

Scholars Research Library

Der Pharma Chemica, 2011, 3 (6):174-181 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Synthesis, Characterization and Photoluminescence study of Sr₂CeO₄:Eu³⁺ phosphor

Ch. Atchyutha Rao^{*}, K. Suresh¹, K. V. R. Murthy² and N. V. Poornachandra Rao³

*Department of Physics, VRS & YRN College, Chirala, A.P, India ¹Department of physics, CSR Sarma, College, Ongole, A.P, India ²Display Materials Laboratory, Applied Physics Department, Faculty of Technology & Engineering, M.S University of Baroda, Baroda, India ³NVR College of Engineering and Technology, Tenali, Guntur District, A.P, India

ABSTRACT

Photoluminescence studies of undoped Sr_2CeO_4 phosphor and Eu rare earth ion doped Sr_2CeO_4 phosphor with different concentrations are reported in the present paper. All the samples were prepared through standard solid state reaction method. Analytical grade inorganic salts like $Sr(NO_3)_2$, CeO_2 and Eu_2O_3 were used as raw materials of assay 99.9%. All the required chemicals were weighed in molar ratio 2:1 and thoroughly mixed in agate mortar and pestle. The final mixture was heated at 1200 °C for 3 hour in a muffle furnace with heating rate of 5°C/min. The XRD study reveals the formation of the material mostly in single phase and also particle size was measured by using laser based system. The Commission International de l'Eclairage coordinates of undoped Sr_2CeO_4 is x = 0.158 and y = 0.192, and Eu doped Sr_2CeO_4 (0.1%, 0.5%, 1%) are x = 0.174 and y = 0.143, x = 0.26 and y = 0.28, x=0.425 and y=0.241. The PL was recorded with 250nm excitation and the PL emission did not change but the intensity is increased by 40%. From this study it can be inferred the solid state reaction method is adequate for synthesis of Sr_2CeO_4 nano crystallite phosphors. This phosphor can be useful for many display applications.

Keywords: Photoluminescence; Solid state reaction method; Phosphor; Nano particle.

INTRODUCTION

Recently various phosphor materials have been actively investigated to improve their luminescent properties and to meet the development of different display and luminescence devices. Inorganic compounds doped with rare earth ions form an important class of phosphors as they possess a few interesting characteristics such as excellent chemical stability, high luminescence efficiency, and flexible emission colors with different activators [1, 2]. As a new blue luminescent material, Sr_2CeO_4 phosphor has been widely studied since it was found by combinatorial chemistry method in 1998 [3, 4]. Sr_2CeO_4 consists of infinite edge-sharing CeO⁶

octahedral chains separated by Sr atoms. The luminescence originates from a ligand-to-metal Ce^{4+} charge transfer. The broad emission band (at ca. 475 nm) is suitable for the doping of rare earth ions in pursuing new luminescent materials and some research work has been carried out by traditional solid-state reaction [5, 6], namely the metal oxides are used as precursors and the reaction reagents have to be calcined at very high temperature for a long time. Growing interest has been focused on the synthesis and investigation of the properties of rare earth ions doped Sr_2CeO_4 , which has been synthesized by many wet chemistry routes, including emulsion liquid membrane system [7], co precipitation process [8], assembling hybrid precursors [9] and citrategel method [10]. Sol-gel process is well accepted as a typical strategy to prepare nano scale complex oxides [11, 12]. In this study we presented the standard Solid state reaction method for the preparation of series of various concentrations of the rare earth ions doped Sr_2CeO_4 at 1200°C temperature. The effect of calcinations temperature, and different amounts of doping ions on the structural, morphology and luminescent properties were investigated. The obtained phosphors were characterized by different techniques.

