Available online at <u>www.derpharmachemica.com</u>

Scholars Research Library

Der Pharma Chemica, 2011, 3 (5):29-34 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Synthesis and antimicrobial activity of novel tricyclic organophosphoranes

B. Siva Kumar^a* and Y. Haranadha Reddy^b

^aDepartment of Chemistry, Vel Tech Technical University, Avadi, Chennai, India ^bDepartment of Chemistry, Sri Venkateswara University, Tirupati, India

ABSTRACT

A new class of organophosphorus heterocycles, tricyclic phosphoranes (**4a-j**) synthesis was accomplished via two step process. It involves the preparation of monochloride intermediate (**2**) and its subsequent reaction with various phenols in dry tetrahydrofuran in the presence of TEA under reflux condition. These compounds were characterized by IR, ¹H, ¹³C and ³¹P NMR and were found to exhibit moderate to good antimicrobial activity.

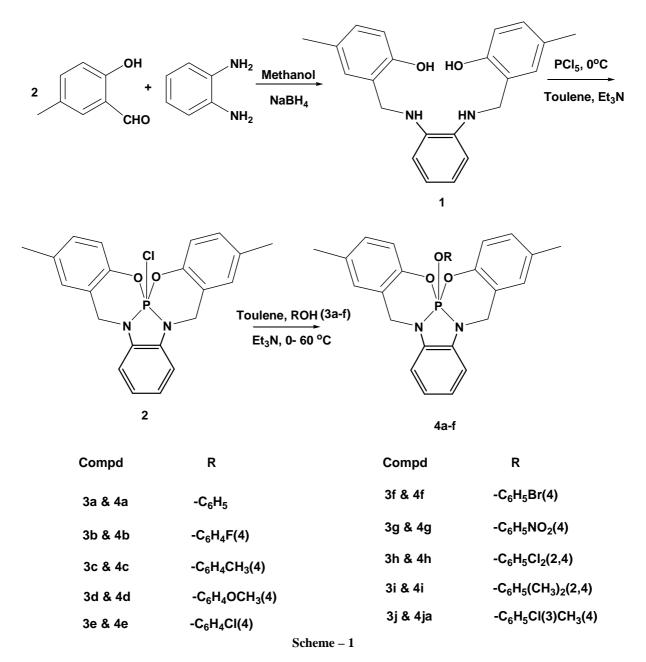
Key words: Tricyclic phosphoranes, Triethylamine, Antimicrobial activity.

INTRODUCTION

An increasing interest has been paid for several years to the chemistry of phosphorus heterocycles due to their unique physical properties, specific chemical reactivity.¹ Current literature status of organophosphorus heterocycles is poignant with the possibility of several applications not only in the life-processes but also in the several industrial sectors.^{2,3} Organophosphorus heterocycles are being used as drugs in medicine,⁴ pesticides in agriculture,⁵ chemical warfare agents in defense, flame retardant oil and polymer additives in the industry is well established, still vast scope exists for further discovery and development in this area. In view of the various applications of organophosphorus hetero cycles compounds, series of 4-substituted phenyl (11*H*,16*H*-5,6-dioxa-11a,15b-diaza-5a λ_5 -phosphabenzo[b]naphtha [2,3-*l*] fluoren-5-yl ether(**4a-j**) have been successfully accomplished and their bio activity studies have been evaluated.

MATERIALS AND METHODS

Phenyl (11*H*, 16*H*-5,6-dioxa-11a,15b-diaza-5a λ 5- phospha-3-methylbenzo [*b*]naphtho-[2,3-*l*]-fluoren-5-yl) ether


Synthesis of tricyclic phosphoranes was conveniently accomplished in a two step process. In the first step, a solution of phosphorus pentachloride (1.04 g, 0.005 mole) in dry tetrahydrofuran was added to a mixture of 2,2'-(1,2-(3-methyl phenyl bis (azanediyl)bis(methane) diphenol (1.92 g, 0.005 mole), which was prepard by using standard procedure, and triethylamine (TEA) in THF (25 mL) at 0°C over a period of 30 minutes. After the addition, temperature of the reaction mixture was slowly raised to room temperature and continued for 1h and then refluxed at 60°C for 3h. The solid triethylamine hydrochloride was filtered and the solvent was concentrated under vacuum. To the concentrated solution in THF at 0°C a solution of phenol (0.47 g, 0.005 mole) in THF was added in the presence of TEA and after completion of addition temperature was slowly raised and then refluxed at 60° C for 2h. Progress of the reaction was monitored by TLC analysis. After the completion of reaction solvent was evaporated in a under vacuum. The obtained crude product was purified by column chromatography on 60-120 silica gel mesh using ethyl acetate: hexane (1:4) as eluent to obtain 1.35 g (65%), mp 172-174 °C of pure compound **4a**.

