

ISSN 0975-413X CODEN (USA): PCHHAX

Der Pharma Chemica, 2016, 8(11):167-175 (http://derpharmachemica.com/archive.html)

The N-heterocyclic carbene-catalyzed cross-coupling of aromatic aldehydes with N-aroylbenzotriazoles: A novel approach to synthesis of diaryl 1,2-diketones

Viwat Hahnvajanawong*, Baramee Pungpis and Parinya Theramongkol

Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

ABSTRACT

The new NHC-catalyzed cross-coupling between N-acylbenzotrizoles and aromatic aldehydes is described. This reaction offers a novel approach to synthesis of symmetrical and unsymmetrical diaryl 1,2-diketones.

Key words: *N*-Aroylbenzotrizoles, NHCs, diaryl 1,2-diketones

INTRODUCTION

N-Acylbenzotrizoles are well recognized as acylating reagents. They have been used as such reagents for *N*-acylation of amines [1], *O*-acylation of aldehydes [2], and *C*-acylation of ketones [3], and Grignard and heteroaryllithium reagents [4]. Intriguingly, the analogous reaction with the Breslow intermediates, generated *in situ* from aromatic aldehydes and *N*-heterocyclic carbenes (NHCs), has never been reported. As part of our continue effort to explore the reactivity of carbene resulted from deprotonation of *N*,*N*-dimethylbenzimidazolium iodide [5-8], we report herein, for the first time, the NHC-catalyzed cross-coupling of aromatic aldehydes with *N*-aroylbenzotriazoles. This cross-coupling offers a novel approach to synthesis of symmetrical and unsymmetrical diaryl 1,2-diketones, a class of compounds that exhibit antitumor activity [9] and inhibition of mammalian carboxylesterases [10].

MATERIALS AND METHODS

Solvents were purified according to standard methods prior to use, while all other chemicals were used as received from commercial sources. Melting points were determined on a Sanyo Gallenkamp melting point apparatus and compared with those of known samples. IR spectra were measured with a Perkin Elmer Spectrum One FT-IR Spectrometer. ¹H and ¹³C NMR spectra were obtained on a VARIAN MERCURY plus (400 MHz FT NMR). *N*,*N*-Dimethylbenzimidazolium iodide was prepared following our previously reported procedure [11].

General procedure for the preparation of N-acylbenzotria zoles 2

Benzotriazole (1) (2.38 g, 20.0 mmol) and potassium carbonate (5.53 g, 40.0 mmol) and an appropriate acyl halide (24.0 mmol) were ground altogether with a pestle and mortar at room temperature for 1-2 hours. After completion of the reaction, as indicated by TLC (50% dichloromethane/hexane), the reaction mixture was extracted with dichloromethane (3×30 ml). The extracts were dried (anh.Na₂SO₄) and concentrated at reduced pressure. The residue was purified by PLC (50% dichloromethane/hexane) to give the *N*-acylbenzotriazole.

N-(4-Methoxybenzoyl)-1H-benzotriazole (2a) [1]

White crystals; mp 95-97 °C; IR (KBr) (v): 3076, 2994, 2842, 1697, 1607, 1513, 1371, 1270, 1180, 1046, 752 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.37 (1H, d, *J* = 8.0 Hz, 7-*H*), 8.29 (2H, d, *J* = 8.8 Hz, 2'-*H* and 6'-*H*), 8.16 (1H, d, *J* = 8.0 Hz, 4-*H*), 7.69 (1H, t, *J* = 8.0 Hz, 6-*H*), 7.54 (1H, t, *J* = 8.0 Hz, 5-*H*), 7.06 (2H, d, *J* = 8.8 Hz, 3'-*H* and 5'-*H*), 3.93 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.6, 113.9, 114.8, 120.1, 123.5, 126.1, 130.1, 132.6, 134.4, 145.7, 164.2, 165.7.

N-(4-Chlorobenzoyl)-1H-benzotriazole (2b) [1]

White crystals; mp 136-138 °C; IR (KBr) (v): 3065, 2930, 1717, 1594, 1488, 1371, 1266, 1026 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.39 (1H, d, J = 8.4 Hz, 7-H), 8.22 (1H, d, J = 8.8 Hz, 2'-H), 8.18 (1H, d, J = 8.4 Hz, 4-H), 8.08 (1H, d, J = 8.8 Hz, 6'-H), 7.73 (1H, t, J = 8.4 Hz, 6-H), 7.58 (1H, t, J = 8.4 Hz, 5-H), 7.57 (1H, d, J = 8.8 Hz, 3'-H), 7.51 (1H, d, J = 8.8 Hz, 5'-H); ¹³C NMR (CDCl₃) δ : 114.8, 120.3, 126.5, 128.8, 129.4, 130.6, 131.9, 133.2, 140.4, 145.8, 161.3.

N-Propionyl-1H-benzotriazole (2c) [12]

White crystals; mp 79-81 °C; IR (KBr) (v): 2983, 2938, 1739, 1599, 1455, 1382, 1209, 1173, 1069, 776 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.29 (1H, d, J = 8.0 Hz, 7-*H*), 8.11 (1H, d, J = 8.0 Hz, 4-*H*), 7.65 (1H, t, J = 8.0 Hz, 6-*H*), 7.50 (1H, t, J = 8.0 Hz, 5-*H*), 3.46 (2H, q, J = 7.6 Hz, CH₂), 1.42 (3H, t, J = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.3, 29.1, 114.4, 120.1, 126.0, 130.3, 131.1, 146.1, 173.3.