MATERIALS AND METHODS

Analytical grade Strontium nitrate [Sr (NO₃)₂], Cerium oxide (CeO₂) and Europium oxide (Eu₂O₃) of assay 99.9% were used as starting materials. All the phosphor samples are prepared via solid state reaction method (SSR). First we prepared undoped Sr₂CeO₄ phosphor by weighing, mixing inorganic salts, Strontium nitrate [Sr (NO₃)₂], Cerium oxide (CeO₂) in 2:1 molar ratio. We ground into fine powder using agate mortar and pestle about an hour. The samples were fired at 1200 °C for 3 hours with a heating rate of 5°C/min in a muffle furnace by keeping in an alumina crucible closed with lid. In the same way Eu rare earth ion doped Sr₂CeO₄ phosphor at 0.1, 0.5 and 1.0% concentrations was prepared.

All the phosphor samples were characterized by X-ray diffraction using (Synchrotron Beam Indus -II), Particle size analysis was done using, laser particle size analysis Malvern Instrument Ltd (U.K), CIE analysis and the Photoluminescence (PL) emission and excitation spectra were measured by Spectrofluorophotometer (SHIMADZU, RF-5301 PC) using Xenon lamp as excitation source, recorded at room temperature.

RESULTS AND DISCUSSION

3.1 Physical properties

After heating at 1200[°]C and cooling to room temperature in the furnace, the samples appears light cream in color and light hard crystalline into material was observed. All the samples were again ground to make powder.

3.2 X-ray Diffractometry (XRD)

The crystalline structure of the powders was analyzed by X-ray powder diffraction (XRD). The present XRD phosphors were done on Indus beam line-II at RRCAT, Indore, India. The wave length of beam line X-ray is 0.895Å. Fig.1 is the XRD pattern of undoped Sr₂CeO₄ phosphor. The crystalline phases were identified with the International Centre for Diffraction Data (ICDD) database card number 89-5546 [**13**]. All the diffraction peaks were well indexed and confirms the Sr₂CeO₄ single phase. It clearly indicates that the heat treatment temperature and time were sufficient to form single phase. The calculated crystallite size using Scherer's formula D=K. λ Bcos θ , where k the constant (0.94), λ the wavelength of the X-ray (0.895 Å), β the full-width at half maxima (FWHM) (0.53), θ the Bragg angle of the XRD big peak, cos θ =0.99 and

for undoped Sr_2CeO_4 is around ~9nm and Eu doped Sr_2CeO_4 is around 12nm. This confirms the formation of nano crystallite phosphor, via solid state method.

Fig.1: XRD Pattern of Sr₂CeO₄

3.3 SEM Analysis

Fig.2 shows the SEM image of Eu doped Sr_2CeO_4 phosphor, the morphology look like baby cornflake structure having length of $5\mu m$ and diameter 500nm, which are agglomerated randomly.

Fig.2: SEM image of Sr₂CeO₄

3.3 Photoluminescence Study

Fig.3 shows PL emission spectrum of undoped Sr_2CeO_4 phosphor, it is observed that under 250nm excitation, phosphor shows broad emission from 350 - 650 peaking at 470nm. This broad band is due to $f \rightarrow t_1g$ transitions of Ce^{4+} [3] as shown in fig.10. When excitation was varied from 250 to 260, the observed emission is same but intensity is high. The observed emission at 370nm with good intensity is due to the crystal field.

Fig.3: Excitation and emission spectra of undoped Sr₂CeO₄ phosphor

Fig.4, 5 and 6 are the Eu (0.1, 0.5 & 1%) doped Sr_2CeO_4 under excitation of 250 & 260nm. The blue emission band at 467 nm is attributed to the $Ce^{4+}-O^{2-}$ charge transfer transitions in Sr_2CeO_4 host. After doping 0.5 mol% Eu³⁺, the phosphors shows white emission due to the overlap of host blue emission band and Eu³⁺ intra- 4f⁶ lines.