Phenyl (11*H*, 16*H*-5,6-dioxa-11a,15b-diaza-5aλ⁵ - phospha-3-methylbenzo[*b*]naphtho-[2,3-*I*]-fluoren-5-yl) ether (4a): Yield 65 %, mp 172-174 °C, IR (KBr) cm⁻¹: 1136 (O-C), 926 (P-O); ¹H NMR (DMSO-*d*₆): δ 6.45-7.52 (15H, m, Ar-H), 4.89-5.02 (4H, m, 2CH₂), 2.42-2.59 (6H, m, 2CH₃); ¹³C-NMR data: 28.7 (CH₃ (C-6&12)), 51.6 (C-4 and C-14), 128.9 (C-4a and C-13a), 130.8 (C-5 and C-13), 131.3 (C-6 and C-12), 127.6 (C-7 and C-11), 117.9 (C-8 and C-10), 150.8 (C-8a and C-9a), 137.4 (C-16 and C-21), 114.5 (C-17 and C-20), 118.5 (C-18 and C-19), 153.4 (C-1'), 118.6 (C-2' and C-6'), 132.8 (C-3' and C-5'), 124.1(C-4'); ³¹P NMR data: δ 28.35 ; FAB-MS m/z: 468 (M+H); Anal. Calcd. for C₂₈H₂₅N₂O₃P: C,71.78; H, 5.38; N, 5.96. Found C, 71.70; H, 5.32; N, 5.90.

4-fluoro phenyl (11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5aλ⁵-phospha-3-methyl benzo[***b***] naphtho-[2,3-***l***] fluoren-5-yl) ether(4b): Yield 60 %, mp 187-189 °C IR (KBr) cm⁻¹: 1131 (O-C), 918 (P-O); ¹H NMR (DMSO-***d***₆): δ 6.55-7.62 (14H, m, Ar-H), 4.39- 4.66 (4H, m, -CH₂), 2.41-2.57 (6H, m, 2CH₃); ¹³C-NMR data: 28.9 (CH₃ (C-6&12)), 54.6 (C-4 and C-14), 127.6 (C-4 and C-13a), 129.8 (C-5 and C-13), 131.0 (C-6 and C-12), 127.1 (C-7 and C-11), 115.9 (C-8 and C-10), 151.8 (C-8a and C-9a), 137.0 (C-16 and C-21), 114.0 (C-17 and C-20), 120.5 (C-18 and C-19), 148.4 (C-1'), 117.6 (C-2' and C-6'), 114.8 (C-3' and C-5'), 156.1(C-4'); ³¹P NMR data: δ 24.29; FAB-MS m/z: 486 (M+H); Anal. Calcd. for C₂₈H₂₄FN₂O₃P: C, 69.13; H, 4.97; N, 5.76. Found C, 69.02; H, 4.89; N, 5.69.**

4-methyl phenyl (11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5a\lambda^5 - phospha-3-methylbenzo [***b***] naphtho-[2,3-***l***] fluoren-5-yl) ether (4c): Yield 59 %, mp 206-208 °C IR (KBr) cm⁻¹: 1135 (O-C), 932 (P-O); ¹H NMR (DMSO-***d***₆):\delta 6.37-7.51 (14H, m, Ar-H), 4.45- 4.70 (4H, m, -CH₂-), 2.33-2.67 (9H, m, Ar-CH₃); ¹³C-NMR data: 33.5 (CH₃ (C-6&12)), 50.9 (C-4 and C-14), 128.1 (C-4a and C-13a), 129.8 (C-5 and C-13), 123.0 (C-6 and C-12), 129.7 (C-7 and C-11), 120.3 (C-8 and C-10), 151.6 (C-8a and C-9a), 129.7 (C-16 and C-21), 113.2 (C-17 and C-20), 118.4 (C-18 and C-19), 153.7 (s, 1C,C-1'), 116.2 (C-2' and C-6'), 132.5 (C-3' and C-5'), 133.1 (C-4'), 27.8**

(C-CH₃(4'); ³¹P NMR data: δ 36.15; FAB-MS m/z: 482 (M+H); Anal. Calcd for C₂₉H₂₇N₂O₃P: C, 72.19; H, 5.64; N, 5.81. Found C, 72.11; H, 5.58; N, 5.74.

