

ISSN 0975-413X CODEN (USA): PCHHAX

Der Pharma Chemica, 2017, 9(6):30-36 (http://www.derpharmachemica.com/archive.html)

Synthesis, Characterization and Catalytic Application of V₂O₅/Fe₃O₄ as Heterogeneous Catalyst for the Synthesis of Quinoline-4-carboxylic Acid Derivatives

Khillare SL², Lande MK¹, Shinde NS², Arbad BR^{1*}

¹Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India ²Shardabai Pawar Mahila Mahavidyalaya Shardanagar, Malegaon (Bk), Pune (M.S.), 413115, India

ABSTRACT

A series of V_2O_5/Fe_3O_4 mixed metal oxides with different wt % of V_2O_5 were synthesized by co-precipitation followed by wet impregnation and calcined at 550°C and were characterized by fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), temperature-programmed desorption (NH3-TPD), scanning electron microscope (SEM), Energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques. The prepared materials were tested for catalytic activity by the synthesis of quinoline-4-caboxylic acid derivatives using Doebner reaction (pyruvic acid, aldehydes and amines) in water. The best catalytic activity was obtained with 2.5% V_2O_5/Fe_3O_4 . This work describes the catalytic behavior of V_2O_5 in mixed metal oxide systems.

Keywords: V₂O₅/Fe₃O₄, Quinoline-4-caboxylic acid, Doebner reaction

INTRODUCTION

The use of transition metal oxides mediated reactions in organic synthesis has become of growing importance over the past several decades. In particular, a variety of methods have been developed to carry out various reactions such as redox [1], condensation [2] hydrogenation reaction [3] and several other reactions. Several unique aspects of these metal oxides are responsible for their success: since they have a high adsorption capacity, active sites of different strengths can be generated on the surface. Number of transition metal oxides has been employed for organic transformations in high yield, while maintaining low loadings, high functional group tolerance and mild reaction conditions. Many of these features have been obtained through the proper choice of supporting oxide for the metal catalyst. Traditionally, heterogeneous catalysis is favored than homogeneous catalysis for greater number of applications in both industrial and fundamental research because of its ease of handling, simple experimental conditions, and reusability. In green point of view, there is a constant effort to replace the hazardous catalysts by heterogeneous catalysts, this is due to advantages such as non-toxic nature, inexpensive and easy to reuse. Metal oxides are usually used to synthesize heterogeneous catalysts, though, the separation and recycling of catalysts is complex and not cheap to run. While if the catalyst is magnetic in nature, it can be removed by a magnet [4]. Also there is a growing interest in magnetic ferrite nanoparticles because of their wide applications in permanent magnets, magnetic drug delivery, microwave devices and high density information technology [5-8]. A mixed metal oxide with spinel structure has high chemical and thermal stability, therefore appropriate for ceramics and coloring enamels. Some of the ferrites are also found to be good magnetic, refractory, photoelectric and catalytic activities [9,10].

Quinoline derivatives were broadly studied because of their effective pharmacological and biological activities. Quinoline derivatives are widely used as antagonists [11], antitumour, antiviral and antibacterial activities [12,13] and analgesic agents [14]. Beside this, quinoline-4-carboxylic acid derivatives are the important precursors to synthesize other valuable quinoline derivatives [15]. Therefore, a number of methods have been reported to synthesize quinoline acid derivatives. The synthesis method involve Doebner reaction catalyzed by Ytterbium perfluorooctanoate [16], Skraup [17], Doebner-von Miller [18], Friedlander reaction [19] however, these methods certain drawbacks such as, long reaction time or low yield of products.

Objective of this work is to develop and study of catalytic activity of V_2O_5 doped Fe₃O₄. Ferrites are magnetic in nature and hence when used as heterogeneous catalyst, it can be separated magnetically. Similarly, it can be used as support for the catalyst such as V_2O_5 . The magnetic material can be conveniently and efficiently separate from the reaction with an external magnet and then used in another run after washing with *n*-hexane. Thus, bearing in mind the potential catalytic applications of the material, it has been used in various organic transformations for the synthesis of biologically and pharmacologically important compounds. Characterization of V_2O_5/Fe_3O_4 was carried out using different modern methods such as FT-IR, XRD, SEM, EDS, TPD and XPS.