Fig.4: Excitation and emission spectra of Eu (0.1%) doped Sr₂CeO₄ phosphor

The Sr₂CeO₄ phosphor doped with Eu³⁺ (0.1, 0.5 & 1%) excited under 250nm wavelength shows main emission peaks at 467, 491, 511, 538, 557, 587 and 616nm. The emission spectra of Eu³⁺ contain not only the characteristic transition lines from the lowest excited ⁵D₀ level but also those from higher energy levels ⁵D₁ and ⁵D₂. As the Eu³⁺ concentration increases, the relative intensity

of both ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition at 587 nm and the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition at 616 nm increased whereas the intensity of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{1}$, ${}^{5}D_{2} \rightarrow {}^{7}F_{J}$ transition decreased. This observation suggests that most of Eu³⁺ ions are located in a site without inversion symmetry. At Eu³⁺ concentration above 5 mol %, phosphors have a red emission spectra pattern due to the vanishing of blue emission and the dominance of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. The PL emission intensity vs wavelength of the phosphors studied are presented in table 1. Table 2 shows the energy values of corresponding transitions.

Fig.5: Excitation and emission spectra of Eu (0.5%) doped Sr₂CeO₄ phosphor

Fig.6: Excitation and emission spectra of Eu (1%) doped Sr₂CeO₄ phosphor

colour wavelength

S.	2 (2222)	Eu	Eu	Eu
No	v (IIIII)	(0.1%)	(0.5 %)	(1%)
1	467	826	609	336
2	491	609	414	214
3	511	471	336	184
4	537	370	287	206
5	558	172	133	93
6	587	145	121	113
7	616	93	93	155

Table -1: Peak intensity of a particular

Table-2: Energy	values	of the	corresponding
transitions			

Transition	Wavelength (nm)	Energy (cm ⁻¹)
${}^{5}D_{2} \rightarrow {}^{7}F_{0}$	467	21459
${}^{5}D_{2} \rightarrow {}^{7}F_{2}$	491	20408
${}^{5}D_{2} \rightarrow {}^{7}F_{3}$	511	19646
${}^{5}D_{1} \rightarrow {}^{7}F_{1}$	538	18726
${}^{5}\mathrm{D}_{1} \rightarrow {}^{7}\mathrm{F}_{2}$	557	18018
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	587	17123
${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	617	16207

These above PL observed luminescent properties are due to low vibration energy of Sr_2CeO_4 host lattice and different energy transfer process from host to dopant. The high efficiency energy transfer allows us to expect that the Sr_2CeO_4 crystal structure could form the base for the creation of phosphors with different spectral emissions [14-19].

3.4 Thermoluminescence study

Thermoluminescence (TL) of prepared phosphor was studied using the equipment described by Murthy et al [18]. TL of all the phosphors is studied with beta dose of 10Gy given prior to TL recording. Every time for TL measurement 5mg of irradiated weighted powder phosphor was taken. There is no TL observed, irradiated using Sr-90, β source, because may be the formed compounds are in nano crystallite form.

3.5 CIE Coordinates

The CIE co-ordinates of (chart -1931) were calculated by the Spectrophotometric method using the spectral energy distribution of undoped Sr_2CeO_4 and Eu doped Sr_2CeO_4 sample is shown in fig.7 & 8. The color co-ordinates for the undoped Sr_2CeO_4 sample are x = 0.158 and y = 0.192 this does not match with the coordinates reported by Danielson et al. (x = 0.20, y = 0.30) [3] and

those of Jiang et al. (x = 0.19, y = 0.26) **[20]**. But these are closer to the values of Serra et al. (x = 0.16, y = 0.21). Eu doped Sr₂CeO₄ (0.1%, 0.5%, 1%) samples are x = 0.174 and y = 0.143, x = 0.26 and y = 0.28, x=0.425 and y=0.241. This phosphor is having excellent color tunability from blue to red and emitting white light.

