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Abstract 
 
In this work we report QSAR studies on aminopyridine carboxamide inhibitors of JNK-2. QSAR 
models were constructed by multiple regression analysis using 46 compounds, validated by q2, 
r2

cvext and other procedures. The activity contributions of these compounds were determined from 
regression equation and the validation procedures that analyze the predictive ability of QSAR 
models were described. Among several descriptors that were considered, four variables resulted 
in a statistically significant model, based on FIT Kubinyi function, with r2 = 0.685, q2 = 0.750, 
r2

cv,ext = 0.994 and inter-correlation between descriptors being 0.38. Our results suggest that 
variables such as dipole moment, logP, Kier ChiV2 and shape flexibility play an important role 
in the inhibition of JNK-2 by aminopyridine carboxamide inhibitors. 
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INTRODUCTION 
 

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein (MAP) 
kinase family. Evidence indicated a crucial role of JNKs in mitochondrial dysfunctions (such as 
Alzheimer's, Parkinson's, or Huntington's disease) with subsequent initiation of neuronal 
apoptosis [1]. JNKs are involved in the mitochondrial pathology at different functional levels and 
finally JNKs trigger the expression of the pro-apoptotic proteins in the nucleus [2-6]. In contrast 
to the JNK-1 isoform, JNK-2 translocates to the nucleus and the mitochondria, where it acts 
downstream of MKK4 [7]. Hence, based on the importance of JNK-2 in mitochondrial 
dysfunctions, QSAR analysis was carried out to delineate the structural requirements [8, 9] of 
various aminopyridine carboxamides. From literature, various JNK-1[10] and JNK3 [11-13] 
QSAR studies are reported, whereas aminopyridine carboxamide inhibitors of JNK-2 were not 



P. Ajay Babu et al                                                  Der Pharma Chemica, 2010, 2 (2): 205-215 
______________________________________________________________________________ 

206 
www.scholarsresearchlibrary.com 

presented. To our knowledge no attempts have been made so far to build a QSAR model with 
these selected set of compounds. Statistically significant QSAR models were generated using 
multiple linear regression procedure. 
 

RESULTS 
 
Multivariate regression technique was employed using default parameters of Tsar Software with 
F to enter and F to leave being 4 to test the predictive power of the generated QSAR model. 
Cross-validation was carried out on complete data set which resulted in the following 
multivariate equation:    
 
Log (1/C) =    + 0.069*Dipole Moment X Component  
  - 0.381*logP 

        + 0.293*Kier ChiV1 
           - 0.422*KAlpha2  

        + 7.335 
r = 0.760, r2 = 0.577, q2 = 0.696, F = 14.003, n = 46,  
PRESS = 6.963, s = 0.412                           (1)    
 
 
Eq. 1 represents four significant descriptors and the data set was investigated for outliers by 
calculating the standard residuals shown in Table 4. Standardized residuals greater than 2 and 
less than -2 are usually considered large [14]. Compounds 31, 39 and 40 have standardized 
residuals -2.163, -3.374 and 2.465 and hence removed from the data set to obtain statistically 
validated best models [15]. 
 
After rejecting outliers from the data set, QSAR models were generated by dividing the set as 36 
molecule training and a 7 molecule validation set (Table 4). The results obtained from the 
multiple linear regression procedure with varied number of variables are encouraging and the 
best models among many are shown below with their statistics.  
 
