

**Scholars Research Library** 

Der Pharma Chemica, 2011, 3 (5):208-212 (http://derpharmachemica.com/archive.html)



ISSN 0975-413X CODEN (USA): PCHHAX

# Synthesis and Growth Promoting Effects of Chlorosubstituted Heterocycles on Agricultural Crop Plants

## Vandana V. Parhate\*, M. M. Rathore and P. R. Rajput

Department of Chemistry, Vidya Bharati Mahavidyalaya, Camp, Amravati, India

#### ABSTRACT

In the present study, the synthesis and growth promoting effects of 4-aroylpyrazolines on cultivated agricultural crop plants namely, Triticum aestivum (Wheat), Sorghum vulgare (Jowar), Cicer arietinum (Gram) and Phaseolus vulgaris (Rajma) were undertaken.

**Keywords:** 4-aroylpyrazolines, *Triticum aestivum* (Wheat), *Sorghum vulgare* (Jowar), *Cicer arietinum* (Gram) and *Phaseolus vulgaris* (Rajma).

### INTRODUCTION

The newly synthesized chlorosubstituted pyrazolines were assayed for their growth promoting effects on *Triticum aestivum* (Wheat), *Sorghum vulgare* (Jowar), *Cicer arietinum* (Chana) and *Phaseolus vulgaris* (Rajma) with predetermined periodicity.

#### A] Synthesis of chlorosubstituted pyrazolines

A mixture of 3-aroylflavanone (0.01 mol) and phenyl hydrazine hydrochloride (PhNHNH<sub>2</sub>.HCl) (0.02 mol) in dioxane (20 ml) containing a few drops of piperidine was refluxed for 2.5 h. After cooling, the reaction mixture was acidified with dil. HCl (1:1). The solid product thus obtained was crystallized from ethanol-acetic acid mixture to get 4-aroylpyrazolines. It gives colouration with neutral FeCl<sub>3</sub> solution and dissolve in NaOH indicating thereby the presence of free phenolic -OH group.

The spectral analysis of the compound (5) and compound (6) are given below: (1d) IR (cm<sup>-1</sup>): 1655 v (>C=O), 1600 v (>C=O), 1224 v (C–O), 820 v (C–Cl) (1d) PMR ( $\delta$ ppm) : 3.69 (s 3H Ar–OCH<sub>3</sub>), 5.36 (d 1H CH<sub>A</sub>–CH), 5.76 (d 1H CH–CH<sub>B</sub>) and 6.73 to 8.17 (m 10H Ar–H) (2d) IR (cm<sup>-1</sup>): 3100-3000 v (O–H), 1650 v (>C=O), 1600 v (>C=N), 1990 v (Ar–O–C), 821 v (C–Cl) (2d) PMR ( $\delta$ ppm): 3.89 (s 3H Ar–OCH<sub>3</sub>), 5.27 (d 1H CH<sub>A</sub>–CH), 5.65 (d 1H CH–CH<sub>B</sub>), 6.62 to 8.18 (m 16H Ar–H), 12.08 (s 1H Ar–OH)



iv)PhNHNH<sub>2</sub>.HCl + DMSO + Piperidine

#### Table 1 Physical and analytical characterization of data of newly synthesized compounds

| Compd. | Mol. Formula                | Mol. Wt. | R                                               | <b>R</b> <sub>1</sub> | Yield (%) | <b>m.p.</b> (°C) | Found (Ca | R <sub>f</sub> |     |
|--------|-----------------------------|----------|-------------------------------------------------|-----------------------|-----------|------------------|-----------|----------------|-----|
|        |                             |          |                                                 |                       |           |                  | С         | Ν              |     |
| 2b     | $C_8H_6Cl_2O_2$             | 205      |                                                 |                       | 75        | 53               |           |                |     |
| 3a     | $C_{15}H_{10}O_3 Cl_2$      | 308      | $-C_6H_5$                                       |                       | 75        | 65               | 58.16     |                |     |
| 3b     | $C_{16}H_{12}O_4 \ Cl_2$    | 338      | -C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub> |                       | 75        | 112              | 46.45     |                |     |
| 4a     | $C_{15}H_{10}O_3 Cl_2$      | 308      | $-C_6H_5$                                       |                       | 75        | 112              | 58.19     |                |     |
| 4b     | $C_{16}H_{12}O_4 Cl_2$      | 338      | -C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub> |                       | 80        | 115              | 56.50     |                |     |
| 5a     | $C_{24}H_{18}O_5 Cl_2$      | 457      | -OCH <sub>3</sub>                               | -OCH <sub>3</sub>     | 80        | 165              | 62.99     |                | .44 |
| 5b     | $C_{22}H_{14}O_3 Cl_2$      | 397      | -H                                              | -H                    | 85        | 156              | 66.40     |                | .42 |
| 5c     | $C_{23}H_{16}O_4 Cl_2$      | 427      | -H                                              | -OCH <sub>3</sub>     | 80        | 160              | 64.57     |                | .85 |
| 5d     | $C_{23}H_{16}O_4 Cl_2$      | 427      | -OCH <sub>3</sub>                               | -H                    | 75        | 175              | 64.55     |                | .61 |
| 6а     | $C_{30}H_{24}O_4 N_2Cl_2$   | 547      | -OCH <sub>3</sub>                               | -OCH <sub>3</sub>     | 70        | 170              | 65.70     | 5.02           | .36 |
| 6b     | $C_{28}H_{20}O_2 \ N_2Cl_2$ | 487      | $-C_6H_5$                                       | $-C_6H_5$             | 70        | 174              | 68.60     | 5.65           | .60 |
| 6c     | $C_{29}H_{22}O_3 N_2Cl_2$   | 517      | $-C_6H_5$                                       | $-C_6H_5$             | 80        | 169              | 67.26     | 5.35           | .64 |
| 6d     | $C_{29}H_{22}O_3 N_2Cl_2$   | 517      | $-C_6H_5$                                       | -OCH <sub>3</sub>     | 60        | 160              | 67.25     | 5.36           | .62 |

