GET THE APP

Synthesis and Anti-microbial Evaluation of Some Novel Bridged Benzofuran and 1,2,3-Triazole Based Analogues

Der Pharma Chemica
Journal for Medicinal Chemistry, Pharmaceutical Chemistry, Pharmaceutical Sciences and Computational Chemistry

ISSN: 0975-413X
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission Systemof respective journal.

Research Article - Der Pharma Chemica ( 2017) Volume 9, Issue 4

Synthesis and Anti-microbial Evaluation of Some Novel Bridged Benzofuran and 1,2,3-Triazole Based Analogues

Nagamani Modhumpuram, Jalapathi Pochampalli*, Kishore Kumar Angajala, Shanker Bhookya and Jayasree D
 
Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telanagana, India
 
*Corresponding Author:
Jalapathi Pochampalli, Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telanagana, India, Email: pochampallij@yahoo.co.in

Abstract

A new series of substituted 1-(2-((1H-1,2,3-triazol-4-yl)methoxy)-5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)phenyl)ethanonederivatives were synthesized by copper(I) catalyzed azide-alkyne cyclo-addition (CuAAC) reaction. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR and mass spectroscopy. The representative analogues were screened in vitro antibacterial and antifungal activity. The newly synthesized compounds were showed significant antibacterial activity and moderate antifungal activity compared to standard drugs ciprofloxacin and nystatin respectively.

Keywords

1,2,3-Triazoles, Click reaction, Antibacterial activity, Antifungal activity

Introduction

Benzofuran and its derivatives are important class heterocyclic compounds due to their excellent biological properties such as antibacterial [1], antimicrobial [2], antitumor [3] and the ability to control calcium level. Benzofurans have [4] been reported to exhibit antiproliferative activity via different mechanisms [5], such as inhibition of tubulin polymerization [6], inhibition of histone deacetylase enzymes [7], inhibition of angiogenesis [8] and induction of apoptosis [9], among others [10]. Triazoles and many other five membered heterocyclic compounds have been used very often in the pharmacological and medicinal applications. The 1,2,3-triazoles are most essential building blocks in chemistry and stable to moisture, oxygen, light and metabolism in the body. Moreover, these entities can be turned to form powerful pharmacophores and play an important role in bio-conjugation [11,12]. The“Click” protocol is a highly efficient process in bond formations among diverse building blocks for chemical synthesis [13,14], materials and surface science [15] and combinatorial chemistry [16]. In addition, several compounds containing 1,2,3-triazoles have shown a broad spectrum of biological activities such as antibacterial [17], fungicidal [18], antiallergic [19], anti-HIV [20], anti-inflammatory [21,22], analgesic [23], local anesthetic [24], anticonvulsant [25], antineoplastic [26], antimalarial [27] and anticancer activities [28].

Materials and Methods

Thin layer chromatography (TLC) was performed on E. Merk AL silicagel 60 F254 plates and visualized under UV light. The NMR spectra were recorded on Varian EM-360 (400 MHz mercury plus) spectrometer in DMSO-d6 or CDCl3 and calibrated using solvent signals [7.25(CDCl3) and 2.50 (DMSO-d6)]. All chemical shifts recorded in δ(ppm) using TMS as an internal standard. The mass spectra were recorded on Agilent ion trap MS. Spectrometer at energy of ionizing electron equal to 70 ev. All the reagents were purchased from Aldrich, Merck and Acros Organics and used without further purification.

Preparation of 5-chloromethyl-2-hydroxyacetophenone

Compound 2 was preparedby addition of17 g (0.125 mol) of 2-hydroxyacetophenone, in small portions with stirring, to 75 ml of concentrated hydrochloric acid containing 6.75 g (0.225 mol) of paraformaldehyde. This reaction mixture was maintained at room temperature with stirring for 48 h until a precipitate formed. Then the solid product was collected by suction filtration, washed with an aqueous solution of sodium bicarbonate (0.5%), washed with water, dried, and recrystallized from a toluene–petroleum ether mixture.

Procedure for the synthesis of 1,1'-(Methylenebis(2-hydroxy-5,1-phenylene)) diethanone

A catalytic amount of conc. H2SO4 (0.1 mL) was slowly added to a solution of chloromethylated compound (2) (2.0 mmol) and the O-hydroxyacetophenone (2.0 mmol) in glacial acetic acid (5 mL) at room temperature, and the solution was stirred at 90°C during 2 h. The reaction mixture was then poured on ice cooled water (5 mL) and extracted with ethyl acetate. The organic layer was washed with saturated NaHCO3, dried over Na2SO4, filtered over silica gel and concentrated under reduced pressure to afford the pure products.

