# Available online at www.derpharmachemica.com



Scholars Research Library

Der Pharma Chemica, 2014, 6(5):70-79 (http://derpharmachemica.com/archive.html)



ISSN 0975-413X CODEN (USA): PCHHAX

# Structural, electronic, optical and vibrational properties of 1-(5-chloro-6fluoro-1,3-benzothiazol-2-yl)hydrazine&1-(6-chloro-1,3-benzothiazol-2yl)hydrazine-A quantum chemical study

Saurabh Pandey<sup>1</sup>, Apoorva Dwivedi<sup>2</sup>, Ambrish K. Srivastava<sup>1</sup>, Neeraj Misra<sup>1\*</sup>, Balladka K. Sarojini<sup>3,4</sup>, Billava J. Mohan<sup>3</sup> and Badiadka Narayana<sup>5</sup>

<sup>1</sup>Department of Physics, Lucknow University, Lucknow, India <sup>2</sup>Department of Physics, Govt. Kakatiya P. G. College, Jagdalpur, India <sup>3</sup>Department of Chemistry, P.A.College of Engineering, Mangalore, India <sup>4</sup>Department of Studies in Chemistry-Industrial Chemistry Division, Mangalore University, Mangalagangotri, Mangalore, India <sup>5</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, India

## ABSTRACT

We have done a comparative study of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazinewith B3LYP with 6-311 G (d, p) as the basis set. Here we have done a relative study of their structures, vibrational assignments, thermal, electronic and optical properties of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine. We have plotted frontier orbital HOMO- LUMO surfaces, Molecular electrostatic potential surfaces to explain the reactive nature of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine.

**Keywords:**1-(5-Chloro-6-fluoro-1,3-benzothiazol-2-yl)hydrazine, 1-(6-Chloro-1,3-benzothiazol-2-yl) hydrazine, Vibrational analysis, DFT, HOMO- LUMO surfaces, Optical properties

## INTRODUCTION

Hydrazine, an inorganic compound, is a colourless, flammable liquid.It smells like ammonia. Hydrazine is mainly used as a foaming agent in the preparation of polymer foams. Hydrazine is also used in various rocket fuelsand to prepare the gas precursors used in air bags. Hydrazine is used in both nuclear and conventional electrical power plantsteam cycles as an oxygen scavenger to control concentrations of dissolved oxygen in an effort to reduce corrosion. Hydrazineshave great significance in pharmaceuticalssuch as the anti-tuberculosis medication isoniazid and the antifungal fluconazole, as well as in textile dyes and in photography too [1, 2]. Hydrazine derivatives have been examined extensively due to their biological applications as well as metal-extracting properties. Acid hydrazides have shown reliable biological properties like bactericidal, anti-malaria, anti-cancer, anti-depressant, anti-HIV and vasodilator activities [3-8].

As a part of our ongoing research work [9-17], we report the comparative study of-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine & 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine by DFT study. To the best of our

knowledge no comparative quantum chemical calculations of these molecules have been reported so far in the literature.

#### MATERIALS AND METHODS

## **Computational Details**

## Structure and Spectra

The molecular structures of the 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine have been modelled. The model molecular structures of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazineare given in Figures 1.Fourier Transform Infrared spectrum (Fig.-3) of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-b

#### **Computational methods**

All the calculations were performed by the B3LYP [18, 19] method using the 6-311 G (d, p) basis setof Density functional theory [20]. All computations were carried out with the GAUSSIAN 09 package[21]. By combining the results of the GAUSSVIEW'S program [22] with symmetry considerations, vibrational frequency assignments were made with a high degree of accuracy. Vibrational frequencies for these molecules were calculated with these methods and then scaled [23] by 0.9613.

## **RESULTS AND DISCUSSION**

### **Geometry Optimization**

Optimized parameters of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazinecalculated by B3LYP method with 6-311 G (d, p) basis set are listed in Table 1 in accordance with the atom numbering scheme as shown in Figures 1. Local minimum energies are -1392.3958a.u, and -1293.1372a.u,for 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazinerespectively. For1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine,C–C bond distances are found to be in the range from 1.381-1.429 A<sup>0</sup> and 1.318-1.401 A<sup>0</sup> while for C-N, these values are 1.350-1.461 A<sup>0</sup> and 1.429-1.461 A<sup>0</sup> respectively. In case of C-H bond distances, they are found to be 1.07 A<sup>0</sup> in both the molecules whilein case of C-Cl bond distance, they are found to be 1.760 A<sup>0</sup> in both the molecules.Optimized structures of1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine, by B3LYP/6-311G (d, p) method are shown in Figure 1.

### **Assignment of Fundamentals**

1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazinehas 14 atoms with 48 normal modes of vibration while1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazinehas 14 atoms with 48 normal modes of vibration.On the basis of our calculated data and experimental FTIR spectra, we observe similarities and differences between the experimental and the calculated frequencies byDFT/B3LYP method.Assignments are done using the animated view ofnormal mode description. A good agreement is found between thetheoretical and experimental data. Vibrational frequencies, calculated for 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazineand experimental frequencies (FTIR) havebeen compared in Tables 2 and 3, respectively.

