.342 -0.038 44 10 6.31 

6. 

 

35.025 0.206 46 13 6.26 

7. 

 

32.45 0.269 45 12 6.40 

8 

 

23.077 0.2 41 10 6.50 

9. 

 

23.72 -0.015 46 11 6.29 
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S.no Predicted Compounds PPSA MATSV NALC T D log(1/IC50) 

10. 

 

24.41 0.03 40 10 6.30 

 

Table 3: Correlation between the significant parameters 

 

 PPSA MATSV NALC TD 

PPSA-3 1.000 0.017 0.220 -0.59 

MATSv3  1.000 -0.02 0.250 

nAtomLC   1.000 -0.68 

Topological dia    1.000 

 

 

 

RESULTS AND DISCUSSIONS 

 

QSAR results 

 

All the compounds present in Table 1 have been divided into two sub-Categories: a training set and test set. The selection of test set compounds was 

done randomly by keeping in mind that, there is a significant variation in their structures and activity. All the test set compounds are denoted by 

superscript "b" and the outliers are denoted by a superscript "c" in Table 1. All the other compounds were grouped under the training set. A multiple 

regression analysis (Hansch analysis) performed on the compounds of the training set, revealed the following correlation. 

 

log(1/IC50)= -0.009(± 0.007)PPSA + 1.047(± 0.436) MATSV + 0.027(± 0.013) NALC - 0.079(± 0.062) TD + 6.143(± 0.275) (1) 

 

n = 17, r = 0.944, s = 0.048, F (4,12) = 24.417 (5.41) 

 

r2 cv= 0.713, r2pred = 0.716 

 

The most significant parameters were found to be PPSA (Atomic charge weighted positive surface area), MATSV (Moran autocorrelation-

lag3/weighted by atomic van der Waals volumes), TD (Topological Diameter) and (Number of atoms in the largest chain). Table 3 suggests that 

there is no significant mutual correlation between the parameters of significance. IC50 refers to amount (molar concentration) of compound required 

for 50% inhibition of the enzyme. Among the statistical parameters in (1), n stands for the number of compounds present in the training set, r stands 

for correlation coefficient,    
  is defined by the square of the cross-validated correlation coefficient produced from leave-one-out (LOO) jackknife 

procedure, S stands for standard deviation, F stands for Fischer ratio between the variances of calculated and observed activities, and the data within 

the parentheses with ± sign are 95% confidence intervals. The figure within the parenthesis stands for the standard-value at the 99% level. The 

values of these statistical parameters show that the correlation obtained is quite significant.  

 

The correlation expressed by (1) appears to be extremely significant, and r2
cv and r2

pred values can help judge the internal and external validation. 

The r2
cv is calculated by the formula 

 

r2
cv= 1 − [Σi(Yi,obsd − yi,pred)

2/ Σi(yi,obsd – yav,obsd)
2] (2) 

 

where, yi,obsd and yi,pred is observed and predicted(from LOO) activity values of the compound, respectively, and yav,obsd is the average of observed 

activities of all compounds used in the correlation. The correlation turns out to be valid if r2
cv> 0.60. This indicates that the correlation expressed by 

(1) is indeed quite valid. However, the predictive capability of a model can most efficiently be judged by predicting the biological activity of the 

compounds belonging to the test set and the value of r2 pred that comes from the test set, which is defined as follows: 

 

r2
pred= 1 − [Σi(yi,obsd − yi,pred)

2/ Σi(yi,obsd− yav,obsd)
2] (3) 

 

where, yi,obsd and yi,pred are referred to as observed and the predicted biological activity values of test set compounds and yi,obsd is same as it is in 

eqn(2). The values of biological activity of the test set compounds predicted from this equation are given in Table 1. Comparing the values we got 

to know that the predicted values are in fine agreement with the corresponding observed ones.  

 

DOCKING RESULTS 

 

Molecular Docking is an optimization problem, where the aim is to find the ligand binding mode with the lowest potential energy. The process of 

Docking involves sampling the coordinate space of the target binding site and scoring each possible ligand pose within that site; the highest scoring 

poses then taken as the predicted binding mode for that compound. In order to perform docking studies and to check the interactions between the 

predicted compounds and the protein (PDB ID 1O86), Docking was performed using Molegro Virtual Docker whose results are given in Table 10. 