1H-NMR (500 MHz, CDCl3) 2.61 (d,6H), 3.97 (s, 2H), 6.94 (d, 2H), 7.36 (d, 2H), 7.61 (d, 2H), 12.20 (s,2H).(ES+) m/z=284.10.

Procedure for the synthesis of 1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-hydroxyphenyl)ethanone

The compound 1,1'-(Methylenebis(2-hydroxy-5,1-phenylene)) diethanone (1 mmol) was refluxed with 2-bromo-1-phenylethanone (0.5 mmol) in the presence of potassium carbonate in acetone for 3 h. The reaction was monitored by TLC. After the reaction is completed the solvent was removed by Rota evaporator the resulted crude was washed with water to obtain 1-(5-((2-benzoyl-3-methylbenzofuran-5-yl) methyl)-2-hydroxy phenyl) ethanone.

1H-NMR (500 MHz, CDCl3) 2.61 (d, 6H), 4.08 (s, 2H), 6.94 (d, 1H), 7.29-7.36 (m, 2H), 7.46-7.61 (m, 7H), 8.0 8(m, 2H), 12.1 (s, 1H). 13C-NMR (500 MHz, CDCl3) 156.14, 153.19, 143.41, 137.84, 136.07, 134.11, 133.84, 130.52, 129.69, 129.46, 128.25, 126.73, 122.49, 121.0, 63.97, 41.27, 32.27, 10.45. (ES+) m/z=384.14.

Procedure for the synthesis of 1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(prop-2-yn-1-yloxy)phenyl)ethanone

The compound 1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-hydroxyphenyl)ethanone was taken in dry acetone (5 mL), anhydrous K2CO3 (1.01 equivalent) were refluxed with propargyl bromide (1 equivalent) for 8 h. Progress of the reaction was monitored by TLC, the reaction mixture was allowed to cool then solvent was removed in vacuo, then diluted with water (50 mL), extracted with ethyl acetate (3×50 mL). The organic layer was dried over anhydrous sodium sulphate filtered and concentrated in vacuo. The crude product was purified by column chromatography using 100-200 mesh silica gel, eluted at 5% ethyl acetate in pet ether to afford1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(prop-2-yn-1-yloxy)phenyl)ethanone as light yellow solid.

1H-NMR (500 MHz, CDCl3) 2.61 (d, 6H), 2.54 (t, 1H), 4.07 (s, 2H), 4.78 (d, 2H), 7.00 (d, 1H), 7.3 (dd, 2H), 7.63-7.43 (m, 6H), 8.07 (d, 2H); 13C-NMR (500 MHz, CDCl3)199.8, 185.9, 156.0, 153.1, 143.4, 141.4, 137.8, 136.0, 134.1, 133.8, 130.5, 129.7, 128.7, 128.2, 126.7, 122.5, 121.0, 113.3, 112.3, 62.7, 50.2, 41.27, 32.2, 10.47. (ES+) m/z=422.15.

General procedure for the synthesis of 1-[5-(2-Benzoyl-3-methyl-benzofuran-5-ylmethyl)-2-(3-methyl-3H-[1,2,3] triazol-4-ylmethoxy)-phenyl]-ethanone

To a solution of alkyne substrate compound 7 (100 mg) dissolved in 5 mL DMF was added CuSO4.5H2O (5 mol%) followed by sodium ascorbate (10%mol) and azide was added. The reaction mixture was stirred for 30 min at room temperature, monitored by TLC. After complete conversion of starting materials in to products, the reaction mixture was diluted with cold water (25 mL), extracted with ethyl acetate (3 × 25 mL). The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude product was purified by column chromatography using 100-200 mesh silica gel and ethyl acetate in petether to afford corresponding 1,4 disubstituted 1,2,3-triazole analogues.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-butyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 73%, white solid. 1H-NMR (500 MHz, CDCl3): 8.14-7.97 (m, 2H), 7.68-7.55 (m, 3H), 7.49 (J=22.09, 21.66, 11.32 Hz, 4H), 7.34-7.24 (m, 3H), 7.07 (d, J=8.53 Hz, 1H), 5.29 (s, 2H), 4.51-4.28 (m, 2H), 2.63-2.53 (m, 6H), 4.07 (s, 2H), 1.99-1.83 (m, 2H), 1.45-1.27 (m, 2H), 1.02-0.91 (m, 3H).13C-NMR (500 MHz, CDCl3): 199.8, 185.9, 156.0, 153.1, 148.6, 143.4, 141.4, 137.8, 136.0, 134.1, 133.8, 132.5, 130.5, 129.7, 129.5, 128.7, 128.2, 126.7, 122.5, 121.0, 113.3, 112.3, 62.7, 50.2, 40.7, 32.2, 31.9, 19.6, 13.4, 10.1; (ES+) m/z=522.23(M+H).