4-methoxyphenyl(11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5aλ⁵-phospha-3-mehyl benzo [***b***] naphtho-[2,3-***l***] fluoren-5-yl) ether (4d): Yield 67 %, mp 189-191 °C IR (KBr) cm⁻¹: 1123 (O-C), 924 (P-O); ¹H NMR (DMSO-***d***₆): δ 6.35-7.69 (14H, m, Ar-H), 4.59-4.92 (4H, m, -CH₂), 3.82 (3H, s, OCH₃), 2.39-2.55 (6H, m, 2CH₃); ¹³C-NMR data: 29.4 (CH₃ (C-6&12)), 50.5 (C-4 and C-14), 57.6 (OCH₃), 128.0 (C-4a and C-13a), 132.6 (C-5 and C-13), 121.9 (C-6 and C-12), 129.6 (C-7 and C-11), 121.0 (C-8 and C-10), 149.5 (C-8a and C-9a), 128.3 (C-16 and C-21), 112.0 (C-17 and C-20), 117.1 (C-18 and C-19), 145.2 (C-1'), 116.7 (C-2' and C-6'), 114.4 (C-3' and C-5'),**

www.scholarsresearchlibrary.com

153.3 (C-4'); ³¹P NMR data: δ 31.13; FAB-MS m/z: 498 (M+H); Anal. Calcd. for C₂₇H₂₃N₂O₄P: C, 69.87; H, 5.46; N, 5.62. Found C, 69.80; H, 5.41; N, 5.55.

2,4-dimethylphenyl(11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5a\lambda^5 - phospha-3- methylbenzo - [***b***] naphtho[2,3-***l***]fluoren-5-yl) ether (4e): Yield 62 %, mp 219-221 °C IR (KBr) cm⁻¹: 1140 (O-C), 921 (P-O); ¹H NMR (DMSO-***d***6): \delta 6.57 - 7.49 (13H, m, Ar-H), 4.55-4.82 (4H, m, -CH₂-), 2.31-2.78 (12H, m, Ar-CH₃); ³¹P NMR data: \delta 32.27; Anal. Calcd. for C₃₀H₂₉N₂O₃P: C, 72.57; H, 5.89; N, 5.64. Found C, 72.49; H, 5.81; N, 5.56.**

4-chlorophenyl(11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5aλ⁵ - phospha-3-methylbenzo [***b***] naphtho - [2,3-***l***] fluoren-5-yl) ether (4f): Yield 60 %, mp 214-26 °C IR (KBr) cm⁻¹: 1120 (O-C), 915 (P-O); ¹H NMR (DMSO-***d***₆):δ 6.66-7.72 (14H, m, Ar-H), 4.37- 4.67 (4H, m, -CH₂), 2.41-2.72 (6H, m, Ar-CH₃); ³¹PNMR data: δ 38.50; Anal. Calcd. for C₂₈H₂₄N₂O₃PCl: C, 66.87; H, 4.81; N, 7.05. Found C, 66.78; H, 4.73; N, 6.98.**

4-bromophenyl(11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5aλ⁵ - phosphabenzo[***b***] naphtha - [2,3-***l***] fluoren-5-yl) ether (4g): Yield 61 %, mp 191-193 °C IR (KBr) cm⁻¹: 1115 (O-C), 922 (P-O); ¹H NMR (DMSO-***d***₆):δ 6.56-7.73 (14H, m, Ar-H), 4.49- 4.76 (4H, m, -CH₂-), 2.37-2.65 (6H, m, Ar-CH₃); ³¹P NMR data: δ 31.30; Anal. Calcd. for C₂₈H₂₄BrN₂O₃P: C, 61.44; H, 4.42; N, 5.12. Found C, 61.38; H, 4.36; N, 5.05.**