18 

Agarwal, et al 

 

 

Der Pharma Chemica, 2021, 13(2): 11-26 

 

The program MVD has four search algorithms and four native scoring functions. In this case 'plant score' scoring function was used along with 

'iterated simplex' search algorithm that yielded an RMSD value of 1. The predicted compounds have hydrogen bond numbers comparable to 

commercial drugs. For all the compounds, all possible hydrogen bonds are shown in Table 4. It can also be seen that the overall energy of 

interaction with the enzyme for each predicted compound is comparable to the marketed compounds, and so is the case with the docking score of 

each predicted compound. All the compounds have a matching pose. 

 

Table 4: Docking results of predicted compounds (Table 2) with reference to the active drugs available in the market. Energy values are in 

kCal/mol. 

 

Compound 

Total 

Interaction 

energy 

H-bond 

energy 

No. of 

H- 

bonds 

H- bonds 
H- bond 

length(Å) 

Mole 

dock 

score 

Internal 

pose 

1 -95.1334 -2.8373 2 

O(8)-

His(343 
3.14 

-8.5912 7.54234 
O(8) - 

Asp(375) 
2.87 

2 -97.391 -4.74556 2 

O(4) - 

Asp(409) 
3.08 2.86 -91.1 6.229061 

O(8) - 

Gln(241) 

3 -90.845 -7.98179 4 

O(4) - 

Glu(336) 
3.10 3.10 

-91.302 -0.45678 

O(4) - 

Thr(242) 
3.25 

O(8) - 

Gln(241) 
3.04 

O(12) - 

Ala(354) 
  

4 -126.461 -9.95729 4 

O(19) - 

Gln(241) 
3.11 3.10 

15131 15257.5 

O(19) - 

Lys(467) 
2.94 

O(19) - 

Tyr(476) 
2.6 

O(17) - 

Tyr(476) 
  

5 -105.783 0 0 NIL   -99.66 6.12368 

6 -145.405 -13.0909 6 

O(4) - 

Lys(467) 
3.10 3.16 

14108.4 14253.8 

O(4) - 

Gln(241) 
2.59 

O(4) - 

Tyr(476) 
3.39 

N(6) - 

Thr(242) 
3.06 

O(20) - 

Tyr(479) 
3.1 

O(22) - 

Tyr(479) 
  

7 -145.198 -9.96783 4 

O(10) - 

Gln(241) 
3.11 

17158.4 17303.6 

O(10) - 

Lys(467) 
3.1 

O(10) - 

Tyr(476) 
2.21 

O(21) - 

Tyr(479) 
3.1 

    

8 -96.2771 -1.96288 1 
O(4) - 

Glu(122) 
3.21 -96.234 0.043551 
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9 -140.301 -2.98413 2 

O(9) - 

Gln(241) 
2.59 

23260.2 23400.5 
O(9) - 

Tyr(479) 
3.49 

10 -124.438 -2.87834 2 

O(8) - 

Gln(241) 

O(8) - 

Tyr(476) 

2.6 
18207.5 18331.9 

3.48 

Benazepril 

(Lotensin) 
-75.071 -4.74372 3 

  3.46 

-79.81 -4.739 

O(6) - 

His(343) 
3.1 

O(6) - 

Asp(375) 
3.12 

S(12) - 

His(313) 
  

    

    

Captopril -140.85 -11.3733 5 

O(23) - 

Lys(467) 
2.82 

-145.62 -4.773 

O(23) - 

Gln(241) 
2.92 

O(24) - 

Gln(241) 
3.32 

O(24) - 

Tyr(467) 
3.06 

O(6) - 

Asp(409) 
3.1 

    

Enalapril -147.801 -11.3185 6 

O(26) - 

His(347) 
3.22 

-154.79 -6.986 

O(26) - 

Glu(344) 
3 

O(14) - 

Tyr(479) 
3.53 

O(27) – 

Tyr(479) 
3.25 

N(15) - 

Glu(344) 
2.58 

N(28) - 

Glu(122) 
2.62 

Lisinopril -155.988 -9.98388 4 

O(2) - 

Asn(237) 
2.77 

-161.16 -5.168 

O(2) - 

Glu(336) 
3.1 

O(2) - 

Thr(242) 
3.1 

O(3) - 

Gln(241) 
2.7 

 

 

ADME Results 

 

Water solubility 

 