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-hexyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 82%, white solid. 1H-NMR (500 MHz, CDCl3): 8.06 (dd, J=5.21, 3.26 Hz, 2H), 7.65-7.57 (m, 3H), 7.56-7.41 (m, 4H), 7.34-7.25 (m, 2H), 7.07 (d, J=8.54 Hz, 1H), 5.29 (s, 2H), 4.36 (t, J=7.25 Hz, 2H), 4.06 (s, 2H), 2.65-2.53 (m, 6H), 2.02-1.75 (m, 3H), 1.31-1.28 (m, 3H), 1.25 (s, 2H), 0.96-0.79 (m, 4H). 13C-NMR (500 MHz, CDCl3): 199.8, 185.9, 156.0, 153.1, 148.6, 143.4, 142.7, 142.2, 137.8, 136.0, 134.0, 133.8, 128.6, 128.2, 126.7, 122.4, 121.0, 113.27, 112.2, 62.6, 50.5, 40.7, 31.9, 31.0, 30.2, 29.6, 29.4, 29.3, 29.2, 29.0, 26.0, 22.3, 22.65, 13.9, 10.0; (ES+) m/z=549.26.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-octyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethanone

Yield 76%, white solid. 1H-NMR (500 MHz, CDCl3): 8.07 (dd, J=10.77, 3.68 Hz, 2H), 7.66-7.56 (m, 3H), 7.55-7.41 (m, 4H), 7.29 (dd, J=8.49, 1.78 Hz, 2H), 7.07 (d, J=8.51 Hz, 1H), 5.29 (s, 2H), 4.36 (t, J=7.25 Hz, 2H), 4.07 (s, 2H), 0.92-2.67-2.47 (m, 6H), 1.91 (dd, J=13.93, 6.97 Hz, 2H), 1.35-1.27 (m, 9H), 0.79 (m, 4H).13C-NMR (500 MHz, CDCl3): 199.8, 185.8, 156.0, 153.1, 147.0, 141.8, 137.8, 136.0, 134.1, 133.8, 132.5, 130.5, 129.6, 128.6, 128.3, 126.7, 122.5, 121.0, 113.0, 112.2, 62.6, 40.7, 31.9, 31.6, 10.0; MS m/z: 577.29.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-dodecyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 81%, white solid. 1H-NMR (500 MHz, CDCl3): 8.14-7.99 (m, 2H), 7.66-7.56 (m, 3H), 7.56-7.40 (m, 4H), 7.29 (dd, J=14.19, 5.80 Hz, 2H), 7.08 (t, J=7.96 Hz, 1H), 5.29 (s, 2H), 4.36 (t, J=7.26 Hz, 2H), 4.06 (s, 2H), 2.69-2.49 (m, 6H), 1.90 (p, J=7.18 Hz, 2H), 1.38-1.20 (m, 18H), 0.87 (t, J=6.95 Hz, 3H).13C-NMR(500 MHz, CDCl3): 199.8, 185.8, 156.0, 153.1, 147.0, 141.8, 137.8, 136.0, 134.1, 133.8, 132.5, 130.5, 129.7, 129.4, 128.2, 122.4, 121.0, 117.0, 113.3, 112.2,52.4, 72.3, 50.5, 40.8, 31.9, 30.2, 29.3, 28.9, 26.4, 22.7, 14.1, 10.0; (ES+) m/z= 633.36.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-pentadecyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 75%, white solid. 1H-NMR (500 MHz, CDCl3): 8.22-7.91 (m, 2H), 7.73-7.37 (m, 7H), 7.29 (dd, J=8.51, 1.88 Hz, 2H), 7.07 (d, J=8.53 Hz, 1H), 5.29 (s, 2H), 4.36 (t, J=7.26 Hz, 2H), 4.07 (s, 2H), 2.75-2.38 (m, 6H), 1.91 (p, J=7.14 Hz, 2H), 1.62 (s, 3H), 1.33-1.20 (m, 21H), 0.87 (t, J=6.94 Hz, 3H).13C-NMR(500 MHz, CDCl3): 199.8, 185.8, 156.0, 153.1, 147.0, 141.8, 137.8, 136.0, 134.1, 133.8, 132.5, 130.5, 129.7, 129.4, 128.2, 122.4, 121.0, 113.3, 112.2, 50.5, 40.8, 31.9, 30.2, 28.9, 26.4, 22.7, 14.1, 10.0; (ES+) m/z=675.40.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-phenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 87%, white solid. 1H-NMR (500 MHz, CDCl3): 8.13-7.96 (m, 5H),7.79-7.70 (m, 2H), 7.67-7.57 (m, 2H), 7.58-7.39 (m, 7H), 7.31 (dt, J=8.38, 2.01 Hz, 2H), 7.11 (d, J=8.53 Hz, 1H), 5.38 (s, 2H), 4.07 (s, 2H), 2.96 (s, 4H), 2.88 (s, 4H).13C-NMR (500 MHz, CDCl3): 199.7, 185.8, 155.8, 153.1, 148.6, 144.2, 137.8, 136.7, 136.0, 134.2, 133.8, 132.5, 130.5, 129.8, 129.6, 129.4, 129.0, 128.7, 128.2, 126.7, 121.0, 120.9, 120.5, 113.3, 112.2, 62.5, 40.7, 31.9, 10.0; (ES+) m/z=541.20.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(3-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone.