General procedure for the cross-coupling between aromatic aldehydes and N-acylbenzotriazoles in the presence of N,N-dimethylbenzimidazolium iodide and DBU in THF

A stirred solution of *N*,*N*-dimethylbenzimidazolium iodide (4) (0.137 g, 0.5 mmol), aromatic aldehyde (1.0 mmol) and *N*-acylbenzotriazole (2.0 mmol) in THF (5 ml) was heated at reflux for 0.5 hour. DBU (0.152 g, 1.0 mmol) was then added and reflux was continued for a further 16-20 hours, as indicated by TLC (50% dichloromethane/hexane). The reaction mixture was extracted with dichloromethane (3×30 ml) and the combined organic extracts was dried (anh.Na₂SO₄). Evaporation of the solvent gave the crude products, which were purified by PLC (50% dichloromethane/hexane).

1-(4-Methoxyphenyl)-2-phenylethane-1,2-dione (5a) [13]

Yellow solid; mp 65-66 °C; IR (KBr) (v): 3065, 3009, 2957, 2928, 2850, 1677, 1597, 1451, 1265, 1166, 1097, 1026, 1167 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.97 (2H, d, *J* = 8.8 Hz, 2-*H* and 6-*H*), 7.95 (2H, d, *J* = 8.0 Hz, 2'-*H* and 6'-*H*), 7.65 (1H, t, *J* = 8.0 Hz, 4'-*H*), 7.51 (2H, t, *J* = 8.0 Hz, 3'-*H* and 5'-*H*), 6.98 (2H, d, *J* = 8.8 Hz, 3-H and 5-*H*), 3.89 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.6, 114.4, 126.1, 128.9, 129.9, 132.4, 133.2, 134.7, 165.0, 193.1, 194.8.

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (5b)

Yellow liquid; IR (neat) (v): 3095, 2968, 2924, 1666, 1572, 1510, 1487, 1313, 1265, 1167, 1094, 879, 743 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.94 (2H, d, *J* = 8.4 Hz, 2-*H* and 6-*H*), 7.92 (2H, d, *J* = 8.8 Hz, 2'-*H* and 6'-*H*), 7.48 (2H, d, *J* = 8.4 Hz, 3-*H* and 5-*H*), 6.98 (2H, d, *J* = 8.8 Hz, 3'-*H* and 5'-*H*), 3.89 (3H, s, Ar-OC*H*₃); ¹³C NMR (CDCl₃) δ : 55.6, 114.4, 125.9, 129.3, 131.2, 131.6, 132.4, 141.3, 165.1, 192.4, 193.3.

1-(4-Fluorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (5c)

Yellow liquid; IR (neat) (v): 3074, 3007, 2958, 2925, 1668, 1656, 1601, 1573, 1270, 1176 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.01 (2H, dd, *J* = 8.4 and 6.0 Hz, 2-*H* and 6-*H*), 7.94 (2H, d, *J* = 8.8 Hz, 2'-*H* and 6'-*H*), 7.18 (2H, t, *J* = 8.4 Hz, 3-*H* and 5-*H*), 6.98 (2H, d, *J* = 8.8 Hz, 3'- and 5'-*H*), 3.89 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.6, 114.4, 116.2, 116.4, 126.0, 129.7, 132.4, 132.6, 132.7, 132.8, 165.1, 165.4, 167.9, 192.6, 193.0.

1-(4-Methoxyphenyl)-2-p-tolylethane-1,2-dione (5d)

Yellow liquid; IR (neat) (v): 2929, 2850, 1666, 1596, 1510, 1456, 1309, 1260, 1024 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.94 (2H, d, J = 8.8 Hz, 2-*H* and 6-*H*), 7.86 (2H, d, J = 8.0 Hz, 2'-*H* and 6'-*H*), 7.30 (2H, d, J = 8.0 Hz, 3'-*H* and 5'-*H*), 6.97 (2H, d, J = 8.8 Hz, 3-*H* and 5-*H*), 3.88 (3H, s, Ar-OCH₃), 2.43 (3H, s, Ar-CH₃); ¹³C NMR (CDCl₃) δ : 21.9, 55.6, 114.3, 126.2, 129.6, 130.0, 130.8, 132.3, 145.9, 164.9, 193.3, 194.6.

4,4'-Dimethoxybenzil (5e) [14]

Yellow solid; mp 132-134 °C; IR (KBr) (v): 2959, 2849, 1655, 1598, 1572, 1509, 1424, 1312, 1263, 1161, 1016 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.95 (4H, d, J = 8.8 Hz, 2-*H*, 6-*H*, 2'-*H* and 6'-*H*), 6.97 (4H, d, J = 8.8 Hz, 3-*H*, 5-*H*, 3'-*H* and 5'-*H*), 3.89 (6H, s, 2(Ar-OCH₃)); ¹³C NMR (CDCl₃) δ : 55.6, 114.3, 126.4, 132.4, 164.9, 193.5.

1-(4-Chlorophenyl)-2-phenylethane-1,2-dione (5f) [15]

Yellow crystals; mp 69-71 °C; IR (KBr) (v): 3092, 3065, 2924, 2854, 1668, 1587, 1449, 1320, 1209, 834, 712 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.93 (2H, d, J = 8.4 Hz, 2-*H* and 6-*H*), 7.91 (2H, d, J = 8.0 Hz, 2'-*H* and 6'-*H*), 7.68 (1H, t, J = 8.0 Hz, 4'-*H*), 7.53 (2H, d, J = 8.0 Hz, 3'-*H* and 5'-*H*), 7.50 (2H, d, J = 8.4 Hz, 3-*H* and 5-*H*); ¹³C NMR (CDCl₃) δ : 129.0, 129.4, 129.9, 131.2, 131.4, 132.8, 135.0, 141.6, 193.0, 193.8.

4,4'-Dichlorobenzil (5g) [16]

Yellow crystals; mp 197-198 °C; IR (KBr) (v): 3094, 2925, 1661, 1587, 1486, 1317, 1210, 1094 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.91 (4H, d, J = 8.4 Hz, 2-H, 6-H, 2'-H and 6'-H), 7.50 (4H, d, J = 8.4 Hz, 3-H, 5-H, 3'-H and 5'-H); ¹³C NMR (CDCl₃) δ : 129.5, 131.2, 131.3, 141.8, 192.3.