It has been estimated that 40% of active new chemical entities (NCEs) used by different pharmaceutical companies are poorly water-soluble, i.e., 

these compounds exhibit an aqueous solubility <10 µM (5 µg/mL for a compound with a molecular weight of 500). When these poorly soluble 

NCEs are advanced further in discovery and are finally brought into development, they often turn out to be problematic due to incomplete 

absorption and low, inconsistent bioavailability [ 19]. Hence, an attempt has been made to design the proposed leads in a manner that they possess 

fair water solubility. They showed solubility comparable to the commercialized ones.  
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In order to predict Water Solubility, two different topological methods are included in Swiss ADME. The first one implements the ESOL model 

[20], and the second one is taken from Ali et al. [21]. Both are different on the basis of the seminal general solubility equation [22] since they avoid 

the melting point parameter; the latter being challenging to predict. Third predictor for solubility was developed by SILICOS-IT. All the predicted 

values are the decimal logarithm of the molar solubility in water (log S) [23]. A qualitative estimation of the class of solubility has been given 

according to the following log S scale: insoluble <−10 <poorly <−6 <moderately <−4 <soluble <−2 <very <0 <highly [23] as depicted in Table 5, 

the Proposed compounds are having good or comparable water solubility as compared with licensed drugs . 

 

Table 5: Water solubility of the proposed compounds (Table 2) in comparison with the commercial ones. 

 

S.NO Log S 

(ESO

L) 

Solubility Class Log 

S 

(Ali) 

Solubility Class Log S 

(SILICOS-

IT) 

Solubility Class 

1 -2.1 2.41e+00 

mg/ml ; 

7.90e-03 

mol/l 

Soluble -1.62 7.27e+00 

mg/ml ; 

2.39e-02 

mol/l 

Very 

soluble 

-0.57 8.12e+01 

mg/ml ; 

2.67e-01 

mol/l 

Soluble 

2 -2.7 6.06e-01 

mg/ml ; 

2.02e-03 

mol/l 

Soluble -2.24 1.73e+00 

mg/ml ; 

5.75e-03 

mol/l 

Soluble -2.62 7.24e-01 

mg/ml ; 

2.41e-03 

mol/l 

Soluble 

3 -2.1 2.57e+00 

mg/ml ; 

8.50e-03 

mol/l 

Soluble -1.52 9.04e+00 

mg/ml ; 

2.99e-02 

mol/l 

Very 

soluble 

-1.27 1.63e+01 

mg/ml ; 

5.38e-02 

mol/l 

Soluble 

4 -1.2 1.56e+01 

mg/ml ; 

5.93e-02 

mol/l 

Very 

soluble 

-0.64 6.02e+01 

mg/ml ; 

2.29e-01 

mol/l 

Very 

soluble 

-0.84 3.82e+01 

mg/ml ; 

1.45e-01 

mol/l 

Soluble 

5 -2.3 1.48e+00 

mg/ml ; 

4.90e-03 

mol/l 

Soluble -1.92 3.65e+00 

mg/ml ; 

1.21e-02 

mol/l 

Very 

soluble 

-1.27 1.63e+01 

mg/ml ; 

5.38e-02 

mol/l 

Soluble 

6 -1.5 9.33e+00 

mg/ml ; 

3.06e-02 

mol/l 

Very 

soluble 

-0.98 3.20e+01 

mg/ml ; 

1.05e-01 

mol/l 

Very 

soluble 

-0.61 7.52e+01 

mg/ml ; 

2.47e-01 

mol/l 

Soluble 

7 -2.1 2.67e+00 

mg/ml ; 

8.27e-03 

mol/l 

Soluble -1.76 5.61e+00 

mg/ml ; 

1.74e-02 

mol/l 

Very 

soluble 

-2.68 6.82e-01 

mg/ml ; 

2.11e-03 

mol/l 

Soluble 

8 -3.7 6.23e-02 

mg/ml ; 

1.94e-04 

mol/l 

Soluble -4.04 2.93e-02 

mg/ml ; 

9.15e-05 

mol/l 

Moderately 

soluble 

-2.3 1.59e+00 

mg/ml ; 

4.97e-03 

mol/l 

Soluble 

9 -2.6 8.67e-01 

mg/ml ; 

2.62e-03 

mol/l 

Soluble -2.35 1.48e+00 

mg/ml ; 

