Sterols and Triterpenes from Gundelia tournefortii L. var Armata

Consolacion Y. Ragasa1,2*, Jo Madeleine Ann Reyes1, Maria Carmen S. Tan1, Glenn G. Oyong3, Robert Brkljača4 and Sylvia Urban4

1Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines, 2Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 3Biology Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 4School of Science (Discipline of Applied Chemistry and Environmental Science), RMIT University (City Campus), 124 La Trobe St Melbourne 3000, Victoria, Australia

ABSTRACT

Chemical investigation of the dichloromethane extract of the edible young stems of Gundelia tournefortii L. var Armata yielded β-sitosteryl-3β-glucopyranoside-6-O-fatty acid esters (1); mixtures of β-sitosterol (2a) and stigmasterol (2b) in a 1:2 ratio; phytol fatty acid esters (3a), α-amyrin fatty acid esters (3b); lupeol fatty acid esters (3c) and β-amyrin fatty acid esters (3d) in a 3:2:2:1 ratio; α-amyrin (4a) and β-amyrin (4b) in a 1:3 ratio; oleic acid (5a) and linoleic acid (5b) in a 1:2 ratio; and long-chain fatty alcohols (6). The structures of 1-6 were identified by comparison of their NMR data with literature data.

Keywords: Gundelia tournefortii L. var Armata, Asteraceae, Compositae, β-sitosteryl-3β-glucopyranoside-6-O-fatty acid esters, β-sitosterol, stigmasterol, phytol fatty acid esters, α-amyrin fatty acid esters, lupeol fatty acid esters, β-amyrin fatty acid esters, α-amyrin, β-amyrin, oleic acid, linoleic acid, long-chain fatty alcohols

INTRODUCTION

Gundelia tournefortii L., also known as tumble thistle, is found in the semi-desert areas of Lebanon, Syria, Palestine, Israel, Jordan, Iraq, Iran, Azerbaijan, Armenia, and Turkey (Anatolia). The leaves, stems, roots, and undeveloped flower buds of G. tournefortii are edible and utilized as a medicinal plant that dates back to more than 2000 years [1]. The plant is traditionally used for the treatment of liver diseases, diabetes, angina pectoris, stroke, gastric ailments, skin diseases, pain, diarrhea and respiratory diseases [2,3,4]. The genus Gundelia has been considered monospecific with Gundelia tournefortii L. of Irano-Turanian origin in most recent floras with all other names declared as synonymous [4]. G. tournefortii L. belongs to the family Asteraceae (Compositae) and is reportedly composed of three varieties, namely: var. armata Freyn and Sint., var. tenuisecta Boiss. and var. tournefortii [5]. The armata is the only native variety reportedly present in Iran [6].

Several studies were conducted on the chemical constituents of G. tournefortii. Chemical investigation of the aerial parts of plant has led to the isolation of scopoletin, isoscopoletin, esculin, and a mixture of β-sitosterol and stigmasterol. The major components of the volatile oil of G. tournefortii was determined by GC-MS as α-terpinyl acetate (36.21%), methyl eugenol (12.57%), eugenol (6.7%), β-caryophyllene (5.94%), and zingiberene (5.84%)
The oil of the flower buds of *G. tournefortii* yielded linoleic (57.8%), oleic (28.5%), palmitic (8.1%), stearic, vaccenic and arachidic acids. The total sterol of the oil was 3.7666 g/kg which included β-sitosterol (51.76%), stigmasterol (18.52%), 5-avenasterol (9.82%), campsterol (6.02%), 7-stigmastenol (3.68%) and 7-avenasterol (2.63%). The total content of vitamin E was 51.9 mg/100 g with α-tocopherol (48.9 mg/100 g) and γ-tocopherol (1.0 mg/100 g) as the major constituents [7]. Another study reported the isolation of caffeic acid and caffeic acid derivatives, neochlorogenic acid, cryptochlorogenic acid, and chlorogenic acid from *G. tournefortii* [8].

![Chemical structures](image)

Furthermore, the roots of *G. tournefortii* afforded oleanolic acid 3-O-2-[α-L-arabinopyranosyl(1→3)-β-D-gentiotriosyl(1→6)-β-D-glucopyranosyl]gb-D-xylopyranoside), oleanolic acid 3-O-2-[α-L-arabinopyranosyl]
In this study, the edible young stems of *G. tournefortii* L. var Armata yielded β-sitosteryl-3β-glucopyranoside-6-O-fatty acid esters (1); mixtures of β-sitosterol (2a) and stigmasterol (2b) in a 1:2 ratio; phytol fatty acid esters (3a), α-amyrin fatty acid esters (3b); lupeol fatty acid esters (3c) and β-amyrin fatty acid esters (3d) in a 3:2:2:1 ratio; α-amyrin (4a) and β-amyrin (4b) in a 1:3 ratio; oleic acid (5a) and linoleic acid (5b) in a 1:2 ratio; and long-chain fatty alcohols (6). To the best of our knowledge, this is the first report on the isolation of 1, 3a-3d and 6 from *G. tournefortii*.