Model-1:  
Log (1/C) =     - 0.385*logP 
  + 0.229*Kier ChiV2  
  - 0.405*Shape Flexibility index 
  + 7.406 
r = 0.728, r2 = 0.529, q2 = 0.893, F =12.021, n = 36  
PRESS = 4.88, s = 0.390            (2)    
 
Model-2:  
Log (1/C) =     + 0.074*Dipole Moment X Component 
  - 0.384*logP  
  + 0.238*Kier ChiV2  
           - 0.306*Shape Flexibility index   
  + 6.713  
r = 0.828, r2 = 0.685, q2 = 0.750, F =16.859, n = 36  
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PRESS = 3.268, s = 0.325            (3)  
 
Model-3:  
Log (1/C) =  + 0.079*Dipole Moment X Component 
  - 0.384*logP   
  + 0.549*Kier Chi3 
  - 0.179*KAlpha3 index   
  + 0.004* Heat of Formation 
  + 6.174 
r = 0.827, r2 = 0.683, q2 = 0.634, F = 12.985, n = 36  
PRESS = 3.28, s = 0.331                   (4)  
 
Table 1: Predictive ability of the three models with varying descriptors for validation sets 

 

S. No R2
cv,ext R2 k k’  Xa Yb 

1 0.973 0.790 0.990 1.009 0.043 0.002 

2 0.994 0.961 0.996 1.004 0 0.001 

3 0.998 0.766 1.002 0.997 0.043 0.006 
a
 (R

2 – R0
2) / R2 ;              b

 (R
2 – R0’

2) / R2 

 

Accordingly, all the three models passed the conditions for validation sets (Eqs. 6-9, Table 4). 
Different numbers of significant variables are obtained in each of the equations. However to 
select the most significant model, the number of variables entering the QSAR model are 
compared by FIT Kubinyi function (Eq. 5) [16]. 
 
FIT = R2 (n – k – 1) / (n + k2) (1 – R2)            (5) 
 
where n is the number of compounds in training set and k is the number of variables in the 
QSAR equation. The main disadvantage of the F value is its high sensitivity if k is small and 
lower sensitivity if k is large [16]. The best model should possess a high value of this function.  
 

Table 2: Statistical results of the generated QSAR models 
 

QSAR 
Model No. 

Na r2 PRESS F test FIT 

Model 1 3 0.529 4.88 12.021 1.178 

Model 2 4 0.685 3.27 16.859 1.287 

Model 3 5 0.683 3.28 12.985 0.809 
a no. of variables in the model 
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DISCUSSION 
 
According to the statistical values of the models reported in table 2, we chose the model with 
four variables (Eq. 3) since this showed high FIT than others. This model accounts for the good 
internal predictive ability as shown by q2 value of 0.750 and was able to explain 68.5% variance 
of inhibitory activities of aminopyridine carboxamides. The predictive residual sum of squares 
and the standard error of estimate are 3.268 and 0.325 respectively.  
 
Further, inter-correlation between variables of the proposed QSAR model with the best FIT (Eq. 
3) was checked to know about their independence. The results are presented in table 3, where, it 
is clear that the descriptors are not highly correlated.  Figure 1 depicts the predictive ability of 
Eq. 3 when applied on validation set molecules. Observed versus predicted values of the 
validation set which illustrate the predictive ability of Eqs. 6-9 (Table 4) are depicted graphically 
in Figure 2 and 3.  
 

Table 3: Inter-correlation between significant descriptors of Eq. 3 
 

 X1 a X2b X3c X4d 

X1a 1.000    

X2b 0.050 1.000   

X3c -0.028 0.388 1.000  

X4d -0.321 -0.136 0.114 1.000 
aDipole Moment X Component;  blog P;  cKier ChiV2 index;  dShape Flexibility index 
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Figure 1: Observed and predicted values of molecules in training and validation set 
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Figure 2: Regression plot between observed vs. predicted values of compounds from 
validation set justifying the predictive ability of QSAR model Eq. 3 
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Figure 3: Regression plot between predicted vs. observed values of compounds from 
validation set justifying the predictive ability of QSAR model Eq. 3  
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A brief explanation of the descriptors utilized to generate the QSAR model:  
Log P is a measure of hydrophobicity/lipophilicity and describes the distribution of a compound 
between organic and water phase. A value of log P > 0 indicates greater solubility in the organic 
phase whereas log P < 0 indicates greater solubility in the aqueous phase [17, 18]. 
 