4.47e-03 

mol/l 

Soluble -3.13 2.42e-01 

mg/ml ; 

7.33e-04 

mol/l 

Soluble 

10 -1.9 3.32e+00 

mg/ml ; 

1.15e-02 

mol/l 

Very 

soluble 

-1.56 7.98e+00 

mg/ml ; 

2.76e-02 

mol/l 

Very 

soluble 

-2.1 2.31e+00 

mg/ml ; 

7.98e-03 

mol/l 

Soluble 

Benazepr

il -2.9 

5.44e-01 

mg/ml ; 

1.28e-03 

mol/l Soluble -2.87 

5.68e-01 

mg/ml ; 

1.34e-03 

mol/l Soluble -6.09 

3.47e-04 

mg/ml ; 

8.18e-07 

mol/l 

Poorly 

soluble 

Captopril -1.1 

1.58e+01 

mg/ml ; 

7.29e-02 

mol/l 

Very 

soluble -1.93 

2.56e+00 

mg/ml ; 

1.18e-02 

mol/l 

Very 

soluble -0.38 

9.14e+01 

mg/ml ; 

4.21e-01 

mol/l Soluble 

Elanopril -1.6 

1.02e+01 

mg/ml ; 

2.70e-02 

mol/l 

Very 

soluble -1.49 

1.21e+01 

mg/ml ; 

3.21e-02 

mol/l 

Very 

soluble -3.7 

7.46e-02 

mg/ml ; 

1.98e-04 

mol/l Soluble 
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Lisinopri

l 0.15 

5.76e+02 

mg/ml ; 

1.42e+00 

mol/l 

Highly 

soluble 0.62 

1.71e+03 

mg/ml ; 

4.21e+00 

mol/l 

Highly 

soluble -3.44 

1.46e-01 

mg/ml ; 

3.60e-04 

mol/l Soluble 

 

 

Pharmacokinetics 

 

Models compiled in the Pharmacokinetics section of Swiss ADME, finds out ADME behaviours of the molecules to be studied [23]. The first model 

is a multiple linear regression, that predicts the skin permeability coefficient (Kp)[24]. The predictions for passive human gastrointestinal absorption 

(HIA) and blood-brain barrier (BBB) permeation both can be studied from the BOILED-Egg model [25,26]. If we talk about the drug discovery 

processes, gastrointestinal absorption and brain access come across as important pharmacokinetic behaviours . The Brain Or Intestinal Estimate D 

permeation method (BOILED-Egg) is an accurately proposed model that serves the purpose of studying the possibility of a drug crossing the blood 

brain barrier by predicting its Lipophilicity and polarity [13]. Swiss ADME allows us to estimate if a chemical is a substrate of P-gp or inhibitor of 

certain CYP isoenzymes [23] which are CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4 [24]. On inhibition, these isoenzymes can cause 

pharmacokinetics-related drug-drug interactions [27-29] which might lead adverse effects caused by poor clearance/accumulation of the drug or its 

metabolites [30]. P-gp (permeability glycoprotein) is key to estimate active efflux through biological membranes, like, from the gastrointestinal wall 

to the lumen or from the brain [25]. Another major role of P-gp is the protection of the central nervous system (CNS) from xenobiotics [26]. Hence 

it is important to estimate that a chemical is a substrate of P-gp or inhibitor of the most important CYP isoenzymes or not, as done in this case. 

Compounds 4, 6, 9, 10 (Table 6) are not showing such type of activities. 

 

Table 6: Pharmacokinetics of the proposed compounds (Table 2) in comparison with the commercial ones 

 

S.no GI 

absorption 

BBB 

permean

t 

P-gp 

substrate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Log Kp (skin 

permeation)  

(in cm/s) 

1 High No Yes No No No No No 7.66  

2 High No Yes No No No Yes No 7.17  

3 High No Yes No No No No No 7.67  

4 High No No No No No No No 8.03  

5 High No Yes No No No No No 7.40  

6 High No No No No No No No 8.10  

7 High No Yes No No No No No 7.92  

8 High No Yes No No No Yes No 6.30  

9 High No No No No No No No 7.52  

10 High No No No No No No No 7.81  

Benazo

pril 

High No Yes No No No Yes Yes 7.99  

Captopr

il 

High No No No No No No No 7.38  

Elanopr

il 

High No Yes No No No No No 8.65 

Lisinop

ril 

High No Yes No No No No No 10.80 

 