1-(4-Chlorophenyl)-2-(4-fluorophenyl)ethane-1,2-dione (5h)

Yellow liquid; IR (neat) (v): 3075, 2960, 2925, 2855, 1664, 1595, 1455, 1232, 1157, 841, 746 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.02 (2H, dd, J = 8.8 and 5.2 Hz, 2'-H and 6'-H), 7.92 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.50 (2H, d, J = 8.4 Hz, 3-H and 5-H), 7.20 (2H, t, J = 8.8 Hz, 3'-H and 5'-H); ¹³C NMR (CDCl₃) δ : 116.3, 116.5, 128.8, 129.3, 129.5, 131.2, 131.5, 132.7, 132.8, 141.7, 165.6, 168.2, 192.0, 192.5.

1-(4-Chlorophenyl)-2-p-tolylethane-1,2-dione (5i)

Yellow liquid; IR (neat) (v): 3093, 3065, 2924, 2856, 1663, 1585, 1484, 1315, 1211, 1171, 1091, 831, 736 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.92 (2H, d, *J* = 8.4 Hz, 2-*H* and 6-*H*), 7.86 (2H, d, *J* = 8.0 Hz, 2'-*H* and 6'-*H*), 7.48 (2H, d, *J* = 8.4 Hz, 3-*H* and 5-*H*), 7.31 (2H, d, *J* = 8.0 Hz, 3'-*H* and 5'-*H*), 2.44 (3H, s, Ar-CH₃); ¹³C NMR (CDCl₃) δ : 21.9, 129.4, 129.8, 130.0, 130.4, 131.2, 131.5, 141.4, 146.4, 193.2, 193.5.

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (5j)

Yellow liquid; IR (neat) (v): 3095, 2968, 2924, 1666, 1572, 1510, 1487, 1313, 1265, 1167, 1094, 879, 743 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.94 (2H, d, *J* = 8.4 Hz, 2-*H* and 6-*H*), 7.92 (2H, d, *J* = 8.8 Hz, 2'-*H* and 6'-*H*), 7.48 (2H, d, *J* = 8.4 Hz, 3-*H* and 5-*H*), 6.98 (2H, d, *J* = 8.8 Hz, 3'-*H* and 5'-*H*), 3.89 (3H, s, Ar-OC*H*₃); ¹³C NMR (CDCl₃) δ : 55.6, 114.4, 125.9, 129.3, 131.2, 131.6, 132.4, 141.3, 165.1, 192.4, 193.3.

1H-1,2,3-Benzotriazol-1-yl(phenyl)methyl 4-methoxybenzoate (6a)

Yellow liquid; IR (neat) (v): 3066, 2963, 2924, 2841, 1731, 1605, 1512, 1454, 1255, 1168 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.73 (1H, s, ArCH), 8.08 (2H, d, *J* = 8.8 Hz, 2-*H* and 6-*H*), 8.07 (1H, d, *J* = 7.6 Hz, 7'-*H*), 7.50-7.54 (2H, m, 4'-*H*, 2"-*H* and 6"-*H*), 7.40-7.44 (4H, m, 6'-*H*, 3"-*H*, 4"-*H* and 5"-*H*), 7.34 (1H, t, *J* = 7.6 Hz, 5'-*H*), 6.91 (2H, d, *J* = 8.8 Hz, 3-*H* and 5-*H*), 3.82 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.5, 80.6, 110.7, 114.0, 120.2, 120.7, 124.4, 126.3, 128.1, 128.9, 129.6, 132.1, 132.2, 134.5, 146.3, 164.1, 164.2.

1H-1,2,3-Benzotriazol-1-yl(4-chlorophenyl)methyl 4-methoxybenzoate (6b)

Yellow liquid; IR (neat) (v): 3071, 2961, 2937, 2845, 1725, 1605, 1579, 1453, 1257, 1171 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.67 (1H, s, ArCH), 8.07 (1H, d, *J* = 7.6 Hz, 7'-*H*), 8.05 (2H, d, *J* = 8.4 Hz, 2-*H* and 6-*H*), 7.56 (1H, d, *J* = 7.6 Hz, 4'-*H*), 7.46 (2H, d, *J* = 8.0 Hz, 3"-*H* and 5"-*H*), 7.44 (1H, t, *J* = 7.6 Hz, 6'-*H*), 7.34-7.39 (3H, m, 5'-*H*, 2"-*H* and 6"-*H*), 6.91 (2H, d, *J* = 8.4 Hz, 3-*H* and 5-*H*), 3.83 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.5, 79.9, 110.5, 114.0, 120.3, 120.4, 124.5, 127.8, 128.3, 129.2, 132.0, 132.2, 133.1, 135.7, 146.3, 164.0, 164.3.

1H-1,2,3-Benzotriazol-1-yl(4-fluorophenyl)methyl 4-methoxybenzoate (6c)

Yellow liquid; IR (neat) (v): 3078, 3040, 2959, 1725, 1606, 1579, 1451, 1263, 1171, 1060 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.67 (1H, s, ArCH), 8.08 (1H, d, J = 8.0 Hz, 7'-H), 8.06 (2H, d, J = 8.8 Hz, 2-H and 6-H), 7.56 (1H, d, J = 8.0 Hz, 4'-H), 7.52 (2H, dd, J = 8.8 and 5.2 Hz, 2"-H and 6"-H) 7.45 (1H, t, J = 8.0 Hz, 6'-H), 7.37 (2H, t, J = 8.0 Hz, 5'-H), 7.12 (2H, t, J = 8.8 Hz, 3"-H and 5"-H), 6.92 (2H, d, J = 8.8 Hz, 3-H and 5-H), 3.84 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.5, 80.0, 110.5, 114.0, 115.9, 116.1, 120.3, 120.5, 124.5, 128.2, 128.4, 128.5, 130.4, 130.5, 132.0, 130.2, 146.3, 162.0, 164.0, 164.3, 164.5.