## **Modes Description**

#### **C-H Vibrations**

We have seen in literature that the C–H stretchingvibrations are usually observed in 2800– 3200 cm<sup>-1</sup> region. In the study of1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine,the (C–H) functional group is present at 3084 and 3095 cm<sup>-1</sup> in the calculated spectra which is in good agreement with the experimental data as given in Table 2.In the study of1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine,the (C–H) functional group is present at 3073, 3084 and 3088cm<sup>-1</sup> incalculated spectra which is in good agreement with the experimental data as given in Table 3.

#### **N-H Vibrations**

The N–H stretching vibrations are normally viewed in the region 3300-3600 cm<sup>-1</sup>. For 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine, the N-H stretching vibration is present at 3345, 3408 and 3444 cm<sup>-1</sup> while 3344, 3405 and 3445 cm<sup>-1</sup> in 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine. A strong scissoring vibrations of H-N-H is found at

 $1643 \text{cm}^{-1}$  for1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine while  $1641 \text{cm}^{-1}$ for 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine. For 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine, the twist NH<sub>2</sub> vibration, presented at 1300 cm<sup>-1</sup> while 842 cm<sup>-1</sup> in 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine. Also the rocking NH<sub>2</sub> vibration, presented at 849 cm<sup>-1</sup> for 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine. All these bands are in good agreement with the experimental data as given in Tables 2 & 3.

| Table-1 Optimized geometrical parameters of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine & 1-(6-Chloro-1, 3-benzothiazol-2-yl) |
|------------------------------------------------------------------------------------------------------------------------------------------|
| yl) hydrazine by (B3LYP)/ 6-311 G (d, p) Method                                                                                          |