MATERIALS AND METHODS

General Experimental Procedure

\(^1\)H (500 MHz) and \(^{13}\)C (125 MHz) NMR spectra were acquired in CDCl\(_3\) on a 500 MHz Agilent DD2 NMR spectrometer with referencing to solvent signals (δ 7.26 and 77.0 ppm). Column chromatography was performed with silica gel 60 (70-230 mesh). Thin layer chromatography was performed with plastic backed plates coated with silica gel F\(_{254}\) and the plates were visualized by spraying with vanillin/H\(_2\)SO\(_4\) solution followed by warming.

General Isolation Procedure

A glass column 18 inches in height and 1.0 inch internal diameter was packed with silica gel. The crude extracts were fractionated by silica gel chromatography using increasing proportions of acetone in CH\(_2\)Cl\(_2\) (10% increment) as eluents. Fifty milliliter fractions were collected. All fractions were monitored by thin layer chromatography. Fractions with spots of the same \(R_f\) values were combined and rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. A glass column 12 inches in height and 0.5 inch internal diameter was used for the rechromatography. Two milliliter fractions were collected. Final purifications were conducted using Pasteur pipettes as columns. One milliliter fractions were collected.

Sample Collection

Gundelia tournefortii L. young plants were harvested during early spring on the slopes of the Zagros at elevations 2,000 meters above sea level around Yasuj, capital city of Kohgoluyeh Vah Boyer-ahmad province, Iran. Taxonomic identification was confirmed by comparing the collected voucher specimen with that of known identity in the Iranian Research Institute of Plant Protection, Tehran, Iran, with the guidance of a resident plant taxonomist.

Isolation of the Chemical Constituents of Gundelia tournefortii L.

The freeze-dried stems of *G. tournefortii* L. var Armata young plant (30.7 g) were ground in a blender, soaked in CH\(_2\)Cl\(_2\) for 3 days and then filtered. The solvent was evaporated under vacuum to afford a crude extract (0.4394 g) which was chromatographed using increasing proportions of acetone in CH\(_2\)Cl\(_2\) at 10% increments by volume. The CH\(_2\)Cl\(_2\) and 10% acetone in CH\(_2\)Cl\(_2\) fractions were combined and rechromatographed using 2.5% EtOAc in petroleum ether to yield a mixture of 3a-3d (5 mg) after washing with petroleum ether. The 20% acetone in CH\(_2\)Cl\(_2\) fraction was rechromatographed using 20% EtOAc in petroleum ether to afford 6 (3 mg) and a mixture of 4a and 4b (3 mg) after washing with petroleum ether. The 30% acetone in CH\(_2\)Cl\(_2\) fraction was rechromatographed using CH\(_2\)CN:Et\(_2\)O:CH\(_2\)Cl\(_2\) (1:1:8, v/v) to yield a mixture of 5a and 5b (4 mg) and another mixture of 2a and 2b (6 mg) after washing with petroleum ether. The 40% acetone in CH\(_2\)Cl\(_2\) fraction was rechromatographed using CH\(_2\)CN:Et\(_2\)O:CH\(_2\)Cl\(_2\) (2.5:2.5:5, v/v) to yield 1 (3 mg) after trituration with petroleum ether.

RESULTS AND DISCUSSION

The NMR spectra of 1 are in accordance with data reported in the literature for β-sitosteryl-3β-glucopyranoside-6-O-fatty acid esters [12]; 2a for β-sitosterol [13]; 2b for stigmasterol [13]; 3a for phytol fatty acid esters [14], 3b for α-amyrin fatty acid esters [15]; 3c for lupeol fatty acid esters [16]; 3d for β-amyrin fatty acid esters [16]; 4a for α-amyrin [18] and 4b for β-amyrin [18]; 5a for oleic acid [19], 5b for linoleic acid [20], and long-chain fatty alcohols (6) [21].
Acknowledgement
A research grant from the De La Salle University Science Foundation through the University Research Coordination Office is gratefully acknowledged.

REFERENCES