1H-1,2,3-Benzotriazol-1-yl(4-methylphenyl)methyl 4-methoxybenzoate (6d)

Colorless liquid; IR (neat) (v): 3064, 2961, 2841, 1731, 1606, 1581, 1493, 1259, 1167 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.70 (1H, s, ArCH), 8.06 (1H, d, J = 7.6 Hz, 7'-H), 8.07 (2H, d, J = 8.8 Hz, 2-H and 6-H), 7.55 (1H, d, J = 7.6 Hz, 4'-H), 7.39-7.43 (3H, m, 6'-H, 2"-H and 6"-H), 7.33 (1H, t, J = 7.6 Hz, 5'-H), 7.20 (2H, d, J = 8.4 Hz, 3"-H and 5"-H), 6.90 (2H, d, J = 8.8 Hz, 3-H and 5-H), 3.80 (3H, s, Ar-OCH₃), 2.33 (3H, s, Ar-CH₃); ¹³C NMR (CDCl₃) δ : 21.2, 55.5, 80.7, 110.8, 114.0, 120.1, 120.7, 124.4, 126.2, 128.0, 129.6, 131.5, 132.1, 132.2, 139.6, 146.3, 164.1, 164.2.

1*H*-1,2,3-Benzotriazol-1-yl(4-methoxyphenyl)methyl 4-methoxybenzoate (6e)

Colorless liquid; IR (neat) (v): 3072, 3006, 2935, 2840, 1731, 1606, 1515, 1493, 1166 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.67 (1H, s, ArCH), 8.06 (3H, d, J = 8.8 Hz, 2-H, 6-H and 7'-H), 7.54 (1H, d, J = 8.8 Hz, 4'-H), 7.40-7.47 (3H, m, 2"-H and 6"-H and 6'-H), 7.34 (1H, t, J = 8.8 Hz, 5'-H), 6.93 (2H, d, J = 8.8 Hz, 3-H and 5-H), 6.91 (2H, d, J = 8.8 Hz, 3"-H and 5"-H), 3.82 (3H, s, Ar-OCH₃), 3.78 (3H, s, OCH₃); ¹³C NMR (CDCl₃) δ : 55.3, 55.5, 80.6, 110.8, 113.6, 114.0, 114.3, 120.1, 120.8, 124.3, 126.5, 127.7, 128.0, 132.0, 132.2, 146.3, 160.5, 164.1.

1H-1,2,3-Benzotriazol-1-yl(phenyl)methyl 4-chlorobenzoate (6f)

Yellow liquid; IR (neat) (v): 3103, 2965, 2924, 2853, 1734, 1590, 1492, 1453, 1402, 1256, 1176, 1072, 759 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.72 (1H, s, ArCH), 8.09 (1H, d, J = 7.6 Hz, 7'-H), 8.06 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.52-7.49 (2H, m, ArH), 7.47-7.43 (7H, m, ArH), 7.38 (1H, t, J = 7.6 Hz, 5'-H); ¹³C NMR (CDCl₃) δ : 80.9, 110.5, 120.3, 124.4, 126.2, 127.0, 128.2, 129.0, 129.1, 129.8, 131.4, 132.0, 134.0, 140.6, 146.4, 163.7.

1H-1,2,3-Benzotriazol-1-yl(4-chlorophenyl)methyl 4-chlorobenzoate (6g)

Colorless liquid; IR (neat) (v): 3093, 3063, 2963, 2925, 1736, 1591, 1490, 1451, 1257, 1174, 1067, 738 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.10 (1H, s, ArCH), 8.09 (1H, d, J = 7.6 Hz, 7'-H), 8.04 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.53-7.38 (9H, m, ArH); ¹³C NMR (CDCl₃) δ : 80.2, 110.3, 120.5, 124.6, 126.7, 127.8, 128.4, 129.1, 129.3, 131.4, 131.9, 132.6, 136.0, 140.8, 146.4, 163.6.

1H-1,2,3-Benzotriazol-1-yl(4-fluorophenyl)methyl 4-chlorobenzoate (6h)

Colorless liquid; IR (neat) (v): 3101, 3071, 2963, 2926, 1735, 1591, 1452, 1322, 1258, 1157, 1073, 804, 751 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.66 (1H, s, ArCH), 8.09 (1H, d, J = 7.6 Hz, 7'-H), 8.04 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.55-7.51 (3H, m, 3-H, 5-H and 6'-H), 7.48 (1H, d, J = 7.6 Hz, 4'-H), 7.44 (2H, d, J = 8.8 Hz, 2"-H and 6"-H), 7.39 (1H, t, J = 7.6 Hz, 5'-H), 7.14 (2H, t, J = 8.8 Hz, 3"-H and 5"-H); ¹³C NMR (CDCl₃) δ : 80.3, 110.3, 116.0, 116.2, 120.4, 124.6, 126.8, 128.3, 128.4, 128.5, 129.1, 130.0, 131.4, 132.0, 132.8, 140.8, 146.3, 162.1, 163.6, 164.6.

1H-1,2,3-Benzotriazol-1-yl(4-methylphenyl)methyl 4-chlorobenzoate (6i)

Colorless liquid; IR (neat) (v): 3094, 3068, 2963, 2920, 1731, 1592, 1452, 1322, 1258, 1174, 1072, 829, 793 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.70 (1H, s, ArCH), 8.08 (1H, d, J = 7.6 Hz, 7'-H), 8.05 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.51 (1H, d, J = 7.6 Hz, 4'-H), 7.40-7.45 (5H, m, 6'-H, 3-H, 5-H, 2"-H and 6"-H), 7.36 (1H, t, J = 7.6 Hz, 5'-H), 7.23 (2H, d, J = 8.0 Hz, 3"-H and 5"-H), 2.36 (3H, s, Ar-CH₃); ¹³C NMR (CDCl₃) δ : 21.2, 81.1, 110.6, 120.3, 124.4, 126.2, 127.0, 128.1, 129.0, 129.7, 131.1, 131.4, 132.0, 130.8, 140.6, 146.4, 163.7.