| C NO  | 1-(5-Chloro-6-fluoro-                             | 1, 3-benzothiazol-2-yl) hydrazine                       | 1-(6-Chloro-1,3-benzothiazol-2-yl) hydrazine      |                                                         |  |  |  |  |
|-------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| 5.NU. | PARAMETERS                                        | CALCULATED VALUE PARAMETER                              |                                                   | CALCULATED VALUE                                        |  |  |  |  |
|       | Bond Lengths                                      |                                                         |                                                   |                                                         |  |  |  |  |
| 1.    | $C_1$ - $S_8$                                     | 1.504                                                   | C1-S8                                             | 1.504                                                   |  |  |  |  |
| 2.    | C1-N9                                             | 1.429                                                   | C1-N9                                             | 1.429                                                   |  |  |  |  |
| 3.    | C1-N12                                            | 1.35                                                    | C1-N10                                            | 1.35                                                    |  |  |  |  |
| 4.    | C2-C3                                             | 1.3818                                                  | C2-C3                                             | 1.318                                                   |  |  |  |  |
| 5.    | C2-C7                                             | 1.429                                                   | C2-C7                                             | 1.429                                                   |  |  |  |  |
| 6.    | $C_2-S_8$                                         | 1.504                                                   | C2-S8                                             | 1.504                                                   |  |  |  |  |
| 7.    | C <sub>3</sub> -C <sub>4</sub>                    | 1.403                                                   | C <sub>3</sub> -C <sub>4</sub>                    | 1.403                                                   |  |  |  |  |
| 8.    | C3-H17                                            | 1.07                                                    | C3-H15                                            | 1.07                                                    |  |  |  |  |
| 9.    | C <sub>4</sub> -C <sub>5</sub>                    | 1.3917                                                  | C <sub>4</sub> -C <sub>5</sub>                    | 1.3917                                                  |  |  |  |  |
| 10    | C <sub>4</sub> -F <sub>10</sub>                   | 1.35                                                    | C <sub>4</sub> -Cl <sub>17</sub>                  | 1.76                                                    |  |  |  |  |
| 11.   | C5-C6                                             | 1.4018                                                  | C5-C6                                             | 1.4018                                                  |  |  |  |  |
| 12.   | C5-Cl11                                           | 1.76                                                    | C <sub>5</sub> -H <sub>18</sub>                   | 1.07                                                    |  |  |  |  |
| 13.   | C <sub>6</sub> -C <sub>7</sub>                    | 1.3849                                                  | C <sub>6</sub> -C <sub>7</sub>                    | 1.3849                                                  |  |  |  |  |
| 14.   | C6-H18                                            | 1.07                                                    | C <sub>6</sub> -H <sub>16</sub>                   | 1.07                                                    |  |  |  |  |
| 15.   | C <sub>7</sub> -N <sub>9</sub>                    | 1.4611                                                  | C <sub>7</sub> -N <sub>9</sub>                    | 1.4611                                                  |  |  |  |  |
| 16.   | N <sub>12</sub> -N <sub>13</sub>                  | 1.4                                                     | N <sub>10</sub> -N <sub>11</sub>                  | 1.4                                                     |  |  |  |  |
| 17.   | N <sub>12</sub> -H <sub>16</sub>                  | 1.0                                                     | N <sub>10</sub> -H <sub>14</sub>                  | 1.0                                                     |  |  |  |  |
| 18.   | N <sub>13</sub> -H <sub>14</sub>                  | 1.0                                                     | N <sub>11</sub> -H <sub>12</sub>                  | 1.0                                                     |  |  |  |  |
| 19.   | N <sub>13</sub> -H <sub>15</sub>                  | 1.0                                                     | N <sub>11</sub> -H <sub>13</sub>                  | 1.0                                                     |  |  |  |  |
|       |                                                   | Bond Ang                                                | les                                               |                                                         |  |  |  |  |
| 20.   | $S_8-C_1-N_9$                                     | 110.0484                                                | $S_8-C_1-N_9$                                     | 110.0484                                                |  |  |  |  |
| 21.   | S <sub>8</sub> -C <sub>1</sub> -N <sub>12</sub>   | 127.1965                                                | S <sub>8</sub> -C <sub>1</sub> -N <sub>10</sub>   | 127.1965                                                |  |  |  |  |
| 22.   | N <sub>9</sub> -C <sub>1</sub> -N <sub>12</sub>   | 122.6978                                                | N <sub>9</sub> -C <sub>1</sub> -N <sub>10</sub>   | 122.6978                                                |  |  |  |  |
| 23.   | C <sub>3</sub> -C <sub>2</sub> -C <sub>7</sub>    | 120.4689                                                | C <sub>3</sub> -C <sub>2</sub> -C <sub>7</sub>    | 120.4689                                                |  |  |  |  |
| 24.   | C <sub>3</sub> -C <sub>2</sub> -S <sub>8</sub>    | 129.4825                                                | C <sub>3</sub> -C <sub>2</sub> -S <sub>8</sub>    | 129.4825                                                |  |  |  |  |
| 25.   | $C_7 - C_2 - S_8$                                 | 110.0486                                                | C <sub>7</sub> -C <sub>2</sub> -S <sub>8</sub>    | 110.0485                                                |  |  |  |  |
| 26.   | C2-C3-C4                                          | 118.6716                                                | C <sub>2</sub> -C <sub>3</sub> -C <sub>4</sub>    | 118.6716                                                |  |  |  |  |
| 27.   | C2-C3-H17                                         | 120.6642                                                | C2-C3H15                                          | 120.6642                                                |  |  |  |  |
| 28.   | C <sub>4</sub> -C <sub>3</sub> -H <sub>17</sub>   | 120.6642                                                | C <sub>4</sub> -C <sub>3</sub> -H <sub>15</sub>   | 120.6642                                                |  |  |  |  |
| 29.   | C <sub>3</sub> -C <sub>4</sub> -C <sub>5</sub>    | 120.895                                                 | C <sub>3</sub> -C <sub>4</sub> -C <sub>5</sub>    | 120.8955                                                |  |  |  |  |
| 30.   | C <sub>3</sub> -C <sub>4</sub> -F <sub>10</sub>   | 119.5522                                                | C <sub>3</sub> -C <sub>4</sub> -Cl <sub>17</sub>  | 119.5522                                                |  |  |  |  |
| 31.   | C <sub>5</sub> -C <sub>4</sub> -F <sub>10</sub>   | 119.5522                                                | C <sub>5</sub> -C <sub>4</sub> -Cl <sub>17</sub>  | 119.5522                                                |  |  |  |  |
| 32.   | $C_4-C_5-C_6$                                     | 120.8927                                                | C <sub>4</sub> -C <sub>5</sub> -C <sub>6</sub>    | 120.8927                                                |  |  |  |  |
| 33.   | C <sub>4</sub> -C <sub>5</sub> -Cl <sub>11</sub>  | 119.5536                                                | C4-C5-H18                                         | 119.5536                                                |  |  |  |  |
| 34.   | C6-C5-Cl11                                        | 119.5536                                                | C6-C5-H18                                         | 119.5536                                                |  |  |  |  |
| 35.   | C5-C6-C7                                          | 118.6055                                                | C5-C6-C7                                          | 118.6055                                                |  |  |  |  |
| 36.   | C5-C6-H18                                         | 120.6972                                                | C5-C6-H16                                         | 120.6972                                                |  |  |  |  |
| 37.   | C7-C6-H18                                         | 120.6972                                                | C7-C6-H16                                         | 120.6972                                                |  |  |  |  |
| 38.   | C <sub>2</sub> -C <sub>7</sub> -C <sub>6</sub>    | 120.4657                                                | C <sub>2</sub> -C <sub>7</sub> -C <sub>6</sub>    | 120.4657                                                |  |  |  |  |
| 39.   | C2-C7-N9                                          | 108.306                                                 | C2-C7-N9                                          | 108.3066                                                |  |  |  |  |
| 40.   | C6-C7-N9                                          | 131.2278                                                | C6-C7-N9                                          | 131.2278                                                |  |  |  |  |
| 41.   | C1-S8-C2                                          | 103.2891                                                | C1-S8-C2                                          | 103.2891                                                |  |  |  |  |
| 42.   | C1-N9-C7                                          | 108.3073                                                | C1-N9-C7                                          | 108.3073                                                |  |  |  |  |
| 43.   | C1-N12-N13                                        | 109.4712                                                | C1-N10-N11                                        | 109.4712                                                |  |  |  |  |
| 44.   | C1-N12-H16                                        | 125-2644                                                | C1-N10-H14                                        | 125.2644                                                |  |  |  |  |
| 45.   | N <sub>13</sub> -N <sub>12</sub> -H <sub>16</sub> | 125-2644                                                | N <sub>11</sub> -N <sub>10</sub> -H <sub>14</sub> | 125.2644                                                |  |  |  |  |
| 46.   | N <sub>12</sub> -N <sub>13</sub> -H <sub>14</sub> | 120.0                                                   | N <sub>10</sub> -N <sub>11</sub> -H <sub>12</sub> | 120.0                                                   |  |  |  |  |
| 47.   | N <sub>12</sub> -N <sub>13</sub> -H <sub>15</sub> | 120.0                                                   | N <sub>10</sub> -N <sub>11</sub> -H <sub>13</sub> | 120.0                                                   |  |  |  |  |
| 48    | H14-N12-H15                                       | H <sub>14</sub> -N <sub>12</sub> -H <sub>15</sub> 120.0 |                                                   | H <sub>12</sub> -N <sub>11</sub> -H <sub>12</sub> 120.0 |  |  |  |  |

