

Scholars Research Library

Der Pharma Chemica, 2012, 4 (2):639-643 (http://derpharmachemica.com/archive.html)

ISSN 0975-413X CODEN (USA): PCHHAX

Synthesis, characterrization and biological evaluation of 2,6-diphenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5oxadiazine-4(3H)-thione

Rambabu Nunna¹, Ramachandran.D^{1*} and Viral B. Modi², Kirti J.Goswami²

¹Acharya Nagarjuna University P. G. Centre, Nuzvid, Andhrapradesh ²Department of Chemistry, Shri U. P. Arts, Smt. M. G. Panchal Science & Shri V.L. Shah Commerce College, Pilvai(India)

ABSTRACT

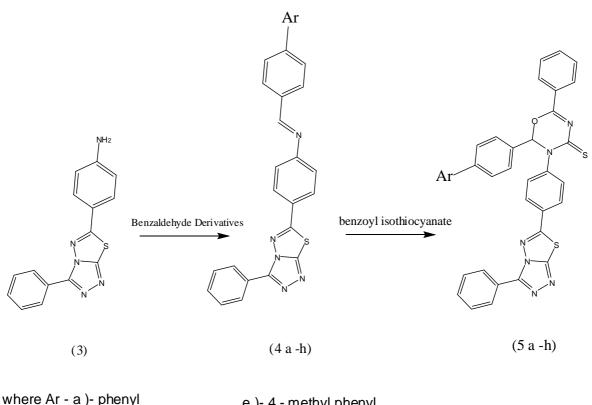
4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (1) prepared by treating benzoic acid hydrazide successively with $CS_{2,-}$ KOH and NH2.NH2, give the nitrogen bridge head fused heteocycles (3) on reacting with N-acetyl-p-Amino benzoic acid followed by hydrolysis. It was on facile condensation reaction with various substituted aromatic aldehydes yields Schiff bases/anils/Azomethines (4a-h). These anils on cyclo- addition reaction with benzoyl isothiocyanate afforded 1,3,5-Oxadiazine (5a-h). These compounds were screened for activities against bacterial and fungal strains.

Keywords: Schiff bases, 1,3,5-Oxadiazine, Cyclo-addition reaction, facile condensation, Anti microbial activity.

INTRODUCTION

Literature survey reveals that 1,2,4-triazole nucleus is associated with diverse pharmacological activities such as anti-inflammatory[1], diuretic[2], antiviral[3], antihypertensive[4], anthalmentic[5], bactericidal[6], anticonvulsant[7], herbicidal[8], insecticidal and acaricidal[9], fungicidal[10], antimicrobial[11], anticancer and anti-HIV[12], plant growth regulator[13], antiieishmanial[14], antitumor[15], antidepressant and anxiolytic[16], anti-tuberculosis[17], mycobacterial activity[18], A2A receptor antagonists[19], corrosion inhibitor[20], analgesic[21] and antifungal activity[22]. Atsuo have reported triazoles as antiheumatic agents[23]. Monammad has also reported anti-inflammatory activity of 1,2,4-triazole derivatives[24]. Jag mohan have synthesized thiazolo triazoles and studied their antimicrobial activity[25].

As a part of surge of interest in heterocyclic that have been explored for developing pharmaceutically important molecule *1,3,5-Oxadiazine* [26-27] have played an important role in medicinal chemistry. Moreover, they have been studied extensively because of their ready accessibility and broad spectrum of biological activities.


Biological activities

Antibacterial Activity

The Compounds (**5a-h**) were tested for in vitro antibacterial activity against gram -ve bacteria Escherichia.Coli and Peudomonas.Aeruginosa, and gram +ve bacteria, Staphylococcus.Aureus and Bacillus Subtills. The standard drugs used were Ampicillin and tetracycline. The investigation of antibacterial screening is reported in **Table I** revealed that some of the newly synthesized compounds showed moderate to good inhibition at 100 μ g/ml in DMF.Compounds **5d**, **5e**, **5f**, **5g**, **5h**, **5g** exhibited good activity against all the four bacterial strains. Compounds **5f** and **5h** showed good activity against E.Coli and S. Aureus bacterial strains.