1H-1,2,3-Benzotriazol-1-yl(4-methoxyphenyl)methyl 4-chlorobenzoate (6j)

Colorless liquid; IR (neat) (v): 3093, 3066, 2997, 2958, 1729, 1592, 1452, 1351, 1255, 1175, 1069, 836, 799 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.65 (1H, s, ArCH), 8.09 (1H, d, J = 7.6 Hz, 7'-H), 8.04 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.42-7.51 (6H, m, 6'-H, 4'-H, 3-H, 5-H, 2"-H and 6"-H), 7.37 (1H, t, J = 7.6 Hz, 5'-H), 6.95 (2H, d, J = 8.8 Hz, 3"-H and 5"-H), 3.82 (3H, s, Ar-OCH₃); ¹³C NMR (CDCl₃) δ : 55.4, 81.0, 110.5, 114.3, 120.3, 124.4, 126.0, 127.0, 127.8, 128.1, 129.0, 131.4, 132.0, 140.6, 146.3, 160.6, 163.7.

1*H*-1,2,3-Benzotriazol-1-yl(phenyl)methyl propanoate (6k)

Yellow liquid; IR (neat) (v): 3066, 2982, 2943, 1755, 1614, 1591, 1452, 1336, 1283, 1144 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.50 (1H, s, ArCH), 8.06 (2H, d, J = 8.4 Hz, 7-H), 7.32-7.43 (9H, m, ArH), 2.43-2.57 (2H, m, CH₂), 1.17 (3H, t, J = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.8, 27.3, 80.2, 110.7, 120.2, 124.4, 126.2, 128.0, 128.9, 129.6, 132.0, 134.2, 146.3, 172.3.

1*H*-1,2,3-Benzotriazol-1-yl(4-chlorophenyl)methyl propanoate (6l)

Yellow liquid; IR (neat) (v): 3093, 2981, 2943, 1737, 1696, 1590, 1490, 1285, 1169 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.44 (1H, s, ArCH), 8.07 (1H, d, J = 8.4 Hz, 7-H), 7.44 (2H, d, J = 8.0 Hz, 2'-H and 6'-H), 7.35-7.40 (5H, m, ArH), 2.42-2.57 (2H, m, CH₂), 1.16 (3H, t, J = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.7, 27.3, 79.5, 110.4, 120.3, 124.5, 127.7, 128.2, 129.1, 131.9, 132.8, 135.7, 146.3, 172.2.

1H-1,2,3-Benzotriazol-1-yl(4-fluorophenyl)methyl propanoate (6m)

Yellow liquid; IR (neat) (v): 3073, 2957, 2925, 2854, 1758, 1733, 1608, 1512, 1453, 1278, 1144 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.44 (1H, s, ArCH), 8.06 (1H, d, J = 8.4 Hz, 7-H), 7.36-7.47 (5H, m, ArH), 7.12 (2H, t, J = 8.8 Hz, 3'-H and 5'-H), 2.42-2.57 (2H, m, CH₂), 1.17 (3H, t, J = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.7, 27.3, 79.6, 110.4, 115.9, 116.1, 120.3, 124.5, 128.1, 128.3, 128.4, 128.5, 130.1, 131.9, 146.3, 162.0, 164.5, 172.2.

1*H*-1,2,3-Benzotriazol-1-yl(4-methylphenyl)methyl propanoate (6n)

Yellow liquid; IR (neat) (v): 3093, 3069, 2935, 2840, 1756, 1614, 1516, 1492, 1452, 1287, 1148 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.46 (1H, s, ArCH), 8.07 (1H, d, J = 8.4 Hz, 7-H), 7.35-7.42 (3H, m, ArH), 7.33 (2H, d, J = 8.0 Hz, 2'-H and 6'-H), 7.21 (2H, d, J = 8.0 Hz, 3'-H and 5'-H), 2.43-2.57 (2H, m, CH₂), 2.35 (3H, s, Ar-CH₃), 1.17 (3H, t, J = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.8, 21.2, 27.3, 80.3, 110.7, 120.1, 124.3, 126.1, 127.9, 129.5, 130.2, 131.9, 139.7, 146.3, 172.3.

1H-1,2,3-Benzotriazol-1-yl(4-methoxyphenyl)methyl propanoate (60)

Yellow liquid; IR (neat) (v): 3068, 2954, 2923, 2851, 1731, 1676, 1600, 1513, 1425, 1296, 1163 cm⁻¹; ¹H NMR (CDCl₃) δ : 8.43 (1H, s, ArCH), 8.04 (1H, d, J = 8.4 Hz, 7-H), 7.31-7.43 (5H, m, ArH), 6.90 (2H, d, J = 8.4 Hz, 3'-H and 5'-H), 3.78 (3H, s, Ar-OCH₃), 2.40-2.52 (2H, m, CH₂), 1.15 (3H, t, J = 7.2 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 8.7, 27.4, 55.3, 80.2, 110.7, 114.2, 120.2, 124.3, 126.3, 127.7, 127.9, 131.9, 146.3, 160.5, 172.3.

Benzoin (14a) [17]

White crystals; mp 134-136 °C; IR (KBr) (v): 3413, 3058, 3027, 2931, 1678, 1595, 1449, 1262, 1206, 755 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.91(2H, d, *J* = 7.6 Hz, 2-*H* and 6-*H*), 7.52 (1H, t, *J* = 7.6 Hz, 4-*H*), 7.39 (2H, t, *J* = 7.6 Hz, 3-*H* and 5-*H*), 7.26-7.33 (5H, m, Ar*H*), 5.95 (1H, s, C*H*), 4.54 (1H, br s, O*H*); ¹³C NMR (CDCl₃) δ : 76.2, 127.8, 128.6, 128.7, 129.1, 133.5, 133.9, 139.0, 198.9.

