Available online at www.derpharmachemica.com

Scholars Research Library

Der Pharma Chemica, 2013, 5(5):199-204 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Synthesis and characterization of Fe(III)-azomethine complex

M. M. Kalaskar and M. P. Wadekar*

Applied Chemistry Division, Govt. Vidarbha Institute of Science and Humanities, Amravati, (M.S.) India

ABSTRACT

The present study is being down on synthesis of chelating agent, which might have selectively for single metal ion. In the view of these consideration the chelating nature of azomethine derived from the para-aminobenzoic acid and substituted benzaldehyde towards the metal ions mainly Fe(III) is undertaken. Many fold aspects of complexasation of these azomethine is still lacking. Thus it was decided to undertake such work, the synthesis, characterization of some azomethine and study their magnetic susceptibility after complexarion. The synthesis of azomethine and Fe(III) complexes still not mentioned in any record because of the oxidizing nature of Fe(II) ion in solution. Therefore, the main aim of azomethine complexes and to study their magnetic susceptibility.

Keywords: Fe (III)-azomethine complex, synthesis, characterization, magnetic susceptibility.

INTRODUCTION

Chemistry of complex compounds which contain transition metal ion as nucleus have been intensively studied and this is an active and challenging field for theoretical and experimental research. Coordination chemistry is not important only for inorganic chemist; but it is also broad constituency of researchers ranging from biochemistry to material scientist. Thus coordination chemistry is not disciplinary but it is interdisciplinary in nature.

Azomethine ligands are able to coordinate metal through imine nitrogen and another group, usually linked to carbonyl group. In fact, azomethine ligands are able to coordinate many different metal and to stabilized them in various oxidation states. They have been widely studied because of their application in many field of fundamental and applied research. A number of azomethine used for the qualitative analysis[1,2,3] quantitative analysis[4,5,6]can also be applied for their agriculture uses[7], and in organic synthesis[8].

The interest in the field of coordination chemistry of azomethine arose out of the exploration of several chelating agents, which lead to the synthesis of several novel group of coordination complexes. Amine reacts with carbonyl compounds by nucleophilic addition. If amine is primary, the initial addition product undergoes dehydration to form a compound containing a carbon-nitrogen double bond, an imine. Elimination occurs with this orientation ever if the carbonyl compound containing as α -hydrogen, that is the preffered product is the imines rather than the enamine. If some enamine should be formed initially, it rapidly toutomerizes into more stable iminoform[9].

MATERIALS AND METHODS

Synthesis of Azomethine

A mixture of 4-Nitrobenzaldehyde (0.5Mole) and 4-aminobenzoic acid (0.5Mole) and (0.5 mL) of Lemon Juice was grinding at room temperature for 20 minutes. After completion of the reaction as indicated by TLC, the reaction mixture was poured on to crushed ice and stirred for 5-10 minutes. The solid separated was filtered under suction, washed with ice cold water and then recrystallized from ethanol[10].

Synthesis of Fe(III) complex of Azomethine

The complex was prepared by carrying out the insitu reaction of 4-[(4-Nitro-benzyledene)-amino]-benzoic acid and metal salt ferric chloride. 4-Nitrobenzaldehyde(1mole) and 4-aminobenzoic acid (1mole) were taken together in ethanol (30ml) and refluxed for an hour after which ferric chloride (1mole) in ethanol was added and refluxed or another 3 hours. On cooling microcrystalline iron complexes precipitated.filtered, washed thoroughly with ethanol and dried. The yield was quantitative.

www.scholarsresearchlibrary.com

200

CHARACTERIZATION

A) IR spectra of Azomethine

Date/Time; 3/30/2013 12:01:33 PM

www.scholarsresearchlibrary.com

M. P. Wadekar et al

Observation And Calculation of Magnetic Susceptibility:

Calibration of Electromagnetic (MnSO₄) Known Solution:-

Sr. No	Current	MSR	VSR	Magnetic Field (H)Gauss
1	0 A	4.2	25	0
2	1.5 A	4.2	29	888.39 G
3	2 A	4.2	34	1329 G
4	2.5 A	4.2	43	1880 G
5	3 A	4.2	55	2427 G
6	3.5 A	4.2	63	2731
7	4 A	4.2	74	

www.scholarsresearchlibrary.com

Observation table for calcula	ation of magnetic suscentily	bility of Fe(111)-Azomethine	complex in Dimethyl Sulphoxide
obser fution fusie for curcun	the babeeptie		compren m 2 mileting i Surphomue