Antifungal Activity

The compounds (**5a-h**) were tested for in vitro antifungal activity against Candida. Albicans and Aspergillus. Niger. The standard drug used was Griseofulvin. The investigation antifungal screening is reported in **Table I**. Compound **5d**, **5f**, **5h** shows good activity against C. Albicans fungal strain. Rest of all compounds not exhibit good activity against both fungal.

iere Ar - a)- phenyl	e)-4-methylphenyl
b) - 4 - methoxy phenyl	f)- 3,4 - methylenedioxy phenyl
c) - 4 - Hydroxy phenyl	g) - 4 - hydroxy - 3 - methoxy phenyl
d)- 2 - hydroxy phenyl	h)- 3,4 -diethoxy phenyl

Scheme

MATERIAL AND METHODS

Melting points were determine with Buchi B-545 melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer PE-1600 FTIR Spectrometer in KBr disc. 1H NMR spectra were recorded on a Varian 400 spectrometer in DMSO-d6 as a solvent and TMS as an internal standard. Peak values are shown in δ ppm. EI-MS spectra were measured on a Waters Mass Spectrometer. All of the solvents and materials were reagent grade and purified as required.

Preparation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (1), 3-(phenyl)-6-(4-N-acetylamino phenyl) [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (2) and 3-(phenyl)-6-(4-amino phenyl) [1,2,4]triazolo[3,4b] [1,3,4]thiadiazole (3) were prepared by method reported in literature²⁸

Preparation of arylidine – [3,6-(di phenyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole] (4a-h) were prepared by method reported in literature.²⁹

General procedure

A mixture of Schiff bases (4a-h) (0.002 mole) and triethyl amine (TEA) (0.004 mole) was dissolved in 1,4-dioxane (50 ml), cooled, and stirred. To this well-stirred cooled solution benzoyl isothiocyanate (0.004 moles) was added

drop wise within a period of 30 minutes. The reaction mixture was then stirred and reflux for an additional 3 hours and left at room temperature for 48 hours. The resultant mixture was concentrated, cooled, poured into ice-cold water, and then air-dried. Recrystallization from absolute ethanol gave 1,3,5-oxadiazine (**5a-h**), which were obtained in 55-60% yield.

$\label{eq:2.6-diphenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione~(5a)$

M.P: 192-194°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching); ¹HNMR(δ ppm): 6.14-7.90 (15H, m, Aromatic) 5.64 (1H, s, 1H for oxadiazine), ¹³CMR (δ ppm): 169(C=O), 136-145 (Triazole+thiadiazole), 156.3 O–C=N, *Anal.* Calcd. For C₃₀H₂₀N₆OS₂ (544.65); C,66.16; H,3.70; N,15.43; S,11.77; Found: C,66.01; H,3.50; N,15.43; S,11.47. Yield,60%

$\label{eq:2-(4-methoxyphenyl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione~(5b)$

M.P: 198-200°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching); ¹HNMR(δ ppm): 6.14-7.90 (15H, m, Aromatic) 5.64 (1H, s, 1H for oxadiazine), ¹³CMR (δ ppm): 169(C=O), 136-145 (Triazole+thiadiazole), 156.3 O–C=N, 46 (-OCH₃); *Anal.* Calcd. For C₃₁H₂₂N₆O₂S₂ (574.88); C,64.79; H,3.86; N,14.62; S,11.17. Found: C,64.67; H,3.56; N,14.7; S,11.10. Yield,65%

$\label{eq:2-(4-hydroxyphenyl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione~(5c)$