3.6 Particle size analysis

The particle size distributation histogram of undoped Sr_2CeO_4 and Eu doped Sr_2CeO_4 shows in fig.9 & 10. The prepared phosphor specimen particle size was measured by using laser based system Malvern Instrument U.K. The mean diameter of the particle size of undoped Sr_2CeO_4 is26µm and Eu doped Sr_2CeO_4 is 17µm,from the above data the average particle diameter of Europium doped phosphor is 17µm and the crystallite size is around 12nm.As such many molecular particles agglomerate and from as a crystallite and many crystallites together becomes a particle. In the present case approximately 2000 crystallites (12 nm) together forms a particle of diameter is 17µm in Eu doped Sr_2CeO_4 system.

CONCLUSION

Superfine $Sr_2CeO_4:Eu^{3+}$ phosphor was successfully prepared by solid state reaction method and the preparation temperature was lowered from at least 1500 to 1200°C and got single phase phosphor. The $Sr_2CeO_4:Eu^{3+}$ emission could be tuned from blue to white and red light by varying the concentration of Eu^{3+} thereby controlling the emission intensity ratio of host and RE^{3+} transitions. The mean diameter of the particle size Sr_2CeO_4 is 26µm and doped with Eu is 17µm which led as to conclude the Eu doped host reduces the average particle size. The calculated average crystallite size using Scherer's formula is ~10nm. This method is easy for the preparation of $Sr_2CeO_4:RE^{3+}$ phosphors and can be potentially applied to the synthesis of other high quality rare earth ions doped oxides phosphor materials with micro/nano structure. This phosphor can be useful in many lamps and display devices.

Acknowledgement

The authors Ch. Atchyutha Rao and K. Suresh are thanking University Grant Commission, New Delhi, India for financial support under Faculty Development Programme (FDP).

REFERENCES

- [1] Y H Wang, Z Y Wang, P Y Zhang, Z L Hong, X P Fan, Mater. Lett., 2004, 58: 3308.
- [2] C Feldmann, T Jüstel, C R Ronda, P J Schmidt. Adv. Funct. Mater 2003, 13, 511.
- [3] E Danielson et al., J. Mol. Struct., 1998, 470, 229.
- [4] E Danielsonet al., *Science*, **1998**, 279: 837.
- [5] S Okada et al., Chemical, Solid State Ionics, 2004, 175: 593.
- [6] Y Hinatsu, M Wakeshima, N Edelstein, I.Craig, J. Solid State Chem., 1999, 144: 20.
- [7] T Hirai, Y Kawamura., J. Phys. Chem. B, 2005, 109: 5569.
- [8] A Nag, T R.Narayanan Kutty, J. Mater. Chem., 2003, 13: 370.
- [9] X Z Xiao, B.Yan, J. Phys. Chem. Solids, 2008, 69: 1665.
- [10] X H Chuai, H J Zhang, F S Li, G Z.Zhou, Chin. J. Inorg. Chem., 2003, 19: 462.
- [11] J Yang, D Li, X Wang, X J Yang, J. Solid State Chem. (in Chin.), 2002, 165 193.
- [12] C X Zhang, W J Jiang, X J Yang, Q F Han, Q L Hao, J. Alloys Compd., 2009, 474: 287.
- [13] ICDD Powder Diffraction, Card No.89-5546.
- [14] K.V.R. Murthy et al, Journal of Luminescence, Vol.124, Issue 2, (2007), Pages 217-220.
- [15] K.V.R.Murthy et al., Materials Research Bulletin, Vol.41, 10, (2006), 1854-1860.
- [16] K.V.R.Murthy et al., Philosophical Magazine Letters, Vol.90, No.9, Sept2010, 653-662
- [17] G. Blasse and B.C.Grabmaier, Luminescent Materials, Springer-Verlag, Berlin 1994.
- [18] Y.X.Tang, H.P.Guo, Q.Z.Qin, Solid state Commun.121 (2002) 352
- [19] Y.Zhai, et al Journal of RE, vol.24, issue3, june 2006, 281-284.
- [20] Y.D. Jiang, F. Zhang, C.J. Summers, Z.L. Wang, Appl. Phys. Lett. 74 (12) (1999) 1677.