Sr.No	Current	MSR cm	VSR	X mass	X _{molar}	μ₀	No .of unpaired electron
1	0 A	4.2	42				
2	1.5 A	4.2	32				
3	2 A	4.2	31		0.003371	1.09	1.17e ⁻
4	2.5 A	4.2	28	48.92X10 ⁻⁶			
5	3 A	4.2	27				
6	3.5 A	4.2	25				
7	4 A	4.2	22				

Observation :

1. Weight of Density Bottle = 6.68

2. Weight of Density Bottle + Complex + Solvents = 19.49

3. Weight of Density Bottle + Water= 20.61

Calculation :

a) Calculation of Density of Solution by formula

 $\rho = \rho_{water} \frac{(c-a)}{(b-a)}$

b) $X_{molar} = X_{mass X Molecular weight}$

c) The magnetic moment is calculated by using formula.

 $\begin{aligned} & \mu_{eff=2.84\sqrt{(xm)\times TB.M.}} \\ & \mu_{eff=Us=\sqrt{n(n+2)B.M.}} \\ & \mu_{eff=2.84}\left(T \times X_{\text{molar}}\right)^{1/2} \\ & \mu_{eff=n(n+2)}^{1/2} \end{aligned}$

The IR and magnetic susceptibility studies of the complex indicate that it is an octahedral complex of the type Fe-L3.

RESULTS AND DISCUSSION

From the two I.R. spectra of 4-[(4-Nitro-benzylidene)-amino]-benzoic acid i.e.Schiff Base and Fe(III)- azomethine complex shows the presence of C=N stretch (1683 cm⁻¹), C-N stretch (1294 cm⁻¹) and COOH (2945-2560 cm⁻¹). Where as there is difference in values between C=O group of both. Carbonyl group of azomethine absorb at (1710 cm⁻¹) which is carbonyl group carboxylic acid. Complex formation take place after deprotonation of carboxylic group therefor, it observed at (1735cm⁻¹), ester like frequency. Unless and until breaking of carboxylic O-H bond takes place, it is impossible to form carboxylic oxygen $-M^+$ metal covalent bond. Secondly as nitrogen from azomethine donating lone pair of electron to metal ion and from coordinate bond, its I.R. absorption value increases.

There fact clearly indicate the formulation of bidentate d^2sp^3 , octahedral paramagnetic Fe(III) – azomethine complex. And also according to magnetic study Azomethine acts as strong field ligand and hence pairing of metal electron i.e. Fe(III) valence electron takes place. Magnetic study reveals that magnetic moment of Fe(III)-azomethine complex is nearly equal to one (1) and value of magnetic susceptibility is more than 0 and less than one (by Quinck's method).

Therefore, the present Fe(III)-azomethine complex is paramagnetic in nature. It has octahedral geometry having d^2sp^3 configuration i.e. inner-orbital complex or low spin complex.

REFERENCES

[1] Seyhan M. Ber. Dt. Chem. Ges., 87, 369 (1954).

[2] Hest P. W. and DiffeeJ. Analyt. Chem. Acta., 25, 399 (1961).

[3] Kurbatova I. I. Z. Analyt. Abstr., 14, 7501 (1967).

- [4] Mehta R. K. and Saxena J. P. Ind. J. Appl. Chem., 34,27,(1971).
- [5] Mukherjee A. K. Analyt. Chem. Acta., 13, 268 (268).
- [6] Mukharjee A. K. Naturwissenchaften, 127 (1955).
- [7] Chem. Abstr., 70 57346 (1969).

[8] Mc Carty C. G. The chemistry of Carbon, Nitrogen double bond, edited by S. Patai(*International publishers Inc., New York*), (1970).

[9] Geissman T.A. Chemistry of the flavanoid compounds, Pergamon Press, Oxford, 159, (1962).

[10] Patil S., Jadhav S.D., Patil U.P., Archives of Applied Sci. Res., (2012), 4(2), 1074-1078.