EXPERIMENTAL

Materials

All chemicals used as received and of synthesis grade reagents (Merck).

Preparation of catalyst

Synthesis of Fe₃O₄ by co-precipitation method

In a reaction, calculated amounts of ferrous ammonium sulphate and ferric ammonium sulphate were separately dissolved in deionized water and mixed together drop by drop with continuous stirring. Aqueous ammonia as precipitating agent is used. pH of the solution was adjust to 9 then, the resultant mixture was stirred upto 4 h at 80°C and resultant precipitate was filtered, then washed with water, and dried at 120°C.

Impregnation of V₂O₅ on Fe₃O₄

The V_2O_5/Fe_3O_4 materials, containing 2.5 - 10 wt % V_2O_5 were prepared by impregnation method. In typical reaction, stoichiometric amount of ferrite is added in the solution of ammonium metavanadate (1 M) and stirred for 4 h and dried. Thus formed powder is calcined at 550°C for 5 h. After calcination V_2O_5 doped ferrite is formed.

General procedure for the quinoline-4-carboxylic acid synthesis

A mixture of reactants pyruvic acid (10 mmol), amine (11 mmol), and aldehyde (10 mmol) in 20 ml water as solvent was stirred with V_2O_5/Fe_3O_4 under reflux conditions for appropriate time (Scheme 1). When the reaction was completed as monitored by TLC, the reaction product was filtered to obtain crude product. This crude residue was added to 10 ml of aq. NaOH (1 M) solution and refluxed for 1 h successively and then the solution was acidified by HCl (1 M). The precipitate was filtered and recrystallized with acetic acid to get pure product. The catalyst remaining was recovered simply by filtration.

Scheme 1: Synthesis of quinoline-4-carboxylic acid catalyzed by V2O5/Fe3O4 solid heterogeneous catalyst

Spectral data of representative compound

4c: FTIR (KBr): 3064, 2923, 1708, 753, 694, 509 cm⁻¹; ¹H NMR (300 MHz, DMSO) δ : 7.10 (m) 4H, 7.27 (m) 4H, 8.21 (s) 2H, 11.87 (bs) 1H. 4d: FTIR (KBr): 3292, 1655, 753, 694, 509 cm⁻¹; ¹H NMR (300 MHz, DMSO) δ : 3.24 (s) 3H, 6.82-7.10 (m) 4H, 7.27 (m) 4H, 7.50 2H, 10.05 (bs) 1H.3.

RESULTS AND DISCUSSION

Characterization of V₂O₅/Fe₃O₄

The X-ray diffraction (XRD) patterns of the synthesized V_2O_5/Fe_3O_4 were recorded on a Bruker D8 advance X-ray diffractometer using Cu K α radiation with a wavelength of 0.154056 nm. For the study of surface morphology of scanning electron microscopy (SEM) analyses were carried out with a JEOL JSM-6330 LA operated at 20.0 kV and 1.0 nA. The elemental composition was examined using an energy dispersive spectrophotometer (EDS). temperature programmed desorption of ammonia (NH₃-TPD) measurements were carried out on a Micromeritics Chemisoft TPx V1.02 and X-ray photoelectron spectroscopy (XPS, ESCA-3000-VG Microtech, Uckfield, UK) was used to study the chemical composition.

XRD analysis

The X-ray diffraction pattern of catalyst V_2O_5/Fe_3O_4 calcined at 550°C is shown in Figure 1. In XRD pattern, it is observed that there are small differences between the relative intensities and width of reflexes, which shows the differences in crystallite size. The XRD pattern of the Fe₃O₄ sample is shown in Figure 1a. The distinct peaks can be indexed at 20=29.916, 35.235, 42.817, 54.294, 63.231 and 75.491 from the reflection indexed as (220), (311), (400), (430), (441) and (542) planes of a cubic unit cell, which corresponds to that of magnetite structure (JCPDS card no. 79-0418), the sample show broad peaks, indicating the ultra-fine nature and small crystallite size of the particles.