The beds of black cotton soil of 2.5 x 2.5 metre size were prepared on an open field. Pregerminated quality seeds of *Triticum aestivum*, *Sorghum vulgare*, *Cicer arietinum* and *Phaseolus vulgaris* were procured from Krishi Vidnyan Kendra, Badnera, Dist. Amravati (M.S.), India. The seeds of all four species under examination were sowed in these beds separately by conventional method. The plant beds were irrigated as and when required with tap water. The plants from each bed were divided into two groups (A) and (B). A group (A) plants were kept unsprayed and termed as control group, whereas the plants from group (B) designated as treated group (B) plants were sprayed with the compounds being tested. The seeds of group (B) were also treated with test compounds before sowing to screen growth promoting effects. The spraying solution of newly synthesized chlorosubstituted pyrazolines were prepared in dioxane (0.01 dilution) separately and sprayed thrice at fortnightly intervals (15, 30, 45, 60, 75 and 90 days).

All the field experiments were conducted to compare the treated plants of group (B) with the plants from control group (A). The samples were taken at 15, 30, 45, 60, 75 and 90 days after sowing, corresponding to early vegetative, late vegetative, pod filling and pod maturation stages. The plants were carefully examined and the number of leaves and heights of shoots were recorded (Table 2 to 5). The data obtained was subjected to analysis of growth parameters.

| . u                      |        |       |        |      |     |       | Cu      | ıltivat | ed cro | ps      |         |      |                    |     |     |      |  |
|--------------------------|--------|-------|--------|------|-----|-------|---------|---------|--------|---------|---------|------|--------------------|-----|-----|------|--|
| iodicity of<br>bservatio | Tri    | ticum | aestiv | um   | So  | rghun | ı vulgo | are     | C      | icer ar | rietinu | т    | Phaseolus vulgaris |     |     |      |  |
|                          | Shoot  |       | No     | . of | Sh  | oot   | No      | . of    | Sh     | oot     | No      | . of | Sh                 | oot | No  | . of |  |
| er<br>e (                | neight |       | lea    | ves  | nei | gnt   | lea     | ves     | nei    | gnt     | lea     | ves  | nei                | gnt | lea | ves  |  |
| F<br>th                  | С      | Т     | С      | Т    | С   | Т     | С       | Т       | С      | Т       | С       | Т    | С                  | Т   | С   | Т    |  |
| 15                       | 10     | 10    | 3      | 5    | 7   | 12    | 5       | 6       | 5      | 7       | 12      | 14   | 9                  | 11  | 6   | 12   |  |
| 30                       | 11     | 20    | 5      | 14   | 12  | 30    | 13      | 15      | 8      | 12      | 25      | 40   | 12                 | 20  | 15  | 21   |  |
| 45                       | 20     | 32    | 8      | 20   | 24  | 40    | 15      | 25      | 12     | 24      | 40      | 60   | 16                 | 30  | 18  | 28   |  |
| 60                       | 25     | 40    | 9      | 25   | 40  | 70    | 27      | 36      | 22     | 28      | 90      | 145  | 20                 | 40  | 25  | 38   |  |
| 75                       | 27     | 39    | 4      | 30   | 45  | 70    | 15      | 20      | 23     | 35      | 63      | 85   | 25                 | 40  | 16  | 30   |  |
| 90                       |        |       |        |      |     |       |         |         |        |         |         |      |                    |     |     |      |  |