| S.NO. | Wave number<br>Calculated | Wave number<br>Exp. | IR<br>INTENSITY | VIBRATIONAL ASSINGMENT                                                    |  |
|-------|---------------------------|---------------------|-----------------|---------------------------------------------------------------------------|--|
| 1     | 65                        | -                   | 5.563           | Twist in NH-NH <sub>2</sub>                                               |  |
| 2     | 99                        | -                   | 0.432           | Out of plane twisting in whole molecule                                   |  |
| 3     | 121                       | -                   | 11.29           | Twist in NH-NH <sub>2</sub>                                               |  |
| 4     | 143                       | _                   | 5.288           | Bending of NH-NH <sub>2</sub>                                             |  |
| 5     | 204                       | _                   | 4.221           | $\Theta(C_{s-C u})$                                                       |  |
| 6     | 227                       | -                   | 4 697           | Out of plane twisting in whole molecule                                   |  |
| 7     | 261                       | -                   | 1.856           | Twist in NH <sub>2</sub>                                                  |  |
| 8     | 267                       | -                   | 27.85           | Twist in NH <sub>2</sub>                                                  |  |
| 9     | 299                       | -                   | 53.16           | Twist in NH <sub>2</sub>                                                  |  |
| 10    | 320                       | -                   | 10.10           | Twist in NH <sub>2</sub>                                                  |  |
| 11    | 322                       | -                   | 2.300           | $\tau$ in whole molecule                                                  |  |
| 12    | 388                       | -                   | 7.562           | Twist in NH <sub>2</sub>                                                  |  |
| 13    | 427                       | 437                 | 10.88           | $\tau(C_3-C_4-C_5-\tilde{C_6})$                                           |  |
| 14    | 498                       | 491                 | 26.74           | Twist in NH <sub>2</sub>                                                  |  |
| 15    | 509                       | 522                 | 42.12           | Twist in NH <sub>2</sub>                                                  |  |
| 16    | 546                       | -                   | 13.00           | Twisting in Benzene ring                                                  |  |
| 17    | 571                       | 561                 | 39.70           | Twisting in whole molecule                                                |  |
| 18    | 585                       | -                   | 8.007           | Butterfly motion at C <sub>1</sub>                                        |  |
| 19    | 622                       | 611                 | 21.97           | $\beta(N_9-C_1-N_{12})$                                                   |  |
| 20    | 640                       | 655                 | 2.961           | $\tau$ (C <sub>5</sub> -C <sub>4</sub> -C <sub>3</sub> -H <sub>17</sub> ) |  |
| 21    | 682                       | -                   | 2.591           | Whole ring Torsion                                                        |  |
| 22    | 687                       | 688                 | 2.218           | Out of plane twisting in ring carbons                                     |  |
| 23    | 707                       | 719                 | 31.22           | Ring breathing                                                            |  |
| 24    | 809                       | -                   | 88.87           | $\tau$ (C-C-C-C) in whole ring                                            |  |
| 25    | 818                       | -                   | 11.36           | Out of plane Bending (C-C-H) both places                                  |  |
| 26    | 849                       | 831                 | 116.0           | Rock NH <sub>2</sub>                                                      |  |
| 27    | 856                       | 864                 | 29.62           | Out of plane Bending (C-C-H) both places                                  |  |
| 28    | 950                       | 972                 | 20.54           | Ring Breathing                                                            |  |
| 29    | 1039                      | 1070                | 53.71           | $\beta$ (C-C-H) at both places + $\beta$ (C-C-C) in whole ring            |  |
| 30    | 1102                      | 1116                | 28.15           | $\beta$ (C <sub>1</sub> -N <sub>12</sub> -N <sub>13</sub> )               |  |
| 31    | 1174                      | 1151                | 31.28           | $\beta$ (C-C-H) at both places                                            |  |
| 32    | 1188                      | 1201                | 1.947           | $\beta$ (C-C-H) at both places                                            |  |
| 33    | 1246                      | -                   | 2.214           | $v(C_2-C_7)+v(C_6-C_5)$                                                   |  |
| 34    | 1257                      | -                   | 14.84           | Twist NH <sub>2</sub>                                                     |  |
| 35    | 1287                      | 1271                | 1.574           | Twist NH <sub>2</sub>                                                     |  |
| 36    | 1300                      | 1292                | 89.75           | Twist NH <sub>2</sub>                                                     |  |
| 37    | 1368                      | 1361                | 11.93           | $\beta$ (C-C-C) in whole ring                                             |  |
| 38    | 1401                      | 1396                | 45.09           | $\beta$ (C <sub>1</sub> -N <sub>12</sub> -H <sub>16</sub> )               |  |
| 39    | 1429                      | 1452                | 278.9           | $\beta$ (C-C-H) at both places                                            |  |
| 40    | 1529                      | 1529                | 142.2           | Ring Deformation                                                          |  |
| 41    | 1550                      | 1558                | 125.8           | $v(C_1-N_9)+v(C-C)$ in whole ring                                         |  |
| 42    | 1590                      | 1597                | 75.81           | $v(C_1-N_9)+v(C-C)$ in whole ring                                         |  |
| 43    | 1643                      | 1649                | 124.3           | S (H <sub>15</sub> -N <sub>13</sub> -H <sub>14</sub> )                    |  |
| 44    | 3084                      | 3068                | 1.2841          | $v(C_3-H_{17})$                                                           |  |
| 45    | 3095                      | 3091                | 0.0261          | $v(C_6-H_{18})$                                                           |  |
| 46    | 3345                      | 3373                | 1.4986          | $\nu(N_{13}-H_{14})+\nu(N_{13}-H_{15})$                                   |  |
| 47    | 3408                      | 3398                | 42.9565         | $v(N_{12}-H_{16})$                                                        |  |
| 48    | 3444                      | 3450                | 8.7239          | $v(N_{13}-H_{14})+v(N_{13}-H_{15})$                                       |  |