4,4'-Dichlorobenzoin (14b) [17]

White crystals; mp 87-88 °C; IR (KBr) (v): 3425, 3072, 2929, 1674, 1590, 1488, 1401, 1252, 1207, 1093 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.75 (2H, d, J = 8.4 Hz, 2-H and 6-H), 7.32 (2H, d, J = 8.4 Hz, 3-H and 5-H), 7.24 (2H, d, J = 8.4 Hz, 3'-H and 5'-H), 7.18 (2H, d, J = 8.4 Hz, 2'-H and 6'-H), 5.81 (1H, s, CH); ¹³C NMR (CDCl₃) δ : 77.3, 129.1, 129.2, 129.4, 130.4, 131.6, 134.8, 137.2, 140.7, 197.5.

4,4'-Dimethoxybenzoin (14e) [17]

White crystals; mp 106-108 °C; IR (KBr) (v): 3454, 3005, 2936, 2839, 1668, 1598, 1462, 1307, 1252, 1170 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.89 (2H, d, *J* = 8.8 Hz, 2-*H* and 6-*H*), 7.24 (2H, d, *J* = 8.8 Hz, 3-*H* and 5-*H*), 6.85 (2H, d, *J* = 6.0 Hz, 2'-*H* and 6'-*H*), 6.83 (2H, d, *J* = 6.0 Hz, 3'-*H* and 5'-*H*), 5.85 (1H, s, C*H*), 3.81 (3H, s, Ar-OC*H*₃), 3.74 (3H, s, Ar-OC*H*₃); ¹³C NMR (CDCl₃) δ : 55.2, 55.5, 75.2, 113.9, 114.5, 126.3, 129.0, 131.6, 131.8, 159.6, 164.0, 197.3.

O-Propionylbenzoin (15a)

Yellow liquid; IR (neat) (v): 3065, 3035, 2980, 2882, 1737, 1695, 1597, 1497, 1366, 1225, 1170 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.94 (2H, d, *J* = 7.6 Hz, 2-*H* and 6-*H*), 7.51 (1H, t, *J* = 7.6 Hz, 4-*H*), 7.48 (2H, t, *J* = 7.6 Hz, 3-*H* and 5-*H*), 7.34-7.42 (5H, m, Ar'-*H*), 6.87 (1H, s, C*H*), 2.44-2.58 (2H, m, C*H*₂), 1.19 (3H, t, *J* = 7.2 Hz, C*H*₃); ¹³C NMR (CDCl₃) δ : 8.9, 27.3, 77.4, 128.6, 128.8, 129.1, 129.2, 133.4, 133.7, 134.7, 173.9, 194.0.

O-(Propionyl)-4,4'-dichlorobenzoin (15b)

Yellow liquid; IR (neat) (v): 3094, 3045, 2981, 2943, 1733, 1695, 1589, 1490, 1286, 1170 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.85 (2H, d, *J* = 8.8 Hz, 2-*H* and 6-*H*), 7.39 (2H, d, *J* = 8.8 Hz, 3-*H* and 5-*H*), 7.36 (2H, d, *J* = 8.8 Hz, 3'-*H* and 5'-*H*), 7.34 (2H, d, *J* = 8.8 Hz, 2'-*H* and 6'-*H*), 6.76 (1H, s, C*H*), 2.43-2.56 (2H, m, C*H*₂), 1.18 (3H, t, *J* = 7.6 Hz, C*H*₃); ¹³C NMR (CDCl₃) δ : 8.9, 27.3, 77.3, 129.1, 129.4, 129.8, 130.1, 131.9, 132.8, 135.6, 140.2, 173.8, 192.6.

O-(Propionyl)-4,4'-difluorobenzoin (15c)

Yellow liquid; IR (neat) (v): 3078, 3015, 2983, 2945, 2885, 1736, 1696, 1597, 1509, 1462, 1298, 1155cm⁻¹; ¹H NMR (CDCl₃) δ : 7.95 (2H, dd, *J* = 8.8 Hz and 5.2 Hz, 2-*H* and 6-*H*), 7.44 (2H, dd, *J* = 8.8 Hz and 5.6 Hz, 2'-*H* and 6'-*H*), 7.09 (2H, d, *J* = 8.8 Hz, 3-*H* and 5-*H*), 7.04 (2H, d, *J* = 8.8 Hz, 3'-*H* and 5'-*H*), 6.80 (1H, s, C*H*), 2.43-2.56 (2H, m, C*H*₂), 1.18 (3H, t, *J* = 7.6 Hz, C*H*₃); ¹³C NMR (CDCl₃) δ : 8.9, 27.3, 77.3, 115.8, 116.0, 116.1, 116.3, 129.4, 129.5, 130.4, 130.5, 130.9, 131.0, 131.4, 131.5, 162.0, 164.4, 164.6, 167.1, 173.9, 192.3.

O-(Propionyl)-4,4'-dimethylbenzoin (15d)

Yellow liquid; IR (neat) (v): 3032, 3006, 2921, 2857, 1717, 1692, 1608, 1450, 1277, 1177. 1020 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.84 (2H, d, *J* = 8.0 Hz, 2-*H* and 6-*H*), 7.34 (2H, d, *J* = 8.0 Hz, 3-*H* and 5-*H*), 7.18 (2H, d, *J* = 8.0 Hz, 2'-*H* and 6'-*H*), 7.16 (2H, d, *J* = 8.0 Hz, 3'-*H* and 5'-*H*), 6.83 (1H, s, CH), 2.42-2.57 (2H, m, CH₂), 2.35 (3H, s, Ar-CH₃), 2.31 (3H, s, Ar-CH₃), 1.18 (3H, t, *J* = 7.6 Hz, CH₃); ¹³C NMR (CDCl₃) δ : 9.0, 21.2, 21.6, 27.4, 77.3, 128.6, 128.9, 129.3, 129.8, 131.0, 132.1, 139.2, 144.3, 174.0, 193.5.