M.P: 189-191°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching); ¹HNMR(δ ppm): 6.14-7.90 (15H,m,Aromatic) 5.64 (1H, s, 1H for oxadiazine), ¹³CMR (δ ppm):169(C=O), 136-145 (Triazole+thiadiazole), 156.3 O–C=N, 119(-C-O-H); *Anal.* Calcd. For C₃₀H₂₀N₆O₂S₂(560.65); C,64.27;H,3. 60; N,14.99; S,11.44. Found: ; C,64.17; H,3. 56; N,14.79; S,11.37. Yield,55%

$\label{eq:2-log} 2-(2-hydroxyphenyl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione~(5d)$

M.P: 188-190°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching); ¹HNMR(δ ppm): 6.14-7.90 (15H,m,Aromatic) 5.64 (1H, s, 1H for oxadiazine), ¹³CMR (δ ppm): 169(C=O), 136-145 (Triazole+thiadiazole), 156.3 O–C=N, 135(-C-O-H); *Anal.* Calcd. For C₃₀H₂₀N₆O₂S₂(560.65); C,64.27; H,3. 60; N,14.99; S,11.44. Found: ; C,64.11; H,3. 50; N,14.80 ; S,11.30.Yield,55%

$\label{eq:constraint} \begin{array}{l} 6\mbox{-phenyl-}3\mbox{-}(4\mbox{-}(3\mbox{-phenyl-}[1,2,4]\mbox{triazolo}[3,4\mbox{-}b][1,3,4]\mbox{thiadiazol-}6\mbox{-}yl)\mbox{phenyl})\mbox{-}2\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}tolyl\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}tolyl\mbox{-}tolyl\mbox{-}tolyl\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox{-}tolyl\mbox{-}p\mbox{-}tolyl\mbox$

M.P: 194-195°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching); ¹HNMR(δ ppm): 6.14-7.90 (15H,m,Aromatic) 5.64 (1H , s, 1H for oxadiazine), ¹³CMR (δ ppm):169(C=O), 136-145 (Triazole+thiadiazole), 156.3 O–C=N; *Anal.* Calcd. For C₃₁H₂₂N₆OS₂(558.68); C,66.65; H,3.97; N,14.99; S,11.48; Found: C,66.55; H,3.87; N,14.77; S,11.38. Yield,65%

$\label{eq:constraint} \begin{array}{l} 2-(benzo[d][1,3]dioxol-5-yl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione (5f) \end{array}$

M.P: 182-183°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching),1200 (Aryl-alkyl ether); ¹HNMR(δ ppm): 6.14-7.90 (14H,m,Aromatic) , 5.64 (1H , s, 1H for oxadiazine),5.8 (2H of -O-CH₂-O-) ;¹³CMR (δ ,ppm):169(C=O), 136-145 (Triazole+thiadiazole),91 (-O-CH₂-O-);*Anal*.Calcd.For C₃₁H₂₀N₆O₃S₂ (588.66)C,63.25;H,3.42;N,14.28;S,10.89;Found: C,63.10;H,3.40;N,14.20;S,10.80.Yield,55%

$\label{eq:2-(4-hydroxy-3-methoxyphenyl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione~(5g)$

M.P: 198-199°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching), 1200 (Aryl-alkyl ether); ¹HNMR(δ ppm): 6.14-7.90 (14H,m,Aromatic) 5.64 (1H, s, 1H for oxadiazine),4.3 (3H,s,-OCH₃), 3.36(1H,s, OH); ¹³CMR (δ ,ppm):169(C=O), 136-145 (Triazole+thiadiazole), 46 (-OCH₃), 135(-C-OH); *Anal.* Calcd. For C₃₁H₂₂N₆O₃S₂ (590.67); C,63.03; H,3.75; N,14.23; S,10.86; Found: C,63.93; H,3.65; N,14.10; S,10.70. Yield,55%