Table 2 Vibrational assignments of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine with B3LYP/6-311G (d, p)

#### Other modes of vibration

In 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine, a ring deformation mode is calculated at  $1529 \text{ cm}^{-1}$  which is in good agreement with the experimental data i.e.  $1529 \text{ cm}^{-1}$  while in 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine,ring deformation mode is at  $664 \text{ cm}^{-1}$  having appropriate IR intensity which is in good agreement with experimental data i.e.  $559 \text{ cm}^{-1}$ . As expected, torsion modes along with wagging modes appear in the lower frequency range. For 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine, strong torsion mode of C-C-C-C is at  $427 \text{ cm}^{-1}$  in calculated spectrum which matches well with the experimental one, that is,  $437 \text{ cm}^{-1}$  while a strong torsion modes of C-C-C-C are at  $472 \text{ cm}^{-1}$  in calculated spectrum for 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine which also matches well with the experimental one, that is,  $472 \text{ cm}^{-1}$ . In middle region, in and out of plane bending vibrations are found which matches well with their corresponding frequencies. Furthermore, the study of low frequency vibrations are of great significance, because it gives information on weak intermolecular interactions, which take place in enzyme reactions [24]. Knowledge of low frequency mode is also essential for the interpretation of the effect of electromagnetic radiation on biological systems [25]. The aim of vibrational analysis is to acquire direct information on lower and higher frequency vibrations of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine and 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine.

| S.NO. | Wave number | Wave number | IR<br>intensity | VIBRATIONAL ASSINGMENT                                   |  |
|-------|-------------|-------------|-----------------|----------------------------------------------------------|--|
| 1     | 65          | -<br>-      | 5.521           | Twist NH-NH <sub>2</sub>                                 |  |
| 2     | 108         | -           | 9.7064          | Twist NH-NH <sub>2</sub>                                 |  |
| 3     | 138         | -           | 5.1037          | Twist NH-NH <sub>2</sub>                                 |  |
| 4     | 187         | -           | 3.9742          | Out of plane twisting in whole molecule                  |  |
| 5     | 199         | -           | 3.1739          | Twist NH-NH <sub>2</sub>                                 |  |
| 6     | 226         | -           | 8.4174          | Twist NH-NH <sub>2</sub>                                 |  |
| 7     | 282         | -           | 71.7845         | Twist NH-NH <sub>2</sub>                                 |  |
| 8     | 313         | -           | 9.9433          | Twist NH <sub>2</sub>                                    |  |
| 9     | 358         | -           | 5.9474          | Twist NH <sub>2</sub>                                    |  |
| 10    | 373         | -           | 8.0188          | Benzene ring twist from joint                            |  |
| 11    | 421         | 423         | 11.5352         | Twist NH <sub>2</sub>                                    |  |
| 12    | 472         | 472         | 8.3219          | Torsion in whole molecule                                |  |
| 13    | 498         | 487         | 43.3971         | Twist NH-NH <sub>2</sub>                                 |  |
| 14    | 514         | 520         | 40.4365         | Twist NH-NH <sub>2</sub>                                 |  |
| 15    | 549         | 557         | 22.2618         | Out of plane bending (C-C-H)                             |  |
| 16    | 579         | 580         | 15.2978         | Twist NH-NH <sub>2</sub>                                 |  |
| 17    | 597         | -           | 4.6665          | Butterfly motion at C <sub>1</sub>                       |  |
| 18    | 664         | 659         | 12.0686         | Ring deformation                                         |  |
| 19    | 683         | 675         | 22.5229         | Twist NH-NH <sub>2</sub>                                 |  |
| 20    | 707         | 715         | 0.12            | Out of plane bending in benzene ring                     |  |
| 21    | 734         | -           | 39.243          | Torsion (C-C-C-C) whole                                  |  |
| 22    | 801         | 800         | 31.4387         | Out of plane (C-C-H) whole                               |  |
| 23    | 834         | 817         | 15.3781         | Out of plane(C-C-H) whole                                |  |
| 24    | 842         | -           | 119.8694        | Twist NH <sub>2</sub>                                    |  |
| 25    | 860         | 866         | 43.8047         | $\beta$ (C-C-C) whole                                    |  |
| 26    | 924         | 958         | 0.3791          | Out of plane bending (C-C-H)                             |  |
| 27    | 1026        | 1035        | 5.8778          | $\beta$ (C-C-H) whole                                    |  |
| 28    | 1059        | 1051        | 18.3236         | Ring Breathing                                           |  |
| 29    | 1105        | 1091        | 28.7061         | $\beta$ (C-C-C)+ $\beta$ (C-C-H) whole                   |  |
| 30    | 1110        | 1118        | 24.2967         | $\beta(C_4-C_5-H_{18})+\beta(C_7-C_6-H_{16})$            |  |
| 31    | 1217        | -           | 3.395           | $\beta(C_4-C_5-H_{18})+\beta(C_7-C_6-H_{16})$            |  |
| 32    | 1241        | -           | 65.5535         | $\beta(C_4-C_5-H_{18}) + \beta(C_7-C_6-H_{16})$          |  |
| 33    | 1256        | -           | 11.2814         | Twist NH <sub>2</sub>                                    |  |
| 34    | 1280        | 1267        | 25.1393         | v (C-C) in benzene ring                                  |  |
| 35    | 1301        | 1300        | 40.1762         | $v(C_1-N_{10})$                                          |  |
| 36    | 1376        | 1379        | 14.1543         | $\beta(C_4-C_3-H_{15})+\beta(C_4-C_5-H_{18})$            |  |
| 37    | 1399        | 1402        | 39.2882         | $\beta(\mathbf{N}_{11}-\mathbf{N}_{10}-\mathbf{H}_{14})$ |  |
| 38    | 1420        | 1425        | 168.599         | $\beta(C_4 - C_3 - H_{15}) + \beta(C_7 - C_6 - H_{16})$  |  |
| 39    | 1529        | 1527        | 82.181          | v (C-C) in benzene ring                                  |  |
| 40    | 1539        | 1551        | 121.3791        | v (C-C) in benzene ring                                  |  |
| 41    | 1586        | 1557        | 135.0449        | v (U-U) in benzene ring                                  |  |
| 42    | 1641        | 1651        | 127.1402        | $S(H_{13}-N_{11}-H_{12})$                                |  |
| 45    | 3073        | 3074        | 2.5397          | $v (C_5 - H_{18}) + v (C_6 - H_{16})$                    |  |
| 44    | 3084        | -           | 0./166          | V (U <sub>3</sub> -H <sub>15</sub> )                     |  |
| 45    | 3088        | -           | 3.934/          | $V(U_5-\Pi_{18})+V(U_6-\Pi_{16})$                        |  |
| 40    | 2405        | 2209        | 1.0245          | $v (1v_{11}-n_{13})+(1v_{11}-n_{12})$                    |  |
| 4/    | 3405        | 3398        | 41.8012         | $V(\mathbf{IN}_{10}-\mathbf{H}_{14})$                    |  |
| 48    | 5445        | 5450        | 8.4869          | $v (N_{11}-H_{12}) + v (N_{11}-H_{13})$                  |  |

