Synthesis and in vitro biological studies of N-glycosylated semicarbazides

Renu B. Ghayalkar* and Shirish P. Deshmukh

P. G. Department of Chemistry, Shri Shivaji College, Akola, (Maharashtra) India

ABSTRACT

A series of new 1-Glycosyl-4-(2,4-dinitrophenyl) semicarbazides have been synthesized by the interaction of various Glycosyl isocyanates and 2,4-Dinitrophenyl hydrazine. The identities of these newly synthesized compounds have been established on the basis of usual chemical transformations and IR, 1H NMR and Mass spectral studies and these compounds were screened for their antibacterial activity against pathogens like E. coli, S. aureus, P. vulgaris, S. typhi, Ps. aeruginosa, K. pneumoniae and for antifungal activity against T. harzianum and Verticillium species to get potent bioactive molecule.

Keywords: Glycosyl isocyanates, 2,4-Dinitrophenyl hydrazine, 1-Glycosyl-4-(2,4-dinitrophenyl) semicarbazides, antimicrobial activity.

INTRODUCTION

The biological role of glycosyl derivatives have been intensively studied over a number of decades. Frequently, the syntheses of nitrogen heterocycles from saccharide derivatives have attracted great interest due to their important pharmaceutical applications, leading to the development and discovery of numerous therapeutic[1-6].

Similarly semicarbazides are an important class of molecules with a large spectrum of biological properties. These compounds have been studied as anticonvulsant[7], antitubercular[8] and antinociceptive[9] agents. Aryl semicarbazides are reported to display excellent anticonvulsant activity in mice and rats compared to that of phenytoin[10]. It is known that the biological activity of the molecules is related to their structure and physicochemical properties. These results promoted us to design new analogues with further modification of semicarbazide. In the present work, we report the synthesis and results of antimicrobial investigation of newly synthesized Glycosyl dinitrophenyl semicarbazides.

MATERIALS AND METHODS

General

The reagent grade chemicals were obtained from commercial sources and purified by either distillation or recrystallization before use. Melting points of all synthesized compounds were determined using open capillary tube on Mac digital melting point apparatus and were uncorrected. IR spectra were recorded in solid phase KBr disks on SHIMADZU IR affinity-1 FTIR spectrometer and 1H NMR spectra in CDCl$_3$ on Bruker DRX-300 of NMR spectrometer 300 MHz. The Mass spectra were recorded on Waters UPLC-TQD Mass Spectrometer. Optical rotations were measured on Equip-Tronics EQ 800 Digital Polarimeter in CHCl$_3$. Purity of synthesized compounds has been checked by thin layer chromatography. It was performed on E. Merck precoated silica gel plates.
Starting material
Synthesis of Glycosyl isocyanate (1a-f)
Various glycosyl isocyanate were synthesized by the condensation of glycosyl bromide (5.0 mmol) and lead cyanate (5.0 mmol) in boiling sodium dried xylene (25 mL) for 3 h with frequent shaking. Solution then filtered and the filtrate was concentrated to get the syrupy mass. It was triturated with petroleum ether (40-60 °C) and purified by dissolving it in minimum quantity of chloroform and reprecipitating with petroleum ether (1a-f).

Synthesis of 1-Tetra-O-acetyl-β-D-glucosyl-4-(2,4-dinitrophenyl) semicarbazides (3a-f)
A chloroform solution of glycosyl isocyanate (1a-f) (0.003 M, in 20 mL) was mixed with chloroform solution of 2,4-Dinitrophenyl hydrazine (2) (0.003 M, in 10 mL). The reaction mixture was shaken for some time and heated under reflux at 60°C for 9 h. The progress of reaction was monitored by TLC. Chloroform was distilled off to afford a light coloured solid (3a-f). The crude product was crystallized from ethanol (Scheme-I).