O-(Propionyl)-4,4'-dimethoxybenzoin (15e)

Yellow liquid; IR (neat) (v): 2984, 2939, 1746, 1697, 1588, 1493, 1361, 1151, 1011 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.85 (2H, d, *J* = 8.0 Hz, 2-*H* and 6-*H*), 7.45 (2H, d, *J* = 8.0 Hz, 2'-*H* and 6'-*H*), 7.01 (2H, d, *J* = 8.0 Hz, 3-*H* and 5-*H*), 6.82 (2H, d, *J* = 8.0 Hz, 3'-*H* and 5'-*H*), 6.37 (1H, s, C*H*), 3.89 (3H, s, Ar-OC*H*₃), 3.83 (3H, s, Ar-OC*H*₃), 2.37-2.45 (2H, m, C*H*₂), 1.16 (3H, t, *J* = 8.0 Hz, C*H*₃); ¹³C NMR (CDCl₃) δ : 8.7, 27.2, 55.3, 55.4, 73.2, 114.5, 114.6, 116.4, 124.0, 129.5, 129.6, 132.3, 161.1, 172.5, 194.9.

RESULTS AND DISCUSSION

It has been suggested that reactivity of *N*-aroylbenzotriazole is influenced by the substituent on the aromatic ring. With weak electron-withdrawing groups as bromine in the *para* position, the *N*-acylation of amines are promoted [18]. In our opinion, the increase of reactivity probably causes by the electron-donating effect from non-bonding electrons of bromine. Therefore, we decided to perform cross-coupling reactions of aromatic aldehydes with *N*-4-methoxybenzoylbenzotriazole (**2a**) and *N*-4-chlorobenzoylbenzotriazole (**2b**). Cross-coupling reactions between aromatic aldehydes and *N*-propionylbenzotriazole (**2c**) were also attempted.

N-Acylbenzotriazoles **2a-c** were readily obtained in 83-96% yields from treatment of benzotriazole (1) with the appropriate acid chloride and potassium carbonate in the absence of solvent at room temperature [12], as shown in Scheme 1.

Scheme 1. Preparation of N-acylbenzotriazoles 2a-c

Our study commenced with the treatment of benzaldehyde (**3a**) with two equivalents of *N*-4methoxybenzoylbenzotriazole (**2a**), in the presence of 20 mol% of *N*,*N*-dimethylbenzimidazolium iodide (**4**) and either NEt₃ or DBU, in CH₃CN at refluxing temperature. No reaction, however, occurred due to these attempts (Table 1, entries 1, 2). Although carrying out this treatment using NEt₃ as a base in THF at refluxing temperature also failed to give any reaction, the expected 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione (**5a**) was delightedly obtained in 36% yield, along with 1*H*-1,2,3-benzotriazol-1-yl(phenyl)methyl 4-methoxybenzoate (**6a**) in 29% yield when NEt₃ was replaced by DBU (Table 1, entries 3, 4). The yield of ethane-1,2-dione **5a** increased to 47 and 50% when the amount of benzimidazolium salt **4** was increased from 20 mol% to 50 and 100 mol%, respectively (Table 1, entries 5, 6). The yield of benzotriazol-1-yl(phenyl)methyl ester **6a** also increased to 35 and 38% yields, respectively.

Table 1. Optimization for cross-coupling of benzaldehyde (3a) with N-4- methoxybenzoylbenzotriazole (2a)

0 H + 3a	AeO		DBU, THF	Sa O	OMe + O	O N-N OMe
	Entry	Base/ Solvent	%Mol of 4	%Yield (5a)	%Yield (6a)	-
	1	TEA/ CH ₃ CN	20	-	-	-
	2	DBU/ CH ₃ CN	20	-	-	
	3	TEA/ THF	20	-	-	
	4	DBU/ THF	20	36	29	
	5	DBU/ THF	50	47	35	
	6	DBU/ THF	100	50	38	

A plausible catalytic cycle for the formation of unsymmetrical aril 5a (Ar¹ \neq Ar²) was proposed, as illustrated in Scheme 2. *N*,*N*-Dimethylbenzimidazol-2-ylidene (7), generated *in situ* from deprotonation of benzimidazolium salt 4 by DBU reacted with aromatic aldehyde 3a to give the Breslow intermediate 9 which reacted with *N*-4methoxybenzoylbenzotriazole (2a) to give the intermediate 10. Collapse of the intermediate 10 followed by

liberation of benzimidazol-2-ylidene 7 from the resulting intermediate 12 gave aril 5a and complete the catalytic cycle.

Scheme 2. Proposed catalytic cycle for cross-coupling between aromatic aldehyde 3a and N-4-methoxybenzoylbenzotriazole (2a)

Scheme 3. Pathway for the formation of aromatic acid 1H-1,2,3-benzotriazol-1-yl(phenyl)methyl ester 6a

The formation of aromatic acid 1H-1,2,3-benzotriazol-1-yl(aryl)methyl ester **6a** was rationalized by a pathway illustrated in Scheme 3. Accordingly, the aroylbenzotriazole **2a** underwent nucleophilic attack by the adduct **8** to give the alkoxy intermediate **13**. Subsequent [1,3] shift of benzotriazolyl group led to expulsion of benzimidazol-2-ylidene **7** to provide aromatic acid ester **6a**.