Table 3 Vibrational assignments of 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine with B3LYP/6-311G (d, p)

# Electrical, Optical, Dipole moment and Thermo-dynamical properties

Frontier orbital energy gap, i.e. the gap between HOMO and LUMO shows theinteraction of that molecule with other species. Frontier orbital energy gap helps to differentiate thechemical reactivity of the molecules. In case of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine, frontier orbital energy gap is 4.447 and 4.555eV, respectively and are given in table 4. So it can be concluded that 1-(5-Chloro-6fluoro-1, 3-benzothiazol-2-yl)hydrazine is the most reactive compound between them. The MESP is a map

## Neeraj Misra et al

ofelectrostatic potential on uniform electron density. It is used to visualize charge or electron density distribution within the molecule. The importance of MESP lies in the fact that is simultaneously displays molecular size, shape as well aspositive, negative, and neutral electrostatic potential regions in terms of color grading. The pictures of HOMO, LUMO, and electrostatic potential for 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine & 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine are shown Figures 2.

Table 4 Lowest Energy, HOMO- LUMO Gap (Frontier orbital energy gap) and Dipole Moment of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine & 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine by (B3LYP)/ 6-311 G (d, p) method

| S.NO. | PARAMETER                   | 1-(5-Chloro-6-fluoro-<br>1, 3-benzothiazol-2-yl) hydrazine | 1-(6-Chloro-<br>1, 3-benzothiazol-2-yl) hydrazine |
|-------|-----------------------------|------------------------------------------------------------|---------------------------------------------------|
| 1.    | Total Energy E (a.u.)       | -1392.3959                                                 | -1293.0702                                        |
| 2.    | Homo                        | -0.20882                                                   | 4.9019                                            |
| 3.    | Lumo                        | -0.0439                                                    | -0.03629                                          |
| 4.    | Frontier Orbital Energy Gap | 4.447 eV                                                   | 4.555 eV                                          |
| 5.    | Dipole Moment               | 6.6424                                                     | 4.5551                                            |