RESULTS AND DISCUSSION
All products were crystallized from ethanol before recording the physical data (Table-1). The purity of compounds was checked by TLC. The spectral analysis (IR, 1H NMR and Mass spectra of the product were observed. Optical rotation of the product was also recorded. All the compounds have been screen for both antibacterial and antifungal activity using cup plate agar diffusion method by measuring the inhibition zone in mm. Amikacin (100 μg/ml) was used as standard for antibacterial activity and Fluconazole (100 μg/ml) as standard for antifungal activity. Antimicrobial studies of synthesized compounds indicated that compound 3b exhibited most significant activity against E. coli, 3c was found to be active against S. aureus, 3a and 3d active towards P. vulgaris, compound 3c effective towards S. typhi, 3f exhibited most significant activity against P. aeruginosa and compound 3b active towards K. pneumoniae. All the other compounds exhibited low to moderate activity. It was observed that most of the compounds were exhibited potent antifungal activity. The results of antifungal activities showed that compounds 3b, 3e and 3f are most effectively active against T. harzianum and compounds 3c and 3e actively inhibited Verticillium species. While other compounds inhibited moderate activity. (Table-2)

Spectral Data
3a) IR (KBr, cm⁻¹): ν 3479 (N-H stretch), 3064 (Aromatic C-H stretch), 2968 (Aliphatic C-H stretch), 1730 (C=O), 1450 (C=NO₂), 1271 (C-O), 1149 (C-N), 856 (characteristic of glucose); 1H NMR (CDCl₃, ppm): δ 9.130 (1H, d, NH), 8.309-7.264 (3H, aromatic protons), 8.304 (1H, d, NH), 7.974 (1H, s, NH), 5.089-4.104 (7H, m, glucosyl ring protons), 2.182 (3H, s, COCH₃), 2.160 (3H, s, COCH₃), 2.128 (3H, s, COCH₃), 1.956(3H, s, COCH₃); Mass (m/z): 572 (M⁺ +1), 540, 519, 449, 346 (100%), 286, 238, 208. Anal. Calcd. for C₂₁H₂₆O₁₄N₅: C, 44.13; H, 4.37; N, 9.130. Found: C, 44.13; H, 4.37; N, 9.134 %.
3d) IR (KBr, cm⁻¹): ν 3373 (N-H stretch), 3066 (Aromatic C-H stretch), 2958 (Aliphatic C-H stretch), 1732 (C=O), 1450 (C=NO₂), 1273 (C-O), 1155 (C-N), 1024 & 937 (characteristic of lactose); 1H NMR (CDCl₃, ppm): δ 9.134 (1H, d, NH), 8.088 (1H, d, NH), 8.072-7.181 (38H, m, Ar-H), 7.476 (1H, s, NH), 6.136-3.803 (14H, m, lactosyl ring protons); Mass (m/z): 1295 (M⁺ +2), 813, 701, 659 (100%), 636, 559. Anal. Calcd. for C₂₁H₂₆O₁₄N₅: C, 63.11; H, 4.25; N, 5.41. Found : C, 62.92; H, 4.22; N, 5.39 %.
3e) IR (KBr, cm⁻¹): ν 3379 (N-H stretch), 3016 (Aromatic C-H stretch), 2962 (Aliphatic C-H stretch), 1759 (C=O), 1433 (C=NO₂), 1257 (C-O), 1159 (C-N), 1060 & 901 (characteristic of maltose); 1H NMR (CDCl₃, ppm): δ 9.134 (1H, d, NH), 8.313 (1H, d, NH), 8.307-7.977 (3H, m, Ar-H), 7.953 (1H, s, NH), 5.611-3.243 (14H, m, maltosyl ring protons), 2.182 (3H, s, COCH₃), 2.151 (3H, s, COCH₃), 2.103 (3H, s, COCH₃), 2.090 (3H, s, COCH₃), 2.064 (3H, s, COCH₃), 2.028 (3H, s, COCH₃), 2.005 (3H, s, COCH₃); Mass (m/z): 859 (M⁺ +2), 669, 627, 465,407 (100%), 365, 296. Anal. Calcd. for C₃₁H₃₄O₂₂N₅: C, 46.10; H, 4.77; N, 8.15. Found : C, 46.05; H, 4.71; N, 8.04 %.