Figure 1b-1e) shows the XRD patterns of different wt% V_2O_5/Fe_3O_4 prepared with the wet impregnation method. The XRD pattern of 2.5% V_2O_5/Fe_3O_4 did not contain any Vanadia peak Figure 1b which indicates that the Vanadia was well dispersed on the ferrite surface, which shows that there is no well-defined crystalline phase of vanadium oxide in 2.5% V_2O_5/Fe_3O_4 catalysts, however, for 5% V_2O_5/Fe_3O_4 and 7.5% V_2O_5/Fe_3O_4 peaks at 2θ =25.83 from the reflection of plane (110) from crystalline V_2O_5 , though very weak, but can be observed Figure 1(c-d). The peaks corresponding to crystalline V_2O_5 are very sharp for 10% V_2O_5/Fe_3O_4 Figure 1e. From this analysis, it could be concluded that crystalline V_2O_5 is well dispersed on surface of ferrite at lower wt% but as its percentage, increases the hexagonal cubic phase of Vanadia is formed [20].

Figure 1: XRD pattern of series of (a) Fe₃O₄, (b) 2.5%, (c) 5%, (d) 7.5% and (e) 10% V₂O₅/Fe₃O₄ calcined at 550°C

The values of lattice parameter 'a' for the prepared sample are in good agreement to the reported values in some references [21,22]. The crystallite size of the particles were calculated using the full width at half maximum (FWHM) values of (311) reflection of the X-ray diffraction by Scherrer's equation. The calculated values of average crystallite size and lattice parameter of the samples are listed in Table 1.

Table 1: XRD analysis of V₂O₅/Fe₃O₄ samples

Sample	Sample Crystallite size (nm)	
Fe ₃ O ₄	138.908 nm	8.324
2.5% V ₂ O ₅ /Fe ₃ O ₄	130.59 nm	8.324
5% V ₂ O ₅ /Fe ₃ O ₄	125.14 nm	8.324
7.5% V ₂ O ₅ /Fe ₃ O ₄	71.344 nm	8.324
10% V ₂ O ₅ /Fe ₃ O ₄	70.9138 nm	8.324

FT-IR analysis

The FT –IR spectra of synthesized V_2O_5/Fe_3O_4 using dry KBr as a standard reference in the range of 4000-500 cm⁻¹ are shown in Figure 2. IR spectra shows that in each sample (a-e) there is a broad peak in the range 3500-3200 cm⁻¹ due to hydroxyl group which is adsorbed on the surface of the ferrite, similarly the peak in the range 1600-1500 and 1450-1400 cm⁻¹ in all samples is due to the deformation of the surface hydroxyl groups [23]. Two main metal-oxygen bands are seen in the range 1000-400 cm⁻¹, in all samples. In all spinels and mostly in ferrites, two main broad metal oxygen bands are seen in FT-IR spectra, the higher band observed at 600 cm⁻¹, due to intrinsic stretching vibrations of metal-oxygen bond at tetrahedral site, (M_{tetra}-O), while the lower band, that observed at 500 cm⁻¹ is assigned to octahedral metal stretching vibration (M_{octa}-O) [24]. This is confirmed from Fourier Transform Infrared Spectroscopy (FT-IR) that the structure remains cubic spinel after impregnation of V₂O₅ in Fe₃O₄ [25].

Figure 2: FT-IR spectra of series of (a) Fe_3O_4 , (b) 2.5%, (c) 5%, (d) 7.5% and (e) $10\% V_2O_5/Fe_3O_4$ calcined at $550^{\circ}C$

SEM and EDS analysis

The surface morphology of V_2O_5/Fe_3O_4 samples is studied by scanning electron micrograph shown in Figure 3. The SEM micrograph of V_2O_5/Fe_3O_4 catalyst shows particles are homogeneously aggregated and have irregular shapes. The surface morphology of the catalyst as seen from the SEM consists of the grains, with relatively homogeneous grain distribution, with an average grain size varying from 1.0 to 5.0 μ m.