Kier indices are most widely used in a variety of applications. The required information is 
embedded in the hydrogen suppressed framework and thus no experimental measurements are 
needed to define the molecular connectivity indices. The size, branching, unsaturation, cyclic and 
chemical nature of various chemical species that appear in a hydrogen–depleted molecular graph 
are determined by molecule connectivity [19]. 
 
The molecular flexibility index is a topological descriptor characterizing the conformational 
flexibility of a molecule. The estimation is entirely based on the structure with no dependence on 
physical measurement. It increases with homologation or the number of flexible bonds in the 
molecule and decreases with increased branching or cyclic nature [20]. 
 
Dipole moment is an electronic parameter and is due to the degree of charge separation in a 
molecule. It is important in case when dipole interactions are involved in ligand-receptor 
interactions. Dipole moment X component describes the moments using the substituent point of 
attachment as an origin with this bond placed along the X-axis. The components of µ along the 
X-axis (bond of attachment) are summed to give the bond dipole in Debyes [21].  
 
The generated best QSAR model (Eq. 3) represents a negative contribution of Log P and shape 
flexibility to the activity. Majority of the compounds in the dataset have logP values greater than 
1 and hence we can say there is less lipophilicity on the compounds. Since a decrease in logP 
increases lipophilicity and according to Eq. 3, an increased value of lipophilicity on molecules 
would favor cellular permeability. A negative contribution of Shape Flexibility index point 
towards conformational stability can be achieved by decreasing the rotational or flexible bonds 
with an increase in branching and/or cyclic nature would favor better binding and activity at the 
molecular level. 
 
On the other hand, Dipole Moment X component and Kier chiV2 index contributes positively to 
the activity. Therefore, new variables with electron rich groups and increased partial charge on 
substituent along the X component enhances the interaction between the electron rich functional 
groups of the inhibitors and corresponding amino acid residues in the enzyme active site during 
enzyme inhibition. 
 

MATERIALS AND METHODS 
 

QSAR studies were carried out on aminopyridine carboxamide derivatives [22] whose inhibitory 
activities were reported in terms of IC50 in µM and were converted to negative logarithmic 
values of their molar concentration (C) in order to guarantee the linear distribution of data. The 
structures were sketched using ISIS (Integrated Scientific Information System) Draw 2.3 [23] 
software and the descriptors were calculated using Tsar (Tools for structure activity 
relationships) v3.3 software [24]. The three dimensional structures of all molecules were 
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generated using Corina 3D package. Charges were derived for every molecule and the 
geometries were optimized using cosmic module of Tsar. 
 
The relationship between dependent variable log (1/C) and the independent variables (various 
physicochemical descriptors) was established by linear multiple regression technique using Tsar 
3.3 software. The model is validated internally using leave-one-out (LOO) technique and 
externally by predicting the activities of validation set. Significant descriptors were chosen from 
the pool of descriptors based on the statistical data of analysis. The statistical quality of the 
generated QSAR model was evaluated [25, 26] based on the correlation coefficient (r), explained 
variance (r2), standard error of estimate (s), F-value, cross-validation (q2) and predictive residual 
sum of squares (PRESS). 
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Table 4: Structures of aminopyridine carboxamide inhibitors and their biological data, 
calculated and standard residuals (Eq. 1), training and validation sets (Eq. 3). 

 

Compound R 
Exp.a 
IC50 

Obs.b 
log 

(1/C) 

Calc.c 
log 

(1/C) 

Std.d 
Res. 

Calc.
e 

log 
(1/C) 

Pred.f 
log 

(1/C) 

Dipol
e 

Mom
.X 

LogP 
Kier 
ChiV

2 

Shape 
Flex. 