 $Table \ 2 \ Effect \ of \ 3-(2-hydroxy-3, \ 5-dichlorophenyl)-4-anisoyl-5-(4'-methoxyphenyl)-1-phenyl-\Delta^2-pyrazoline \ (6a)$ 

Table 3 Effect of 3-(2-hydroxy-3, 5-dichlorophenyl)-4-benzoyl-1,5-diphenyl- $\Delta^2$ -pyrazoline (6b)

| he                            | Cultivated crops |       |           |             |           |            |           |             |                 |            |           |             |                    |    |                  |    |  |
|-------------------------------|------------------|-------|-----------|-------------|-----------|------------|-----------|-------------|-----------------|------------|-----------|-------------|--------------------|----|------------------|----|--|
| riodicity of 1<br>observation | Tri              | ticum | aestiv    | um          | So        | rghun      | ı vulgo   | are         | Cicer arietinum |            |           |             | Phaseolus vulgaris |    |                  |    |  |
|                               | Shoot<br>height  |       | No<br>lea | . of<br>ves | Sh<br>hei | oot<br>ght | No<br>lea | . of<br>ves | Sh<br>hei       | oot<br>ght | No<br>lea | . of<br>ves | Shoot<br>height    |    | No. of<br>leaves |    |  |
| Pe                            | С                | Т     | С         | Т           | С         | Т          | С         | Т           | С               | Т          | С         | Т           | С                  | Т  | С                | Т  |  |
| 15                            | 4                | 8     | 2         | 7           | 9         | 13         | 5         | 9           | 7               | 9          | 21        | 30          | 11                 | 15 | 10               | 14 |  |
| 30                            | 12               | 20    | 6         | 17          | 17        | 30         | 12        | 16          | 8               | 15         | 29        | 42          | 13                 | 24 | 17               | 24 |  |
| 45                            | 21               | 30    | 9         | 15          | 24        | 40         | 19        | 25          | 12              | 22         | 60        | 91          | 17                 | 30 | 18               | 25 |  |
| 60                            | 23               | 30    | 8         | 28          | 40        | 75         | 27        | 37          | 21              | 29         | 80        | 87          | 21                 | 41 | 20               | 32 |  |
| 75                            | 26               | 41    | 4         | 21          | 44        | 69         | 16        | 22          | 22              | 33         | 61        | 81          | 24                 | 46 | 20               | 33 |  |
| 90                            | 25               | 35    | 5         | 20          | 55        | 70         | 12        | 20          | 23              | 35         | 51        | 70          | 26                 | 46 | 15               | 20 |  |

### **RESULTS AND DISCUSSION**

Efforts have been made to investigate and analyze the convergence and divergence of the effects of test compounds on the morphology of plants under investigation. When the first comparison of morphological characters was made between those of treated and control group plants, it was

interesting to note that all the treated plants exhibited remarkable shoot growth, and considerable increase in the number of leaves as compared to the untreated ones.<sup>1-6</sup>

When all the treated plants were compared among themselves, it was interesting to note that all the treated plants exhibited remarkable shoot growth, and considerable increase in the number of leaves as compared to untreated ones.<sup>1-6</sup>

When all the treated plants were compared among themselves, it was distinctly observed that the dicots showed a more pronounced vegetative growth than the monocots.<sup>1-6</sup>

| Table 4 Effect of 3-(2-hydroxy-3 | , 5-dichlorophenyl)-4-benzoyl-5-(4 | '-methoxyphenyl)-1-phenyl-Δ <sup>2</sup> | <sup>2</sup> -pyrazoline (6c)  |
|----------------------------------|------------------------------------|------------------------------------------|--------------------------------|
|                                  |                                    |                                          | <b>I J D D D D D D D D D D</b> |