We had chosen cross-coupling of aromatic aldehyde 3a with *N*-benzoylbenzotriazole 2a in the presence of 50 mol% of benzimidazolium salt 4 and DBU in THF at reflux as the optimum conditions and performed this cross-coupling using aromatic aldehydes 3b-e in place of 3a. As shown in Scheme 4, the expected cross-coupling ethane-1,2-diones **5b**-e along with the corresponding 1*H*-1,2,3-benzotriazol-1-yl(aryl)methyl esters **6b**-e were obtained in satisfied yields.

Scheme 4. Cross-coupling of aromatic aldehydes 3b-e with N-4-methoxybenzoylbenzotriazole (2a)

Treatment of *N*-4-chlorobenzoylbenzotriazole **2b** with aromatic aldehydes **3a-e** under the same conditions gave the expected cross-coupling ethane-1,2-diones **5f-j** together with the corresponding 1*H*-1,2,3-benzotriazol-1-yl(aryl)methyl 4-chlorobenzoates **6f-j** in satisfied yields, as illustrated in Scheme 5. Additionally, aroins **14a,b,e**, resulted from benzoin condensation, also occurred as minor side products.

Scheme 5. Cross-coupling of aromatic aldehydes 3a-e with N-4-chlorobenzoylbenzotriazole (2b)

No expected ethane-1,2-diketones was detected upon treatment of *N*-propionylbenzotriazole (2c) with aromatic aldehydes **3a-e**. Isolated products were corresponding *O*-propionylaroins **15a-e** and 1*H*-1,2,3-benzotriazol-1-yl(aryl)methyl propanoates **6k-o** as shown in Scheme 6.

Scheme 6. Cross-coupling of aromatic aldehydes 3a-e with N-propionylbenzotriazole (2c)

The carbonyl group of *N*-acylbenzotriazole 2c is less electrophilic than that of aldehydes 3a-e, consequently, benzoin condensation occurred and resulting aroins 14a-e transformed further to the corresponding *O*-propionylaroins 15a-e by a proposed mechanism shown in Scheme 7.

Scheme 7. Proposed mechanism for O-propionylaroins 15a-e

CONCLUSION

N-Aroylbenzotriazoles bearing electron-donating group on aromatic ring underwent cross-coupling with aromatic aldehydes in the presence of *N*,*N*-dimethylbenzimidazolium iodide and DBU in THF to produce 1,2-diarylethane-1,2-diones in satisfied yields. Aromatic acid 1*H*-1,2,3-benzotriazolyl(aryl)methyl esters and some aroins were also obtained as minor side products. Treatment of *N*-propionylbenzotriazole with aromatic aldehydes, on the other hand, provided none of corresponding ethane-1,2-diones. Isolated products were *O*-propionylaroins and also 1*H*-1,2,3-benzotriazolyl(aryl)methyl propionates.

Acknowledgement

We are grateful to the Natural Products Research Unit, Department of Chemistry, Faculty of Science, Khon Kaen University, and the Center for Innovation in Chemistry (PERCH-CIC) and the Commission of Higher Education (CHE-RG), Ministry of Education for financial support.

REFERENCES

- [1] A.R. Katritzky, H.-Y. He, K. Suzuki, J. Org. Chem., 2000, 65, 8210-8213.
- [2] A.R. Katritzky, A. Pastor, M.V. Voronkov, J. Heterocycl. Chem. 1999, 36, 777-781.
- [3] A.R. Katritzky, A. Pastor, J. Org. Chem. 2000, 65, 3679-3682
- [4] A.R. Katritzky, K.N.B. Le, L. Khelashvili, P.P. Mohapatra, J. Org. Chem. 2006, 71, 9861-9864.
- [5] V. Hahnvajanawong, B. Pungpis, P. Theramongkol, ACGC Chem. Res. Comm., 2009, 23, 26-30.
- [6] V. Hahnvajanawong, W. Waengdongbung, S. Piekkaew, B. Phungpis, P. Theramongkol, *Scienceasia*, **201**3, 39, 50-55.
- [7] B. Pungpis, V. Hahnvajanawong, P. Theramongkol, Orient. J. Chem., 2014, 30, 933-939.
- [8] V. Hahnvajanawong, W. Waengdongbung, P. Theramongkol, Orient. J. Chem., 2016, 32, 219-225.
- [9] C. Mousset, A. Giraud, O. Provot, A. Hamze, J. Bignon, J.-M. Liu, S. Thoret, J. Dubois, J.-D. Brion, M. Alami, J. Bioorg, Med. Chem. Lett., 2008, 18, 3266-3271.
- [10]R.M. Wadkins, J.L. Hyatt, X. Wei, K.J.P. Yoon, M. Wierdl, C. Edwards, C.C.L. Morton, J.C. Obennauer, K. Damodaran, P. Beroza, M.K. Danks, P.M. Potter, *J. Med. Chem.* **2005**, 48, 2906-2915.
- [11]V. Hahnvajanawong, R. Tearavarich, P. Theramongkol, ACGC Chem. Res. Comm., 2005, 18, 7-10.
- [12] A.R. Katritzky, N. Shobana, J. Pernak, A.S. Afridi, W.-Q. Fan, Tetrahedron, 1992, 48, 7817-7822.
- [13] M. Chen, Q. Zhao, D.-B.. She, M.-Y. Yang, H.-H. Hui, G.-S. Huang J. Chem. Sci. 2008, 119, 347-351.
- [14] N.J. Leonard, T.R. Rapala, H.L. Herzog, E.R. Blout, J. Am. Chem. Soc., 1949, 71, 2997-3002.
- [15]H. Min, T. Palani, K. Hwang, S. Lee, J. Org. Chem., 2014, 79, 6279-6285.
- [16]H. Firouzabadi, Synthesis. 1989, 5, 378-380.
- [17]W.S. Ide, J.S. Buck, Org. React. 1948, 4, 269-304.
- [18]A.R. Katritzky, B.V. Rogovol, N. Kirichenko, V. Vvedensky, Bioorg. Med. Chem. Lett. 2002, 12, 1809-1811.