1 H 1.46 5.410 5.749 -0.861 5.547  
-

2.760 
1.789 7.731 6.719 

2 
 

4.13 5.039 4.803 0.600 4.846  
-

3.984 
3.358 9.271 7.986 

3 
 

4.16 5.016 5.060 -0.112 5.046  
-

3.850 
3.300 

10.22
6 

7.995 

4 -CN 1.79 5.350 5.512 -0.411 5.480  
-

3.867 
1.414 7.989 7.490 

5 H 0.97 5.607 6.264 -1.669 6.058  
-

4.726 
-0.026 7.852 6.852 

6 

Cl

 
0.84 5.72 5.872 -0.385 6.120  1.814 2.819 9.192 6.591 
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7 
O

H

 

0.24 6.246 6.115 0.334 6.282  1.214 2.016 8.761 6.343 

8 
O

 
0.60 5.862 6.091 -0.581 6.314  3.310 2.048 8.942 6.882 

9 S
O O

 
0.097 6.699 6.670 0.074 6.626  

-
1.521 

1.446 11.69 7.048 

10 
S  

0.39 6.707 6.374 0.846 6.281  
-

0.299 
1.828 9.066 6.060 

11 
O  

0.53 5.874 6.335 -1.171 6.283  0.057 1.485 8.222 5.771 

12 
S

O

O

H

 
0.16 6.455 6.206 0.634 6.250  

-
3.892 

1.055 9.851 6.789 

13 
S

OH  
0.68 5.813 6.252 -1.115 6.254  

-
3.517 1.057 9.708 6.806 

14 N

 
0.34 6.079 5.741 0.860 5.844  

-
6.053 

1.454 8.452 6.386 

15* 
N  

0.66 5.791 5.840 -0.125 - 5.960 
-

4.600 
1.454 8.446 6.386 

16 
N

N

 
0.86 5.677 5.945 -0.681 6.163  -

4.695 
0.810 8.337 6.641 

17  0.23 6.207 5.961 0.624 5.861  
-

1.613 1.616 7.747 6.324 

18 
 

0.26 6.154 6.276 -0.310 6.230  2.971 1.616 7.747 6.324 

19* 
 

1.29 
 

5.525 5.360 0.420 - 5.478 
-

1.751 
2.833 8.991 7.032 

20 O
H

 
0.24 6.222 5.984 0.605 6.021  0.039 0.865 8.162 7.490 

21 
O

H

O  
0.43 5.969 6.274 -0.776 6.283  1.250 0.723 7.918 6.829 

22 
 

0.038 7.01 6.440 1.448 6.547  4.755 1.419 8.333 6.735 

23  0.047 6.93 6.690 0.610 6.461  4.136 1.373 8.921 6.158 

24  0.37 6.037 6.078 -0.104 6.275  4.174 1.877 8.872 7.328 

25* 
 

0.61 5.847 5.690 0.399 - 5.782 
-

2.332 
2.166 9.628 7.266 

26 
O

 
0.45 6.002 5.573 1.091 5.809  

-
0.821 

2.092 8.944 7.405 

27 
 

0.084 6.664 6.302 0.920 6.354  0.562 1.102 8.509 6.735 

28 
 

0.069 6.747 6.855 -0.275 6.517  0.731 0.743 8.629 5.629 

29 
 

0.16 6.397 6.583 -0.473 6.435  0.691 1.139 8.982 6.158 

30* 
 

0.29 6.154 6.297 -0.362 - 6.343 0.526 1.535 9.336 6.704 

31# 
 

4.7 4.967 5.818 -2.163 - - 1.685 2.123 9.049 7.206 
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32* 
 