Scheme for synthesis shown as follows:

Glycosyl + Br₂ → Xylene → Pb(NCO)₂, reflux, 3 h. → Glycosyl isocyanate (1a-f)
Glycosyl—NCO + H₂N—HN—N₂O₂
Glycosyl isocyanate (1a-f) 2,4-Dinitrophenyl hydrazine (2)
Chloroform
60°C, reflux 9 h
Glycosyl—NH—C—NH—HN—N₂O₂
1-Glycosyl-4-(2,4-dinitrophenyl) semicarbazides (3a-f)

Where, Glycosyl =

Tetra-O-acetyl-β-D-glucosyl

Hepta-O-acetyl-β-D-lactosyl

Hepta-O-acetyl-β-D-maltosyl

Where, OAc = OCOCH₃ and OBz = OCOC₆H₅

Table 1: Physical characterisation of 1-Glycosyl-4-(2,4-dinitrophenyl) semicarbazides (3a-f)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Compd.</th>
<th>Yield (%)</th>
<th>m. p. (°C)</th>
<th>Elemental Analysis</th>
<th>[α]D²⁰ (c, CHCl₃)</th>
<th>Rf Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3a</td>
<td>1.42 (83)</td>
<td>122-124</td>
<td>12.22 (12.26)</td>
<td>+34⁰ (1.013)</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>2. 3b</td>
<td>1.35 (79)</td>
<td>131-132</td>
<td>8.50 (8.55)</td>
<td>+256⁰ (1.013)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>3. 3c</td>
<td>1.38 (80)</td>
<td>151-153</td>
<td>8.09 (8.18)</td>
<td>+29⁰ (1.020)</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>4. 3d</td>
<td>1.57 (81)</td>
<td>138-141</td>
<td>5.39 (5.41)</td>
<td>+207⁰ (1.015)</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>5. 3e</td>
<td>1.67 (78)</td>
<td>152-154</td>
<td>8.04 (8.15)</td>
<td>+306⁰ (1.017)</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>6. 3f</td>
<td>1.84 (84)</td>
<td>147-149</td>
<td>5.36 (5.41)</td>
<td>+394⁰ (1.013)</td>
<td>0.79</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Antimicrobial activities of 1-Glycosyl-4-(2,4-dinitrophenyl) semicarbazides (3a-f)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Antibacterial**</th>
<th>Antifungal**</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>3b</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>3c</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>3d</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>3e</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>3f</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Amikacin</td>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>

**zone of inhibition in mm (15 or less) resistance, (16-20mm) moderate and (more than 20mm) sensitive. Escherichia coli (E. c.), Staphalococcus aureus (S. a.), Proteus vulgaris (P. v.), Salmonella typhi (S. t.), Psudomonas auriginosa (Ps. a.), Klebsiyella pneumonia (K. p.), Thrycoderma harzianum (T. h.) and Verticillium species (V. sp.).
CONCLUSION

We have synthesized new Glycosyl semicarbazides (3a-f) and isolated in good yields. The identities of these newly synthesized compounds have been established on the basis of usual chemical transformations and spectral studies. Most of the synthesized compounds showed promising antibacterial and antifungal activities against the highly pathogenic organisms.

Acknowledgments

One of the authors (R.B.G.) is grateful to U. G. C., New Delhi, for Rajiv Gandhi National Senior Research Fellowship. Authors are also grateful to SAIF, CDRI, Lucknow and SAIF, Chandigarh for providing the spectral data and to Dr. S. G. Bhadange, Principal, Shri Shivaji College, Akola for providing necessary facilities.

REFERENCES