| the                           | Cultivated crops |       |           |             |           |            |           |             |                 |            |           |             |                    |            |           |             |
|-------------------------------|------------------|-------|-----------|-------------|-----------|------------|-----------|-------------|-----------------|------------|-----------|-------------|--------------------|------------|-----------|-------------|
| riodicity of 1<br>observation | Tri              | ticum | aestiv    | um          | So        | rghun      | ı vulgo   | are         | Cicer arietinum |            |           |             | Phaseolus vulgaris |            |           |             |
|                               | Shoot<br>height  |       | No<br>lea | . of<br>ves | Sh<br>hei | oot<br>ght | No<br>lea | . of<br>ves | Sh<br>hei       | oot<br>ght | No<br>lea | . of<br>ves | Sh<br>hei          | oot<br>ght | No<br>lea | . of<br>ves |
| Pe                            | С                | Т     | С         | Т           | С         | Т          | С         | Т           | С               | Т          | С         | Т           | С                  | Т          | С         | Т           |
| 15                            | 6                | 10    | 2         | 7           | 7         | 15         | 6         | 8           | 5               | 8          | 13        | 15          | 10                 | 12         | 10        | 13          |
| 30                            | 11               | 21    | 6         | 15          | 14        | 32         | 13        | 18          | 7               | 13         | 29        | 39          | 12                 | 21         | 17        | 22          |
| 45                            | 20               | 28    | 8         | 24          | 29        | 49         | 20        | 25          | 12              | 23         | 71        | 100         | 19                 | 33         | 15        | 29          |
| 60                            | 24               | 36    | 9         | 27          | 40        | 65         | 22        | 31          | 20              | 27         | 91        | 130         | 21                 | 35         | 28        | 39          |
| 75                            | 27               | 38    | 3         | 25          | 45        | 71         | 17        | 21          | 21              | 25         | 65        | 89          | 25                 | 47         | 15        | 32          |
| 90                            | 23               | 41    | 3         | 21          | 51        | 70         | 11        | 17          | 22              | 30         | 31        | 85          | 30                 | 45         | 19        | 21          |

Table 5 Effect of 3-(2-hydroxy-3, 5-dichlorophenyl)-4-(4'-methoxyphenyl)-1,5-diphenyl- $\Delta^2$ -pyrazoline (6d)

| he                            | Cultivated crops |       |           |             |           |            |           |             |           |            |           |             |                    |            |           |             |
|-------------------------------|------------------|-------|-----------|-------------|-----------|------------|-----------|-------------|-----------|------------|-----------|-------------|--------------------|------------|-----------|-------------|
| riodicity of t<br>observation | Tri              | ticum | aestiv    | um          | So        | rghun      | ı vulgo   | are         | C         | icer ar    | rietinu   | т           | Phaseolus vulgaris |            |           |             |
|                               | Shoot<br>height  |       | No<br>lea | . of<br>ves | Sh<br>hei | oot<br>ght | No<br>lea | . of<br>ves | Sh<br>hei | oot<br>ght | No<br>lea | . of<br>ves | Sh<br>hei          | oot<br>ght | No<br>lea | . of<br>ves |
| Pe                            | С                | Т     | С         | Т           | С         | Т          | С         | Т           | С         | Т          | С         | Т           | С                  | Т          | С         | Т           |
| 15                            | 7                | 12    | 4         | 8           | 9         | 13         | 7         | 9           | 54        | 8          | 13        | 18          | 10                 | 11         | 10        | 15          |
| 30                            | 13               | 25    | 7         | 16          | 17        | 30         | 13        | 18          | 11        | 15         | 22        | 42          | 13                 | 20         | 17        | 25          |
| 45                            | 23               | 31    | 8         | 23          | 27        | 41         | 16        | 21          | 17        | 22         | 58        | 76          | 17                 | 33         | 20        | 28          |
| 60                            | 25               | 37    | 7         | 28          | 34        | 65         | 29        | 38          | 200       | 27         | 99        | 100         | 22                 | 42         | 26        | 38          |
| 75                            | 24               | 38    | 3         | 25          | 38        | 71         | 20        | 24          | 24        | 32         | 60        | 99          | 25                 | 47         | 22        | 35          |
| 90                            | 26               | 39    | 5         | 22          | 51        | 75         | 16        | 20          | 20        | 33         | 61        | 59          | 29                 | 47         | 18        | 32          |

#### Acknowledgements

The authors take this opportunity to express their sincere thanks to the Principal, Vidya Bharati Mahavidyalaya, Amravati and P.G. Department of Botany, Amravati University, Amravati for providing necessary facilities.

#### REFERENCES

[1] S.N. Dasgupta, History of Plant Pathology and Mycology in India, Burma and Cyclone, Indian Botanical Society, **1958**, 118.

[2] R.K. Grover, Plant Pathology Research in India: An Introspection and Prospects, Pesticides Annual **1975**.

[3] P.R. Mehta, Plant Pathology in India: Past, Present and Prospects, *Indian Phytopath.*, **1963**, 16, 1.

- [4] S.P. Raychaudhari, Rev. Appl. Mycol., 1963, 46, 577.
- [5] S.P. Raychaudhari, History of Plant Pathology in India, Annu. Rev. Phytopathol., 10, 21.
- [6] R.S. Singha, Plant Diseases, 5th Edn., Oxford & IBH Publishing Co., New Delhi, 1983.