4-nitrophenyl (11*H***,16***H***-5,6-dioxa-11a,15b-diaza-5a\lambda^5 - phospha-3-methylbenzo [***b***]naphtho [2,3-***I***]fluoren-5-yl) ether (4h): Yield 67 %, mp 206-208 °C IR (KBr) cm⁻¹: 1133 (O-C), 940 (P-O); ¹H NMR (DMSO-***d***₆): \delta 6.58-7.59 (14H, m, Ar-H), 4.85-5.10 (4H, m, -CH₂-), 2.29-2.51 (6H, m, Ar-CH₃); ³¹P NMR data: \delta 35.19; Anal. Calcd. for C₂₈H₂₄N₃O₅P: C, 65.49; H, 4.71; N, 8.18. Found C, 65.41; H, 4.64; N, 8.11.**

2,4-dichlorophenyl(**11***H*,**16***H*-**5,6-dioxa-11a**,**15***b*-**diaza-5** $a\lambda^5$ - **phospha-3-methylbenzo** -[*b*] **naphtho**[**2,3-l**] **fluoren-5-yl**) **ether** (**4i**): Yield 65%, mp 224-226 °C IR (KBr) cm⁻¹:1120 (O-C), 935 (P-O); ¹H NMR (DMSO-*d*₆): δ 6.68-7.79 (14H, m, Ar-H), 4.35-4.80 (4H, m, -CH₂-), 2.40-2.69 (6H, m, Ar-CH₃); ³¹P NMR data: δ 33.15; Anal. Calcd. for C₂₈H₂₃Cl₂N₂O₃P: C, 62.58; H, 4.31; N, 5.27. Found C, 62.51; H, 4.23; N, 5.18.

3-chloro-4-methylphenyl (**11***H*,**16***H***-5**,**6-dioxa-11a**,**15b-diaza-5**aλ⁵ **- phospha-3-methylbenzo** [*b*] **naphtho** [**2**,**3-***I*]**fluoren-5-yl**) **ether** (**4j**) Yield 63%, mp 221-223 °C IR (KBr) cm⁻¹: 1125 (O-C), 935 (P-O); ¹H NMR (DMSO-*d*₆): δ 6.42-7.59 (13H, m, Ar-H), 4.65-4.97 (4H, m, -CH₂-), 2.38-2.65 (9H, m, Ar-CH₃); ³¹P NMR data: δ 29.22; Anal. Calcd. for C₂₉H₂₆ClN₂O₃P: C, 67.38; H, 5.07; N, 5.42. Found C, 67.31; H, 4.99; N, 5.36.

RESULTS AND DISCUSSION

A new class of novel 4-substituted phenyl (11*H*, 16H-5, 6-dioxa-11a, 15b-diaza-5a λ^5 -Phosphabenzo [*b*]naphtha-[2, 3-*l*] fluoren-5-yl) ether (**4a-j**) have been synthesized in a two step process. In the first step the intermediate monochloride (**2**) was prepared by the cyclocondensation of 2, 2'-(1, 2-phenylene bis (azenedily) bis methane) (**1**) with phosphorus pentachloride in presence of triethylamine in anhydrous tetrahydrofuran (THF) at 60 °C for 3h.In

the second step the intermediate monochloride was further reacted with various phenols in presence of triethylamine in anhydrous tetrahydrofuran at 60 °C for 2h. Progress of the reaction was monitored by TLC analysis. IR absorption bands for (P-O-C_{aromatic}) C-O and P-O in the region⁶ 1115-1140, 910-940 cm⁻¹ respectively were observed for compounds **4a-j**. The aromatic hydrogens of compounds **4a-j** gave multiplets in the region δ 6.25-7.85. The bridged methylene protons signals appeared as multiplets in the region δ 4.39-5.02 indicating their non-equivalence⁷ and coupling with phosphorus. The ¹³C NMR spectral data for **4a-d** are given in the experimental section. The methylene carbons (C-4&C-14) resonated as singlets⁸ in the region of 50.5 - 54.6 ppm. The remaining carbon signals were observed in their expected regions. The compounds **4a-j** were exhibited a singlet⁹ in their ³¹P NMR spectra in the region 24.29 – 38.50 ppm. FAB mass of **4a-d** gave molecular ions at their expected m/z values.