$\label{eq:2-(3,4-diethoxyphenyl)-6-phenyl-3-(4-(3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenyl)-2H-1,3,5-oxadiazine-4(3H)-thione (5h)$

M.P: 190-191°C; IR(KBr,cm⁻¹): 3030-3080(Aromatic C-H Stretching), 1350 (C=S stretching), 1200 (Aryl-alkyl ether); ¹HNMR(δ ppm): 6.14-7.90 (14H,m,Aromatic) 5.64 (1H, s, 1H for oxadiazine),2.9 (4H,q,-2CH₂-), 2.5(6H,d, -2CH₃); ¹³CMR (δ ppm): 169(C=O), 136-145 (Triazole+thiadiazole),135(-C-OH);*Anal*. Calcd. ForC₃₄H₂₆N₆O₃S₂ (632.75);C,64.54;H,4.46;N,13.28;S,10.14.Found: C,64.54;H,4.46;N,13.28;S,10.14.Yield,53%

	Antibacterial Activity				Anti fungal activity		
	Zone of Inhibition (in mm)						
	Gram +ve		Gram -ve				
Compounds	B.Subtillis	S.Aureus	E.Coli	P's:Aeruginosa	C. Albicans	A. Nige	
5a	9	13	10	12	11	12	
5b	16	10	12	8	8	14	
5c	11	9	7	10	12	9	
5d	15	12	18	15	16	17	
5e	18	13	14	9	7	12	
5f	19	18	16	21	15	16	
5g	15	15	14	12	10	14	
5h	14	14	17	22	14	15	
Ampicillin	19	15	20	21	-	1000	
Tetracyclin	20	20	15	18	. .	0.00	
DMF	6	5	5	5	E	(-)	
Griseofulvin	323	2	1943	-	22	24	

RESULTS AND DISCUSSION

preparation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (1) of potassium-benzoic acid hydrazide dithiocarbamate reaction with hydrazine hydrate in presence of acetic acid were prepared according to the literature procedure²⁸ The structure of (1) was established by spectroscopic evidence. The compound (1) was reaction with N-Acetyl-p-amino benzoic acid in the presence of POCl₃ to get corresponding 3-(phenyl)-6-(4-N-acetylamino phenyl) [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (2) by the reported method²⁸it can be hydrolyzed to 3-(phenyl)-6-(4-amino phenyl) [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole(3) by ethanol/HCl. It is characterized by elemental analysis, IR Spectral studies, and NMR Spectral studies. The IR Spectra of the compound (3) show the bands at 3362 cm⁻¹ for NH₂ group.

This hydrolyzed compound (3) was reacted with various aromatic aldehydes in the presence of acetic acid to yields Schiff bases (4a-h) by the reported method ³⁰ were then characterized by the elemental analysis, IR Spectral studies, and NMR Spectral studies. The IR Spectra of Schiff bases show the prominent band at 1630cm⁻¹ for the anils (CH=N) group.

These Schiff bases on cyclo addition reaction with benzoyl isothiocyanate in the presence of tri ethyl amine afforded 1,3,5-oxadiazine (**5a-h**). The structure of these compounds has been confirmed by the elemental analysis, IR Spectral studies, and NMR Spectral studies. These compounds show the bands at 1620, 1350 cm-1 for C=N, C=S group. All the compounds show the NMR signals for different kinds of protons at their respective positions.

Acknowledgment

We are thankful to the department of chemistry, Himchandracharya North Gujarat University, patan, Gujarat (India) for providing the necessary facilities for the research work.

REFERENCES

[1] B.C.Jang, J.H.Paik, Sang-pyo kim, Dong-Hoon Shin, Min-Ho Suh, Jong- Wook Park and Seong-II Suh; Cellular Signalling, **17**, 625 (**2005**).