 Table 5 Polarizability and Hyper Polarizability of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine & 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine by (B3LYP)/ 6-311 G (d, p) methods

| S.NO. | 1-(5-Chloro-6-fluoro      | -1, 3-benzothiazol-2-yl) hydrazine | 1-(6-Chloro-1,3-benzothiazol-2-yl) hydrazine |                     |  |
|-------|---------------------------|------------------------------------|----------------------------------------------|---------------------|--|
|       | PARAMETERS POLARIZABILITY |                                    | PARAMETERS                                   | POLARIZABILITY      |  |
| 1.    | $\alpha_{xx}$             | -68.1287                           | $\alpha_{xx}$                                | -61.7672            |  |
| 2.    | $\alpha_{yy}$             | -85.7497                           | $\alpha_{xy}$                                | -1.9320             |  |
| 3.    | α <sub>zz</sub>           | -88.7856                           | $\alpha_{yy}$                                | -81.6095            |  |
| 4.    | $\alpha_{xy}$             | 5.4876                             | $\alpha_{vz}$                                | 0.4604              |  |
| 5.    | $\alpha_{xz}$             | -3.1162                            | α <sub>zz</sub>                              | -85.4339            |  |
| 6.    | $\alpha_{yz}$             | -0.8495                            | α <sub>zx</sub>                              | 3.0954              |  |
|       | α                         | 80.888                             | α                                            | 76.2702             |  |
|       | PARAMETERS                | HYPER POLARIZABILTY                | PARAMETERS                                   | HYPER POLARIZABILTY |  |
| 1.    | β <sub>xxx</sub>          | -195.4190                          | β <sub>xxx</sub>                             | 199.8635            |  |
| 2.    | β <sub>yyy</sub>          | 8.5795                             | $\beta_{xxy}$                                | 10.4277             |  |
| 3.    | β <sub>zzz</sub>          | 2.7621                             | β <sub>xyy</sub>                             | -7.3962             |  |
| 4.    | $\beta_{xyy}$             | -1.8852                            | β <sub>yyy</sub>                             | 0.0570              |  |
| 5.    | β <sub>xxy</sub>          | -39.8146                           | β <sub>zzz</sub>                             | 2.4773              |  |
| 6.    | $\beta_{xxz}$             | 3 <sub>xxz</sub> 12.5077           |                                              | 12.6071             |  |
| 7.    | β <sub>xzz</sub>          | -4.2709                            | β <sub>xzz</sub>                             | 14.3063             |  |
| 8.    | β <sub>yzz</sub>          | 2.0219                             | β <sub>yzz</sub>                             | -3.3667             |  |
| 9.    | $\beta_{yyz}$             | 1.1396                             | $\beta_{yyz}$                                | 0.6060              |  |
| 10.   | $\beta_{xyz}$             | β <sub>xvz</sub> 3.2383            |                                              | 1.1155              |  |
|       | β                         | 196.1749                           | β                                            | 207.7139            |  |

<u>Table-6</u> Calculated Thermodynamic Properties of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine & 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine by B3LYP/6-311 G (d, p) methods

|               | H                                                                  | E                                                    | C                                                                  | V                                                    | S                                                                  | 5                                                    |
|---------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|
|               | KCal/Mol                                                           |                                                      | Cal/Mol-Kelvin                                                     |                                                      | Cal/Mol-Kelvin                                                     |                                                      |
| PARAMETER     | 1-(5-Chloro-6-<br>fluoro-1, 3-<br>benzothiazol-2-<br>yl) hydrazine | 1-(6-Chloro-1,<br>3-benzothiazol-<br>2-yl) hydrazine | 1-(5-Chloro-6-<br>fluoro-1, 3-<br>benzothiazol-2-<br>yl) hydrazine | 1-(6-Chloro-1,<br>3-benzothiazol-<br>2-yl) hydrazine | 1-(5-Chloro-6-<br>fluoro-1, 3-<br>benzothiazol-2-<br>yl) hydrazine | 1-(6-Chloro-1,<br>3-benzothiazol-<br>2-yl) hydrazine |
| TOTAL ENERGY  | 81.288                                                             | 85.875                                               | 42.683                                                             | 39.757                                               | 105.133                                                            | 100.807                                              |
| TRANSLATIONAL | 0.889                                                              | 0.889                                                | 2.981                                                              | 2.981                                                | 42.027                                                             | 41.769                                               |
| ROTATIONAL    | 0.889                                                              | 0.889                                                | 2.981                                                              | 2.981                                                | 32.048                                                             | 31.502                                               |
| VIBRATIONAL   | 79.510                                                             | 84.097                                               | 36.721                                                             | 33.795                                               | 31.058                                                             | 27.536                                               |



1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine



1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine

Fig1- Model Molecular structures of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine & 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine

Dipole moment ( $\mu$ ), polarizability< $\alpha$ > and total first static hyperpolarizability $\beta$ [20, 21] can be expressed (table 5) in terms of *x*, *y*, *z* components and are given by following equations 1, 2 and 3-

$$\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$$
[1]

 $<\alpha>= 1\backslash 3 [\alpha_{xx} + \alpha_{yy} + \alpha_{zz}]$  ------[2]

 $\beta_{Total} = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2} = [(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yxx} + \beta_{yzz})^2 + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^2]^{1/2} - [3]$ The  $\beta$  components of Gaussian output are reported in atomic units.

Where (1 a.u. =  $8.3693 \times 10^{-33}$ e.s.u.). The calculated dipole moments for 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine are 6.6424, and 4.5551 Debye respectively. So, 1-(5-Chloro-1, 3-benzothiazol-2-yl)hydrazine are 6.6424.

## Neeraj Misra et al

Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazineis a better solvent between them.A greater contribution of  $\alpha_{zz}$  is seen in 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine&1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine both. For 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl)hydrazine& 1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine, molecules are elongated more towards Z direction and more contracted in the X direction.  $\beta_{xxx}$ , contributes alarger part of hyperpolarizibity in both the molecules. This shows that X-axis is more optically active. The values of hyperpolarizability indicate a possible use of these compounds in electro-optical applications.