Antimicrobial Activity of Compounds 4a-j Antibacterial Activity

Antibacterial activity of all the title compounds (**4a-j**) was evaluated against the growth of *Staphylococcus aureus* (gram +ve) and *Escherichia coli* (gram -ve) at different concentrations¹⁰ (100, 50, 25 ppm) **Table 1**. All the compounds are less active against both the bacteria when compared to the reference compound Penicillin.

Antifungal Activity

The antifungal activity¹¹ of compounds (**4a-j**) was tested against the growth of *Aspergillus Niger* and *Curvularia lunata* at various concentrations (100, 50, 25 ppm) and the results were presented in **Table 2** and Griseofulvin was used as the standard reference compound. Majority of the title compounds showed low antifungal activity against both the fungi.

Compound	Zone Of Inhibition (%)								
	Es	cherichia	coli	Staphylococcus aureus					
	100	50	25	100	50	25			
4 a	08	05	02	09	05	01			
4b	07	05	03	09	04	02			
4 c	09	04	-	08	04	-			
4d	05	03	01	07	04	-			
4e	09	04	-	06	05	-			
4f	08	05	03	10	06	02			
4g	08	04	-	09	04	01			
4h	08	05	-	08	05	02			
4 i	08	05	01	06	03	-			
4j	05	02	-	07	03	-			
Pencillin	12	07	-	11	08	-			

Table 1: Antibacterial Activity of Compounds 4a-j

	Zone Of Inhibition (%)								
Compound	Aspergillus Niger			Helmenthosphorium oryzae					
1 _	100	50	25	100	50	25			
4 a	07	05	03	10	06	03			
4b	07	05	03	08	05	02			
4 c	09	06	02	09	05	03			
4d	05	03	01	07	04	-			
4 e	09	04	-	06	05	-			
4f	08	05	03	10	06	02			
4g	08	04	-	09	04	01			
4 h	09	04	-	08	04	-			
4i	08	05	02	09	05	01			
4j	07	03	-	08	04	01			
Griseo –fulvin	11	08	06	13	08	06			

Table 2: Antifungal activity of compounds 4a-j

Acknowledgements

Author expresses his thanks to Prof C. Suresh Reddy, S.V. University, Tirupati for his helpful guidance and suggestions and also to Director IISC Bangalore, CDRI Lucknow for providing analytical data.

REFERENCES

[1] H Fu; G Z Tu; Z L Li; Y F Zhao. Synthesis., 1998, 855-858.

[2] S D paster; J D Spivack, P L Steinhuebel; C Matzura. *Phosphorus Sulphurs silicon and Relat. Elem.*, **1983**, 15, 253-256.

[3] R.Ismail (Dynamit Nobel) German Patent, 543539, Chem. Abstr., 1975, 83, 97416q.

[4] D L Hill. A Review of Cyclophosphamide, Charles C. Thomas, Springfield, Illinois 1975.

[5] D F Heath. Organophosphorus Poisous, Perganon, Oxford **1961**.

[6] A Bala Krishna; S. Annar; M. Veera Narayana Reddy; G Chandra Shekar Reddy; C Suresh Reddy; S K Nayak. *J.Chem. Pharm. Res.*, **2009**, 56, 250-256.

[7] Y B Kiran; P Vasu Govardhan Reddy; C Devendranth Reddy; D Gunasekar, N P Eswar Reddy. *Agric. Food. Chem.*, **2007**, 55, 6933-6939.

[8] B Siva Kumar, A U Ravi Sankar, G Chandra Sekhar Reddy; M V Narayana Reddy; C Devendranath Reddy; C Suresh Reddy. *ARKIVOC.*, **2008**, 12, 109-116.

[9] Quin, L. D.; Verkade, J. G. *Phosphorus-31 NMR Spectral Properties in Compound Characterization and Structural Analysis*; VCH:New York, **1994**.

[10] Vincent, J. C.; Vincent, H. W. Proc. Soc. Expt. Biol. Med. 1944, 55, 162.

[11] Benson, H. J. *Microbiological Applications*, 5th Edn., W.C. Brown Publications: Boston, 1990.