Yield 77%, pale yellow solid. 1H-NMR (500 MHz, CDCl3): 8.62 (t, J=2.02 Hz, 1H), 8.32 (dd, J=8.25, 1.26 Hz, 1H), 8.24-8.14 (m, 2H), 8.06 (dd, J=6.51, 5.17 Hz, 2H), 7.76 (dd, J=13.65, 5.47 Hz, 1H), 7.60 (dd, J=7.14, 4.94 Hz, 2H), 7.51 (dd, J=15.79, 8.35 Hz, 4H), 7.47-7.42 (m, 1H), 7.36-7.28 (m, 2H), 7.10 (d, J=8.52 Hz, 1H), 5.40 (s, 2H), 4.08 (s, 2H), 2.61 (dd, J=14.86, 9.34, 5.19 Hz, 6H). 13C-NMR (500 MHz, CDCl3): 199.71, 185.8, 155.6, 153.1, 148.8, 137.7, 137.4, 135.9, 134.4, 133.8, 132.5, 131.0, 130.6, 129.6, 129.4, 128.8, 128.2, 126.7, 125.9, 123.4, 121.0, 120.8, 115.3, 113.2, 112.2, 62.3, 40.7, 31.8, 10.0; (ES+) m/z=586.19.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethanone

Yield 84%, white solid. 1H-NMR (500 MHz, CDCl3): 8.21 (dd, J=11.94, 5.31 Hz, 2H), 8.09-8.03 (m, 2H), 7.66-7.56 (m, 3H), 7.54-7.37 (m, 6H), 7.34-7.21 (m, 3H), 7.05 (d, J=8.54 Hz, 1H), 5.65 (d, J=11.60 Hz, 2H), 5.29 (s, 2H), 4.06 (s, 2H), 2.55 (dd, J=30.75, 9.17 Hz, 6H).13C-NMR (500 MHz, CDCl3): 199.7, 185.8, 153.3, 153.0, 149.1, 148.6, 147.9, 145.2, 142.8, 141.6, 137.8, 136.7, 135.8, 134.1, 132.5, 129.9, 127.6, 126.7, 126.5, 124.2, 123.4, 120.9, 119.7, 112.2, 111.4, 68.2, 53.0, 41.7, 10.1; (ES+) m/z= 600.19