Figure 3: SEM images of series of (a) Fe₃O₄, (b) 2.5%, (c) 5%, (d) 7.5% and (e) 10% V₂O₅/Fe₃O₄ calcined at 550°C

Energy dispersive X-ray spectroscopy (EDS) is a technique used for elemental analysis. The EDS patterns which are obtained for all the samples give the elemental composition which is shown in Table 2. The EDS pattern shows the presence of V, Fe and O elements.

	Mass %			T ()
Catalyst	V	Fe	0	Total
Fe ₃ O ₄ .	0	72.36	27.64	100
2.5% V ₂ O ₅ /Fe ₃ O ₄	1.1	70.93	27.97	100
5% V2O5/Fe3O4	2.23	69.48	28.29	100
7.5% V ₂ O ₅ /Fe ₃ O ₄	3.36	68.02	28.62	100
10% V ₂ O ₅ /Fe ₃ O ₄	4.51	66.54	28.95	100

|--|

NH₃-TPD analysis

NH₃-TPD measurements were studied by i) Preheating the 297 mg ferrite sample to 500°C with 20°C/min in helium with flow rate 30 ml/min; ii) Adsorption of NH₃ at room temperature; iii) Desorption of adsorbed NH₃ with heating rate 20°C/min from room temperature to 550°C. The total acidity of sample was detected by temperature programme desorption of ammonia. Total acidity of 2.5% V_2O_5/Fe_3O_4 is 0.54417 mmol/g. NH₃-TPD curve shown in Figure 4.

Figure 4: NH₃-TPD curve for TCD signal (a. u.) vs. Temperature (°C) of the sample 2.5% V₂O₃/Fe₃O₄ calcined at 550°C

X-ray photoelectron spectroscopy

The powder XPS pattern of V_2O_5/Fe_3O_4 catalyst is shown in Figure 5. The chemical state of the elements was determined by calculating the binding energy with reference to C1s peak at 284.9 eV. From the Figure 5 it is observed that the Fe 2p1/2 and 2p3/2 peaks situated at around 711 and 724 eV are broadened due to the existence of the both Fe²⁺ and Fe³⁺ ions. The measured Fe 2p3/2 (Fe 2p1/2) binding energy is 709.7 (722.7 eV) for Fe²⁺ and 711.15 eV (724.25 eV) for Fe³⁺. These values match very well to the literature values [26]. Thus, the XPS study revealed the presence of Fe₃O₄. The binding energies of the V 2p levels are 516.9 and 524.25 eV for V 2p3/2 and V 2p1/2, respectively, Which suggests pentavalent oxidation state of vanadium, these are slightly lower than the literature values for stoichiometric V₂O₅ [27]. However, that observed for V₂O₅ suggests lower electron density, i.e., higher acidity of catalyst [28].

Figure 5: High resolution XPS spectra of 2.5% V₂O₅/Fe₃O₄

Catalytic activity results

One pot four component reactions of aldehydes, pyruvic acid and amines to provide quinoline-4-carboxylic acid derivatives catalyzed by V_2O_5/Fe_3O_4 , is shown in Scheme 1.

In order to study catalytic activity of different wt% of V_2O_5 in V_2O_5/Fe_3O_4 as catalyst, the reaction of pyruvic acid, amine and aldehyde was carried out using the different wt% of V_2O_5 (Table 3). It is observed that, 2.5 wt% of V_2O_5 in V_2O_5/Fe_3O_4 have better catalytic activity.

Table 3: Synthesis quinoline-4-carboxylic acid derivatives using different wt% of V2O5 in V2O5/Fe3O4 as catalyst

Entry	wt% of V2O5in V2O5/Fe3O4	Time (min)	Isolated yield ^b %
1	Nil	120	44
2	2.5	120	94
3	5	120	57
4	7.5	120	50
5	10	120	35

^aReaction conditions pyruvic acid (10 mmol); amine (11 mmol) and aldehyde (10 mmol) in 20 ml of water and V₂O₅/Fe₃O₄ 0.2 g refluxed; ^bIsolated yield

Our initial work was focused on the optimization of the amount of V_2O_5/Fe_3O_4 by using pyruvic acid (10 mmol), amine (11 mmol) and aldehyde (10 mmol) in 20 ml of water and variable amount of V_2O_5/Fe_3O_4 (Table 4). It was observed that 0.2 g V_2O_5/Fe_3O_4 effectively catalyzed the reaction with good yield. Higher amount of catalyst did not show major effect on the reaction time. The reaction was also investigated using Fe₃O₄ however with poor yield.