1.0 5.653 5.496 0.398 - 5.724 0.393 2.375 9.373 7.779 

33 N

O

H

H

 
0.087 6.68 6.820 -0.356 6.907  3.265 -0.795 8.353 7.612 

34 
N

O

H

 
0.081 6.726 6.135 1.502 6.351  

-
3.440 

-0.617 8.620 8.227 

35* O
H

 
0.18 6.351 6.249 0.260 - 6.310 

-
0.517 

-0.044 8.214 7.685 

36 O
H  0.15 6.414 6.477 -0.159 6.496  0.378 -0.097 7.861 7.071 

37 O
 0.21 6.284 6.192 0.235 6.289  0.412 0.182 8.130 7.685 

38 
O

O

H

H  
0.10 6.623 6.325 0.757 6.453  

-
1.071 

-0.469 8.417 7.867 

39# N
 

9.2 4.656 5.983 -3.374 - - 
-

2.874 
0.326 8.940 7.902 

40# 
H

O
 

0.030 7.129 6.159 2.465 - - 
-

2.545 
0.317 8.438 7.294 

41 
H

O
 

0.32 6.101 6.199 -0.250 6.262  
-

1.961 
0.317 8.438 7.294 

42 H
O

 

1.4 5.489 5.718 -0.582 5.907  
-

2.635 
1.188 9.388 8.122 

43 N

O

H

 
0.12 6.539 6.018 1.325 6.188  

-
5.118 

0.452 8.838 7.273 

44 H 0.30 6.095 5.833 0.666 5.581  
-

4.194 1.322 7.632 6.566 

45 O
H  4.61 4.957 5.271 -0.799 5.177  

-
5.458 

1.160 8.263 8.380 

46* O
H  4.32 4.998 4.990 0.020 - 4.932 

-
5.480 

1.440 8.342 8.781 

* Validation set molecules;  Outliers ; a Experimental values or activity IC50(�M); b Logarithmic Molar 
concentration; c Calculated values from Eq. 1; d Standardized residuals from Eq. 1; e Calculated values from Eq. 3; f 

Predicted values from Eq. 3 
 
In the present study, thirty four descriptors were evaluated in terms of their efficacy to predict 
the activities of the investigated inhibitors. Various physicochemical, topological and 
electrostatic molecular descriptors considered for the analysis are: Total  dipole, dipole 
components, LogP, Total lipole, Molecular refractivity, Connectivity indices (chi and chiV 
types) of atoms, bonds, path, and cluster, Shape indices, Molecular flexibility index,  
Topological descriptors, H-bond donors, H-bond acceptors. Parameters such as HOMO, LUMO, 
Ionization potential and heat of formation were calculated using AM1 Hamiltonian and BFGS 
optimization in vacuum.  
 
Externally predicting the activities of validation set estimates predictive ability of the generated 
model. This criterion may not be sufficient for a QSAR model to be truly predictive therefore 
additional conditions such as external set cross-validation r2 (R2

cv, ext) and the regression of 
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observed activities against predicted activities and vice versa for validation set were employed 
according to the following equations [27, 14]. 
 
             R2

cv,ext  >   0.5               (6) 
 R2   >   0.6                                 (7) 

            (R2 – R0
2) / R2 < 0.1 or (R2 – R0’

2) / R2 < 0.1               (8) 
             0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15                          (9) 
 
Calculations relating to R2cvext, R0

2, R
2, slopes k of actual versus predicted and k’ of predicted 

versus actual values are presented in detail in ref. 15. 
 

CONCLUSION 
 

Finally, considering the contributions of the variables of Eq. 3 on aminopyridine carboxamides 
would help in designing novel compounds with better inhibition. The positive correlation of Kier 
chiV2, Dipole Moment X component signifies the development of substituents with electron rich 
groups and dipole moment along the X component of the compound. The negative correlation of 
LogP and shape flexibility index indicates the development of new analogs with increased 
lipophilicity and a fractional decrease in the flexible bonds. The robustness of the QSAR model 
predictive ability (Eqs. 6-9) of Eq. 3 on validation set illustrated the reliability of the model. 
Thus the QSAR model generated demonstrates a promising method for designing better 
aminopyridine carboxamide analogs as inhibitors of JNK-2. 
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