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 71%, white solid. 1H-NMR (500 MHz, CDCl3): 8.07 (d, J=6.66 Hz, 3H), 7.70-7.56 (m, 4H), 7.48 (t sext., J=8.77, 5.56 Hz, 6H), 7.38-7.20 (m, 3H), 7.12 (d, J=8.50 Hz, 1H), 5.40 (d, J=7.45 Hz, 2H), 4.08 (s, 2H), 2.66-2.52 (m, 6H).13C-NMR (500 MHz, CDCl3): 199.6, 185.9, 155.9, 153.1, 148.6, 143.3, 137.8, 136.0, 134.6, 134.3, 133.9, 132.5, 130.9, 130.8, 130.6, 129.7, 129.4, 128.7, 128.5, 128.3, 128.0, 126.7, 124.9, 121.0, 113.3, 112.3, 62.5, 40.7, 31.9, 10.1; (ES+) m/z=575.16.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(o-tolyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 76%, white solid. 1H-NMR (500 MHz, CDCl3): 8.07 (d, J=7.37 Hz, 3H), 7.81 (s, 1H), 7.63-7.40 (m, 10H), 7.12 (d, J=8.50 Hz, 1H), 5.39 (d, J=7.37 Hz, 2H), 4.08 (s, 2H), 2.60 (d, J=6.96 Hz, 6H), 2.19 (s, 3H).13C-NMR (500 MHz, CDCl3): 199.6, 185.8, 155.9, 153.1, 148.6, 143.3, 137.8, 136.2, 136.0, 134.2, 133.8, 133.6, 132.5, 131.5, 130.5, 130.0, 129.9, 129.6, 129.4, 128.7, 128.2, 126.7, 126.9, 125.9, 124.3, 121.0, 113.3, 112.2, 62.6, 40,7, 31.8, 10.0; (ES+) m/z=555.22.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 82%, white solid. 1H-NMR (500 MHz, CDCl3): 8.20 (s, 1H), 8.14-7.97 (m, 2H), 7.81 (dd, J=7.88, 1.52 Hz, 1H), 7.61 (dd, J=10.15, 4.68 Hz, 2H), 7.57-7.37 (m, 5H), 7.38-7.24 (m, 4H), 7.22-7.02 (m, 3H), 5.38 (s, 2H), 4.08 (s, 2H), 3.87 (d, J=6.09 Hz, 3H), 2.67-2.53 (m, 6H).13C-NMR (500 MHz, CDCl3): 199.8, 185.6, 156.2, 153.2(2C), 150.9, 142.8, 136.1, 134.1, 133.9, 132.5, 130.6, 130.3, 129.9, 129.7, 129.5(2C), 128.6, 128.2, 127.7, 126.7, 126.0, 125.3, 125.0, 121.3, 121.0, 119.2, 113.3, 112.4, 112.2, 62.7, 55.9, 40.8, 32.0, 10.1; (ES+) m/z=571.21

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(2-bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 76%, pale red solid. 1H-NMR (500 MHz, CDCl3): 8.21-7.94 (m, 3H),7.11 (d, J=8.48 Hz, 1H),7.76 (d, J=7.72 Hz, 1H),7.71-7.36 (m, 8H), 7.38-7.22 (m, 3H), 5.41 (s, 1H), 4.08 (s, 2H), 2.62 (t, J=8.45 Hz, 6H). 13C-NMR (500 MHz, CDCl3): 199.7, 185.98, 156.0, 153.2, 148.7, 143.2, 137.9, 136.4, 136.1, 134.3, 134.0 (2C), 132.6, 131.4, 130.7, 129.8, 129.5, 128.8, 128.6, 128.3 (2C), 126.8, 125.0, 121.1, 118.6, 113.4, 112.3, 62.6, 40.8, 32.0, 10.1; (ES+) m/z=619.11

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(4-flourophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 84%, white solid. 1H-NMR (500 MHz, CDCl3): 8.21-7.94 (m, 3H), 7.76 (d, J=7.72 Hz, 1H),7.71-7.36 (m, 8H), 7.38-7.22 (m, 3H),7.11 (d, J=8.48 Hz, 1H), 5.41 (s, 2H), 4.08 (s, 2H), 2.62 (t, J=8.45 Hz, 6H). 13C-NMR (500 MHz, CDCl3): 200.45, 186.6, 164.2, 162.3, 156.5, 153.8, 149.4, 145.1, 138.5, 136.7, 135.0, 134.6, 133.2, 131.3, 130.4, 130.1, 129.53, 128.9, 127.4, 123.3 (2C), 121.7 (2C), 117.6, 117.4, 114.0, 113.0, 63.2, 41.5, 32.6, 10.78; (ES+) m/z= 559.19.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(2,4,6trifluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethenone

Yield 83%, white solid. 1H-NMR (500 MHz, CDCl3): 8.17-7.99 (m, 4H), 7.79-7.67 (m, 1H)7.62-7.43 (m, 6H), 7.32-7.29 (m, 1H), 7.24-7.15 (m, 1H), 7.10 (d, J=8.52 Hz, 1H), 4.07 (s, 2H), 2.57 (dd, J=17.35, 7.70 Hz, 6H).13C-NMR (500 MHz, CDCl3): 199.3, 185.5, 162.3, 155.5, 152.8, 148.3, 143.9, 137.5, 135.7, 134.0, 133.6, 132.2, 130.3, 129.3, 129.1, 128.4, 127.9, 126.4, 123.5, 120.7, 118.5, 118.4, 112.9(2C), 111.9, 61.9, 40.4, 36.2, 31.1, 13.8, 9.7; (ES+) m/z=595.17.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(4-trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4- yl)methoxy)phenyl)ethenone

Yield 78%, white solid. 1H-NMR(500 MHz, CDCl3): 8.0(m,3H), 7.7(d, 2H), 7.6-7.4(m, 7H), 7.3-7.2(m, 3H), 7.0(d, 1H), 5.4(s, 2H), 4.07(s, 2H), 2.5(s, 6H).13C-NMR(500 MHz, CDCl3): 199.7, 185.9, 168.5, 155.7, 153.2, 137.8(2C), 136.0, 134.8, 134.9(2C), 134.4, 133.8, 132.5, 131.2, 130.6, 129.7, 129.4, 128.3, 118.4, 113.6(2C), 113.3, 112.3, 62.4, 40.7, 10.1; (ES+) m/z=625.18.

1-(5-((2-benzoyl-3-methylbenzofuran-5-yl)methyl)-2-(1-(2,4,6-trimethoxyphenyl)-1H-1,2,3-triazol-4- yl)methoxy)phenyl)ethenone

Yield 77%, white solid. 1H-NMR(500 MHz, CDCl3): 8.07(d, 2H), 8.0(s, 1H), 7.60(m, 2H), 7.53-7.43(m, 4H), 7.30(dt, 2H), 7.09(d, 1H), 6.93(s, 2H), 5.36(s, 2H), 4.07(s, 2H), 3.92(s, 6H), 3.88(s, 3H), 2.59(s, 6H).13C-NMR(500 MHz, CDCl3): 199.9, 185.8, 155.8, 153.9, 148.6, 144.1, 139.2, 138.5, 137.8, 135.9, 134.3, 133.8, 132.6, 132.5, 130.5, 129.7, 129.4, 128.8, 128.2, 126.7, 121.2, 121.0, 114.0, 113.3, 112.3, 98.6, 62.5, 61.0, 56.4, 40.7, 31.9, 10.1; (ES+) m/z=631.23.

References

[1] H.S. Bevinakatti, V.V. Badiger, Arch. Pharm., 1981, 314, 162-167.

[2] R.S. Ward, Nat. Prod. Rep., 1999, 16, 57-59.

[3] A. Gangjee, R Devraj, J.J. McGuire, R.L. Kisliuk, J. Med. Chem., 1995, 38, 3798-3805.

[4] A.P. Kozikowsky, D. Ma, L. Du, N.E. Lewin, P.M. Blumberg, J. Am. Chem. Soc., 1995, 117, 6666e6672.

[5] R.E. Ziegert, J. Toräng, K. Knepper, S. Bräse, J. Comb. Chem., 2005, 7, 147.

[6] R. Romeo, G.P. Baraldi, C.M. Dora, C.C. Lopez, C.L. Olga, T. Manlio, G. Stefania, D.C. Antonietta, P.M. Rosaria, B.

[7] Z. Jan, B. Nicola, H. Andrea, H. Ernest, Bioorg. Med. Chem. Lett., 2009, 19, 6862.

[8] S. Mahboobi, A. Sellmer, H. Höcher, C. Garhammer, H. Pongratz, T. Maier, T. Ciossek, Beckers, T, J. Med. Chem.2007, 50, 4405.