Entry	Catalyst (g)	Time (min)	Yield (%) ^b
1	Without catalyst	120	No reaction
2	0.1	120	66
3	0.2	120	94
4	0.3	120	94

Table 4: Optimization the amount of V2O5/Fe3O4 for quinoline-4-carboxylic acid synthesis

^aReaction conditions: pyruvic acid (10 mmol); amine (11 mmol) and aldehyde (10 mmol) in 20 ml of water and V₂O₅/Fe₃O₄ refluxed; ^bIsolated yield

The V_2O_5/Fe_3O_4 was regenerated by filtration and reused after washing with *n*-hexane and dried at 60°C and activated at 120°C for 1 h and retained the same catalytic activity. The reusability of the catalyst was studied for the aniline and acetic acid. The regenerated catalyst showed similar catalytic activity till 4th reaction cycle with almost consistent activity (Table 5).

Table 5: Reusability of V₂O₅/Fe₃O₄ for synthesis of quinoline-4-carboxylic acid derivatives^a

Entry	Cycle	Yield (%) ^b
1	Fresh	94
2	1 st	94
3	2^{nd}	92
4	3 ^{td}	90
5	4^{th}	90

"Reaction conditions pyruvic acid (10 mmol); amine (11 mmol) and aldehyde (10 mmol) in 20 ml of water and V₂O₅/Fe₃O₄ 0.2 g refluxed; ^bIsolated yield

After determining the optimum amount of catalyst, in similar manner numbers of substituted aldehydes are used for synthesis of quinoline-4-carboxylic acid derivatives in presence of catalytic amount of V_2O_5/Fe_3O_4 (0.2 g) at reflux temperature with good yields (Table 6). All the reactions for different derivatives were carried out neatly and easily in presence of V_2O_5/Fe_3O_4 to produce quinoline-4-carboxylic acid derivatives in excellent yields and no undesirable by-products are observed. The experimental work up is very simple and has an ability to tolerate a variety of other functional groups such as NO₂, Me, Cl, OMe, and OH. It was indicated that electron rich aldehydes shows higher yield than electron deficient aldehydes.

Table 6: Synthesis of quinoline-4-carboxylic acid derivatives catalyzed by V2O5/Fe3O4ª

Entry R ₁	D	R ₂	Time (min.)	Yields (%) ^b	M.P. (°C)	
	N 1				Observed	Literature
4a	Н	Н	120	94	211-213	210-215 [29]
4b	Н	4-NO ₂	120	91	270-272	271-273 [16]
4c	Н	4-Cl	120	89	233-235	230-232 [16]
4d	Н	4-OCH ₃	120	93	214-216	216-217 [16]
4e	4-CH ₃	4-CH ₃	120	94	241-243	238-246 [16]
4f	4-CH ₃	4-NO ₂	120	85	260-262	265-266 [16]
4g	4-CH ₃	Н	120	88	216-218	218-219 [16]

^aReaction conditions pyruvic acid (10 mmol); amine (11 mmol) and aldehyde (10 mmol) in 20 ml of water and V₂O₅/Fe₃O₄ 0.2 g refluxed; ^bIsolated yield

CONCLUSION

In conclusion, the Doebner reaction in water was firstly reported by using V_2O_5/Fe_3O_4 as a catalyst to synthesize quinoline-4-carboxylic acids in good yields. The method has many advantages such as, recyclability of the catalyst, short reaction time, high atom economy, small amount of catalyst and especially the avoidance of harmful organic solvents, which provide a green and efficient method for Doebner reaction.