Drug-likeliness 

 

"Drug-likeness" qualitatively evaluates the chance of a molecule to become an oral drug with respect to bioavailability [23]. This section gives 

access to five different rule-based filters [23]. The Lipinski rule-of-five is as described in ref [31] along with MLOGP acting as lipophilicity 

threshold whose value must be lesser than 4.15. The Ghose filter has been detailed in the original publication [32]. The Veber filter is implemented 

from the seminal paper [33]. The Egan filter has been adopted from from the Egan Egg [34-37], and the closed-source ALOGP98 was replaced by 

WLOGP [25]. The Muegge filter [35] was employed to fit Swiss ADME implementation and usage by the calculation of XLOGP3 as lipophilicity 

descriptor. The Bioavailability Score was adapted from Martin et al. [36]. No violation of any rule described here appears in the case of proposed 

compounds contrary to the commercialized drugs that seem to show certain violations as depicted in Table 7 

 

Table 7: Drug likeness of the proposed compounds (Table 2) in comparison with the commercial ones. 

 

S.no Lipinski Ghose Veber Egan Muegge Bioavailability 

Score 

1 Yes Yes Yes Yes Yes 0.55 
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2 Yes Yes Yes Yes Yes 0.55 

3 Yes Yes Yes Yes Yes 0.55 

4 Yes Yes Yes Yes Yes 0.55 

5 Yes Yes Yes Yes Yes 0.55 

6 Yes Yes Yes Yes Yes 0.55 

7 Yes Yes Yes Yes Yes 0.55 

8 Yes Yes Yes Yes Yes 0.55 

9 Yes Yes Yes Yes Yes 0.55 

10 Yes Yes Yes Yes Yes 0.55 

Benazopril Yes Yes Yes Yes \Yes 0.55 

Captopril Yes Yes Yes Yes Yes 0.56 

Elanopril Yes Yes No; 1 

violation: 

Rotors>10 

Yes Yes 

0.55 

Lisinopril Yes Yes No; 1 

violation: 

Rotors>10 

No; 1 

violation: 

TPSA>131.6 

No; 1 

violation: 

XLOGP3<-

2 

0.55 

 

 

Medicinal Chemistry 

 

Lead optimization is an important filter from which the proposed molecules (Table 2) has to passed through [23,38]. Two methods are employed in 

this section - PAINS (for pan assay interference compounds) and Brenk filters [38,39]. Synthetic Accessibility (SA) Score suggests us the ease of 

synthesis [23]. The score could be between 1 to 10 where 1 is very easy while 10 denotes difficulty in synthesizing. Hence, Table 8 has been shown, 

representing all of the above-mentioned filters. The proposed drugs show better results in terms of lead likeliness as compared to commercial drugs. 

Results suggests that it will possible to synthesized the proposed compounds with as much difficulty as the commercial drugs. 

 

Table 8: Medicinal Chemistry of the proposed compounds (Table 2) in comparison with the commercial ones. 

 

S.no PAINS Brenk Leadlikeness Synthetic 

accessibility 

1 0 alert 0 alert Yes 4.93 

2 0 alert 0 alert Yes 3.34 

3 0 alert 0 alert Yes 4.52 

4 0 alert 0 alert Yes 4.63 

5 0 alert 0 alert Yes 4.54 

6 0 alert 0 alert Yes 4.9 

7 0 alert 0 alert Yes 3.82 

8 0 alert 0 alert Yes 4.43 

9 0 alert 0 alert Yes 3.74 

10 0 alert 0 alert Yes 3.5 

Benazopril 0 alert 0 alert No; 2 violations: 

MW>350, Rotors>7 

4.00 
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Captopril 0 alert 1 alert: 

thiol_2 

No; 1 violation: 

MW<250 

2.47 

Elanopril 0 alert 0 alert No; 2 violations: 

MW>350, Rotors>7 

3.61 

Lisinopril 0 alert 0 alert No; 2 violations: 

MW>350, Rotors>7 

3.67 

 

 

Lipophilicity 

 

The partition coefficient (log Po/w) is the measure of Lipophilicity of a drug. Swiss ADME provides access to five easily available predictive 

models. The first one is XLOGP3 which is an atomistic method adopted for the calculation of log P [40]; Second is WLOGP which is the 

implementation of an atomistic method that in turn is based upon the fragmental system suggested by Wildman and Crippen [41]; The third one is 

MLOGP which is a prototype of topological method that relies on a linear relationship with 13 different molecular descriptors. [42-44] and the 

fourth one is SILICOS-IT which is a hybrid method that is based upon 27 fragments and 7 topological descriptors; and lastly, ilogP [23]. Swiss 

ADME finally provides a consensus log Po/w value, which is the arithmetic mean of the above-mentioned predictive values [23]. The results (Table 

9) are comparable to commercialized drugs. 