[9] Y. Chen, S. Chen, X. Lu, H. Cheng, Y. Ou, H. Cheng, G.C. Zhou, Bioorg. Med. Chem. Lett., 2009, 19, 1851.

[10] D. Simoni, R. Romagnoli, R. Baruchello, R. Rondanin, M. Rizzi, M.G. Pavani, D. Alloatti, G. Giannini, M. Marcellini, T. Riccioni, M. Castorina, M.B. Guglielmi, F. Bucci, P. Carminati, C. Pisano, J. Med. Chem., 2006, 49, 3143.

[11] I. Hayakawa, R. Shiota, T. Agatsuma, H. Furukawa, S. Naruto, Y. Sugano, Y, Bioorg. Med. Chem. Lett., 2004, 14, 455.

[12] M. Klein, K. Krainz, I.N. Redwan, P. Dinér, M. Grøtli, Molecules., 2009, 14(12), 5124-5143.

[13] A.E. Speers, B.F. Cravatt, Chem. Biol., 2004, 11(4), 535-546.

[14] J.H. Maarseveen, W.S. Horne, M.R. Ghadiri, Org. Lett., 2005, 7(20), 4503-4506.

[15] P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B. Voit, J. Pyun, J.M.J. Fre´chet, K.B. Sharpless, V.V. Fokin. Angew. Chem. Int. Ed., 2004, 43(30), 3928-3932.

[16] S. Lober, P. Rodriguez-Loaiza, P. Gmeiner, Org. Lett., 2003, 5(10), 1753-1755.

[17] M.J. Genin, D.A. Allwine, D.J. Anderson, M.R. Barbachyn, D.E. Emmert, S.A. Garmon, D.R. Graber, K.C. Grega, J.B. Hester, D.K. Hutchinson, J. Morris, R.D. Reischer, D. Stper, B.H. Yagi, J. Med. Chem., 2000, 43(5), 953-970.

[18] H. Wamhoff. Pergamon: Oxford. 1984, 669-732.

[19] D.R. Buckle, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med. Chem., 1986, 29(11), 2262-2267.

[20] R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clercq, C.F. Perno, A. Karlsson, J. Balzarini, M.J. Camarasa, J. Med. Chem., 1994, 37(24), 4185-4194.

[21] L. Savini, P. Massarelli, P. Corti, L. Chiasserini, C. Pellerano, G.I. Bruni, Farmaco., 1994, 49(5), 363-369.

[22] A. Passannanti, P. Diana, P. Barraja, F. Mingoia, A. Lauria, G. Cirrincione. Heterocycles., 1998, 48(6), 1229-1235.

[23] A. Allais, J. Meier, (Roussel-UCLAF): Ger. Offen, 1815467. 1969. [24] R.E.P. Meier, 1992, 62; eidem, US. 4789680, 1986.

[25] S. Danoun, G. Baziard-Mouysset, J.L. Stigliani, M. Payard, M. Selkti, B. Viossat, T. Tomas, Heterocycl. Commun. 1998, 4, 45-51.

[26] M. Jilino, Malcom, F.G. Stevens, J. Chem. Soc., 1998, 1, 1685-1684.

[27] W.Q. Fan, A.R. Katritzky, Pergamon Press: Oxford, 1996, 4, 1-126.

[28] S. Manfredini, C.B. Vicentini, M. Manfrini, N. Bianchi, C. Rutigliano, C. Mischiati, R. Gambari, Bioorganic. Med. Chem., 2000, 8(9), 2343-2346.

[29] K. Vinod, Tiwari, B.B. Mishra, B. Kunj Mishra, N. Mishra, S. Anoop Singh, X. Chen., Chem. Rev., 2016, 116(5), 3086-3240.

[30] A.D. Cort, L. Mandolini, C. Pasquini, L. Schiaffino, Org. Biomol. Chem., 2006, 4, 4543.

[31] A.S. Klymchenko, G. Duportail, T. Ozturk, V.G. Pivovarenko, Y. Mély, A.P. Demchenko, Chem. Biol. 2002, 9, 1199.

Select your language of interest to view the total content in your interested language

30+ Million Readerbase
SCImago Journal & Country Rank
Google Scholar citation report
Citations : 25868

Der Pharma Chemica received 25868 citations as per Google Scholar report

Der Pharma Chemica peer review process verified at publons
Der Pharma Chemica- Journals on pharmaceutical chemistry