- [2] L.G.Chekovskaya, E.G.Khush, G.K.Rogyllchenko, Farm., 5, 67 (1989).
- [3] Y.A.Al-Soud, M.N.Al-Dweri and N.A.Al-Masoudi; IL Farmaco, 59, 775, (2004).
- [4] D.B.Reigz; Chem.Abstr., 118, 59716w (1993).
- [5] S.M.Kudari, S.M.Beede, W.Munera; Asian J. Chem., 9, 20 (1997).
- [6] G.T.Zitouni, Z.A.Kalpancykly, M.T.Yyldyz, P.Chevallet and D.Kaya; Eur.J.Med.Chem, (In press).
- [7] A.Almasirad, S.A.Tabatabai, M.Faizi, N.Mehrabi and A.Shafiee; Bioorg & Med. Chem. Lett., 14, 6057 (2004).
- [8] F.Takafumi, U.Osamu, K.Takeshi and T.Yasushi, PCT Int. Appl. WO97,11,075; Chem.Abstr., 126, 293354p
- (1997).

[9] Z.Jin, A.Huo, T.Liu and J.Fang; J.Organometallic Chem., 690, 1226,(2005).

- [10] S.P.Garoufalias, N.Pouli, P.Marakos and A.C.Ladas; Bioorg & Med. Chem.Lett., 13, 2601 (2003).
- [11] S.Murthy, V.A.N.Nagappa, L.V.G.Nargund; Ind.J.Heterocycl.Chem., 8,23 (1998).
- [12] B.Shivarama Holla, B.Veerendra, M.K.Shivananda and Boja Poojary; Eur.J.Med.Chem., 38, 759 (2003).
- [13] C.C.Hu, S.X.Wen; Chin.Chem.Lett., 10, 361 (1999).

[14] R.S.Verma, V.Bajpai and A.Kapil; Ind.J.Heterocycl.Chem., 10, 117 (1999).

- [15] Y.A.Al-Soud, N.A.Al-Masoudi and A. El-Rahman; Bioorg & Med. Chem., 11, 1701 (2003).
- [16] G.T.Zitouni, Z.A.Kaplancikli, F.S.Kilic; Chem.Abstr., 138, 271613t (2003).
- [17] K.Walczak, A.Gondela and J.Guwinski; Eur.J.Med.Chem., 39, 849 (2004).
- [18] V.Klimeova, L.Zahajska and U.Mollmann; *IL Farmaco*, **59**, 279 (**2004**).
- [19] A.Alanile, L.Anselm, L.Steward, S.Thomi and M.D.Groaning; Bioorg. & Med. Chem. Lett., 14, 817 (2004).
- [20] S.Ramesh, S.Rajeswari and S.Maruthamuthu, Appl.Surface.Sci., 229, 214,(2004).
- [21] R.K.Mishra, R.K.Tiwari, S.K.Srivastava and S.C.Bahel; J.Ind. Chem. Soc., 68, 110 (1991).
- [22] S.J.B.Hay; Proc.6th Brit.Crop.Prof. Council Insct. Fungic., 597 (1972).
- [23] B.Atsuo, M.Harahiko, O.Yoshikazu and S.Takushi; Chem.Abstr., 129, 21656n (1998).
- [24] A.Mohammad, S.Shalini; Ind.J.Chem., 37(B), 502 (1998).
- [25] J.Mohan, GSRA Anjaneywill, P.Verma and V.S.Yamini; Ind.J.Chem., 29(B),88 (1990).
- [26] T.Bergmann, D.Schories and B.Steffan, Tetrahedron, 53, 2055 (1997).
- [27] R.K.Smalley, Compr. Heterocyclic Chem-II., 783(6), 1177 (1996).
- [28] R.G.Radadia, Ph.D. Thesis, HNGU, Patan (2008).
- [29] Parmar kokila A, Solanki Dhaval J and Patel Rekha M., Vol. 14(1), 72-77, (2010).
- [30] Mamdouh A.M.Taha, Phosporous, Sulfur and Silicon. 183, 2525-2533 (2008).