REFERENCES

- [1] Z. Yang, L. Yin, E. Ou, Y. Wang, L. Peng. J. Wang, Front. Chem. Eng. China., 2008, 2, 3, 296.
- [2] M.A. Gouda, A.A. Abuhashem, Green. Chem. Lett. Rev., 2012, 5, 2, 203.
- [3] D. Guin, B. Baruwati, S.V. Manorama, Org. Lett., 2007, 9, 7, 1419.
- [4] S.R. Borhade, S.B. Waghmode, Beil. J. Org. Chem., 2011, 7, 310.
- [5] H. Nathani, S. Gubbala J. Mater. Sci. Engin., 2004, 111, 95.
- [6] Y.Y. Song, N. Mo, C.E. Patton J. Appl. Phys., 2005, 97, 093901.
- [7] S. Lee, J. Drwiega, D. Mazysk, W. Ch, W.M. Sigmund, J. Mater. Chem. Phys., 2006, 96 483.
- [8] M. A. Gabal, Y. M. Alangari, J. Mater. Chem. Phys., 2009, 115, 578.
- [9] G. Delpiero, F. Trifiro, A. Vacari, J. Chem. Soc. Chem. Commun., 1984, 10, 656.
- [10] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Mag. Mater., 2008, 320, 2774.
- [11] I. Bennacef, C. Perrio, M.C. Lasne, L. Barre, J. Org. Chem., 2007, 72, 2161.
- [12] P. Siminoff, A.M. Bernard, V.S. Hursky, K.E. Price, Antimicrob. Agents. Chemother, 1973, 3, 742.
- [13] J. Strigacova, D. Hudecová, L. Varečka, A. Lasikova, D. Vegh, S.V. Nielson, E.B. Pederson, Hert. Chem., 2008, 305.
- [14] A. Gopalsamy, P.V. Pallai, Tetrahedron. Lett., 1997, 38. 907.
- [15] X.Y. Yu, J. M. Hill, G. Yu, Y. Yang, A.F. Kluge, D. Keith, J. Finn, P. Gallant, J. Silverman, A. Lim, Biol. Med. Chem. Lett., 2001, 11, 541.
- [16] L.M. Wanga, L. Hua, H.J. Chen, Y.Y. Sui, W. Shen, J. Fluor. Chem., 2009, 130, 406.
- [17] G.E. William, E.J. Jon, M. Andrew, M.G. Patrick, J. Christopher, J.S. Matthew, J. Am. Chem. Soc., 2005, 127, 51, 18046.

- [18] W. Bergstrom, J. Am. Chem. Soc., 2009, 131, 39, 13928.
- [19] M. Ursula, B. France, S. Manfred, *Tetrahedron.*, **1996**, 52, 9, 3223.
- [20] B.M. Reddy, P. Lakshmanan, A. Khan, J. Phys. Chem. B, 2004, 108, 16855.
- [21] Y. Zhang, Z. Yang, D. Yin, Y. Liu, C.L. Fei, R. Xiong, J. Shi, G.L. Yan. J. Mag. Mag. Mater., 2010, 322, 3470.
- [22] S. Singhal, S.K. Barthwal, K. Chandra, Int. J. Pure. Appl. Phy., 2007, 45, 821.
- [23] A. Langashetty, V. havanoor, S. Basavaraja, Sci. Technol. Adv. Mater., 2007, 8, 484.
- [24] M. Salavati-Niasari, F. Davar, T. Mahmoudi, Polyhedron., 2009, 28, 8, 1455.
- [25] R.K. Selvan, C.O. Augustin, L.B. Berchmans, R. Sarawathi, Mater. Res. Bull., 2000, 38, 41.
- [26] A. Barbieri, W. Weiss, M.A. Van Hove, G.A. Somorjai, Surf. Sci., 1994, 302, 259.
- [27] Q. H. Wua, A. Thissena, W. Jaegermanna, M. Liu, App. Surface. Sci., 2004, 236, 473.
- [28] A. Klisinska, S. Loridant, B. Grzybowska, J. Stoch, I. Gressel, App. Catal. A: General, 2006, 309, 17.
- [29] S.J. Wadher, N.A. Karande, D.S. Borkar, P.G. Yeole, Int. J. Chem. Tech. Res., 2009, 1, 4, 1297.