Internal thermal energy (E), constant volume heat capacityCv, and entropy S, calculated at B3LYP/6-311G (d, p) level, are listed in Table 6. We know that, conduction band is almost empty at the room temperature, so electronic contribution in total energy is negligible. Thermodynamic properties show that vibrational motion plays an important role.



Fig-2 Pictures of HOMO-LUMO and Molecular Electrostatic Potential of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine& 1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine

www.scholarsresearchlibrary.com



www.scholarsresearchlibrary.com

#### CONCLUSION

We have carried out a density functional theory calculation on 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine &1-(6-Chloro-1, 3-benzothiazol-2-yl) hydrazine both. The calculated parameters show a good correlation with the corresponding experimental data thereby showing the validity of calculations. We have presented a complete normal mode analysis (vibrational assignments) using DFT/B3LYP/6-311 G (d, p) as the basis set. Normal modes are compared with the experimental data i.e. FTIR spectrum. The chemical reactivity is discussed by HOMO-LUMO as well as MESPanalysis. The lower value of frontierorbital energy gap of 1-(5-Chloro-6-fluoro-1, 3-benzothiazol-2-yl) hydrazine. Mostly Hyper polarizability is controlled by bond length alteration, the donor and accepter strength and theplanarity of the molecules. The values of hyper polarizability show a probable use of these compounds in electro-opticalapplications.

#### REFERENCES

[1] J.P. Schirmann, P.Bourdauducq,"Hydrazine" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.

[2] Clark, D. John, *Ignition-An Informal History of Liquid Rocket Propellants. New Brunswick, NewJersey: Rutgers University*, **1972**Press. P.13. ISBN 0-8135-0725-1.

[3] O.W.Salawu and A.O.Abdulsalam, SynthesisCharacterization and biological activities of Cd(II) complexes with hydrazide ligands, Der PharmaChemica, **2011**3(4), 298 – 304.

[4] M.Sechi, U.Azzena, M.P.Deussu, R.Dallocchio, A.Dessi, A.Cosseddu, N. Pala and N. Neamati, *Molecules*, 200813,2442–2461.

[5] Y.X. Zhhou, R.F. Yuan, C.L. Fan, L.E. Lius, B.L. Wu and H.Y. Zhang, *Journal of Coordination Chemistry*, **2012** 65(17), 3133–3146.

[6] S.Rajaei, S. Ghammamy, K.Mehrani and H. Sahebalzamani, E-Journal of Chemistry, 2010 7(S1), S278–S282.

[7] H.Sahebalzamani, S.Ghammamy, K. Mehrani and F. Salimi, *Der Chemica Sinica*, **2010**1(1),67–72.

[8] V.A.Milway, T.S.M.Liang. Zhao, L.K.Abedin, Thompson and X. Zhiqiang, Polyedron, 2003 (22) 1271–1279.

[9] S.A. Siddiqui, A. Dwivedi, P.K. Singh, T. Hasan, S. Jain, N. Sundaraganesan, H. Saleem, N. Misra, *Journal of Theoretical and Computational Chemistry*, **2009** Vol. 8, No. 3, 433–450.

[10] A. Dwivedi, A. K. Pandey, N. Misra, Spectroscopy: An International Journal, 2011 (26)367-385.

[11] A. Dwivedi, A.K. Pandey, N. Misra, *Spectroscopy: An International Journal*,2012 Volume 27 Issue 3, Pages 155–166.

[12] A. Dwivedi, S.A.Siddiqui, O. Prasad, L. Sinha, N. Misra, *Journal of AppliedSpectroscopy*,2009 Vol.76, No.5, 163-180.

[13] A.K. Pandey, A. Bajpai, V. Baboo, and A. Dwivedi, *Journal of Theoretical Chemistry*, **2014**Article ID 894175, 15 pages.

[14] A.K. Srivastava, B.Narayana, B.K.Sarojini, and N. Misra, Indian Journal of Physics, 201488(6), 547-556.

[15] A.K.Srivastava, N. Misra, Canadian Journal of Chemistry, 2013 92(3),234-239.

[16]A.K. Srivastava, A.K.Pandey, B.Narayana, B.K. Sarojini, P.S.Nayak, N. Misra, *Journal of Theoretical Chemistry*, **2014**, 125841.

[17]A.K.Srivastava,V. Baboo,B.Narayana,B.K.Sarojini,NeerajMisra,Indian Journal of Pureand Applied Physics, 2014 52,507.

[18] A.D. Becke, J. Chem. Phys, 199398, 5648.

[19]C. Lee, W. Yang, R.G.Parr, Phys. Rev. B,1988 37, 785.

[20] P. Hohenberg, W. Kohn, Phys. Rev B, 1964136, 13864.

[21] M.J. Frisch, et.Al, Gaussian 09; Gaussian Inc. Pittsburgh, PA, 2009.

[22] A.Frisch, A.B.Nelson, A.J.Holder, Gauss view, Inc. Pittsburgh PA, 2005.

[23] N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam and V. Sethuraman, *SpectrochimicaActa*, **2005**vol. 62, no. 1–3, pp.740–751.

[24] D. A. Kleinman, *Phys, Rev B*, **1962**126 1977.

[25] J. Pipek and P. Z. Mezey, J. Chem. Phys. 198990, 4916.