 

Table 9: Lipophilicity of the proposed compounds (Table 2) in comparison with the commercial ones. 

 

S.no Log Po/w 

(iLOGP) 

Log Po/w 

(XLOGP3) 

Log Po/w 

(WLOGP) 

Log Po/w 

(MLOGP) 

Log Po/w 

(SILICOS-

IT) 

Consensus 

Log Po/w 

1 2.68 0.7 0.37 1.28 0.18 1.04 

2 2.56 1.36 0.79 1.64 1.11 1.49 

3 2.23 0.67 0.23 0.78 0.77 0.94 

4 2 -0.18 0.27 0.8 0.85 0.75 

5 2.67 1.05 0.58 1.19 0.77 1.25 

6 2.21 0.08 0.04 0.38 0.69 0.68 

7 1.97 0.49 -0.08 0.5 1.88 0.95 

8 2.7 2.76 1.81 2.08 1.45 2.16 

9 2.38 1.12 0.38 0.98 1.45 1.26 

10 1.78 0.36 0 0.72 1.08 0.79 

Benazepril 3.05 1.26 2.19 2.23 3.14 2.37 

Captopril 1.44 0.34 0.25 0.45 0.61 0.62 

Elanopril 3.08 -0.07 1.22 1.32 2.22 1.55 

Lisinopril 2.44 -2.86 0.85 -1.46 1.65 0.13 

 

Toxicity 

 

Table 10 shows the toxicity prediction of all the proposed compounds. Hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity and 

immunotoxicity of each of these compounds have been found to be completely or almost inactive. Our livers are important targets of the toxicity of 

drugs, xenobiotics, and oxidative stress. Hence, it is important for the leads to have minimum hepatotoxicity, as shown by the proposed compounds 

[14]. Carcinogenicity is another toxicological endpoint causing the highest concern [15] making it an important factor to be taken care of, hence the 

compounds designed show no carcinogenicity. Immune-related drug responses are very common sources of idiosyncratic toxicity [16]; hence an 

effort has been made to design the compounds that show minimum immunotoxicity. 

 

Table 10: Toxicity of the predicted compounds in comparison with the commercial ones. 

 

 S.no Hepatotoxicity 

Prediction 

Carcinogenicity 

Prediction 

Immunotoxicity 

Prediction 

Mutagenicity 

Prediction 

Cytotoxicity 

Prediction 

1 Inactive Inactive Inactive Inactive Inactive 

2 Inactive Inactive Inactive Inactive Inactive 

3 Inactive Inactive Inactive Inactive Inactive 

4 Inactive Slightly active Inactive Inactive Inactive 

5 Inactive Inactive Inactive Inactive Inactive 
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6 Inactive Inactive Inactive Inactive Inactive 

7 Inactive Inactive Inactive Inactive Slightly active 

8 Inactive Inactive Inactive Inactive Inactive 

9 Inactive Inactive Inactive Inactive Inactive 

10 Inactive Inactive Slightly active Inactive Slightly active 

Benazopril Inactive Inactive Inactive Inactive Inactive 

Captopril Inactive Active Inactive Inactive Inactive 

Elanopril Inactive Inactive Inactive Inactive Inactive 

Lisinopril Inactive Inactive Inactive Inactive Inactive 

 

CONCLUSION 

 

The study shows that new compounds proposed shown in Table 2 predicted higher activity than the reported compounds shown in Table 1. The 

docking results of the proposed compounds are comparable to the commercial drugs, whereas the ADME properties and the toxicity prediction of 

the proposed compounds are better than licensed compounds. The Synthetic accessibility of the proposed compounds is also comparable to the 

licensed compounds which shows that they can be synthesized synthetically just like licensed compounds; these compounds can hence be 

synthesized and tested in the wet lab. 
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