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Abstract

The use of Three Dimension&uantitative Structure—Activity Relationships, snds
advent, has become increasingly helpful in undedstey many aspects of biochemical
interactions in drug research. This approach wdiad to explain the relationship of
structure with biological activity of selective PRA/S agonists. The enormity of the PPAR
v/d agonistdiscovery is reflected in the unprecedented spé&thizh research laboratories
have sought to validate its clinical implicatioB8 QSAR study through recently introduced
k- Nearest Neighbor Molecular Field Analysis (k-NMFA) with Step Wise (SW),
Simulated Annealing (SA) and Genetic Algorithm (GA3 variable selection methods
resulted in eleven statistically significant modeisPPARY/5 agonists. These models gave a
value of d as high as 0.7362 for model 1 and value of predsrhigh as 0.6985 for model
3.The k-NN MFA contour plots provided further unstanding of the relationship between
the structural features of PPAR agonists derivatives and their activities, whitlowd be
applicable to design new, potential PPAR agonists.
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Introduction

Peroxisome Proliferator-Activated Receptors (PRA&d PPAR) are ligand activated
nuclear hormone receptors that regulate the trgotger of genes involved in carbohydrate
and lipid metabolism pathways [1-dgtivation of PPAR, which is predominantly expressed
in adipose tissue, results in insulin-sensitizingi-diabetic effects [5-6]. Activation of
PPARy, which is highly expressed in the liver, resuttghie lowering of triglycerides and the
elevation of plasma HDL cholesterol levels [7-8). addition, both PPA& and PPAR
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selective activators have been demonstrated tassppessel wall inflammatory activity and
reduce atherosclerosis in experimental animal nsottebugh complementary mechanisms
[9-10]. Therefore, PPA& and PPAR dual activators provide superior profile toware th
control of hyperglycaemia and hyper triglyceridei@iarrent trends in medicinal chemistry
are to identify molecules with activity on multiplargets. Such molecules act on more than
one biological target and produce a synergistieatffThis approach offers an advantage that
the body has to deal only with a single moleculgifiga multiple activities, which could
eliminate a lot of complexity in terms of administg medication to the patient, the body’s
ability to absorb a drug, and also its side efteletsst often the biological targets involved in
multiple activities are quite similar to each otlaed belong to the same family of receptors.
An important class of compounds currently undedtn the category of dual activators are
members of the nuclear receptor super family vieropisome proliferator- activated
receptors ¢, y and 33) [11]. Many topological descriptors can be usedi¢gcribe organic
molecular structure with QSAR aims. Resent tremd&8D, 3D QSAR have focused on the
development of procedure that allows selection pfinsal variables from the pool of
descriptors of chemical structures i.e. ones that most meaningful and statistically
significant in terms of correlation with biologicactivity. This is accomplished by
combining one of the stochastic search methods asi@A, GAs, or evolutionary algorithms
with the correlation methods such as MLR, PLSRantificial neural networks [12-17]. The
k-NN MFA, used for 3D QSAR analysis of the presgata set adopts a k-nearest neighbour
principle for generating relationships of moleculerlds with the experimentally reported
activity. The variables and optimal k values wetesen using three variable selection
methods viz. SW, SA, and GA. Like many 3D QSAR mdt) k-NN MFA requires suitable
alignment of given set of molecules. This is foléml by generation of a common rectangular
grid around the molecules. The steric and eledtmsinteraction energies are computed at
the lattice points of the grid using a methyl pradfecharge +1. These interaction energy
values are considered for relationship generatiod atilized as descriptors to decide
nearness between molecules. The term descriptotilized in the following discussion to
indicate field values at the lattice points. Thdimgl training and test sets are generated
using the sphere exclusion algorithm. This alpomitallows the construction of training sets
covering descriptor space occupied by represeetginints. Once the training and test sets
are generated, k-NN methodology is applied to #srdptors generated over the grid [18].

Result and Discussion

The 3D QSAR for molecular field analysis was parfed using the k-Nearest Neighbor
method using software V-LIFE MDS 3.0. A set of 16letules was selected and divided in
training (12) and test sets (4) for 3D QSAR studfdsthe molecules were aligned based on
template. The model was generated by kNN-MFA methbath showed the cross validated
squared correlation coefficient value. The modekatd the better correlation with biological
activity. The steric and electrostatic contributishowed the effect of substitution on
biological activity. The steric and bulky groupslueed the activity, the electrostatic methyl
and ethyl groups at positions Bnd R, are essential for the activity. Substitution byyéth
group on position Rincreases the activity. If the ethyl group is gitbsed by CFk the
activity is increased as compared to alkyl subsbitis.

Model 1
S 263 (-0.4351 to 30.0000); 23(0.9021 to 10.00@®)151 (-0.0329 to 6.3509); E_964 (-
0.7385 to -0.0814)
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k Nearest Neighbor=5; n = 16; Degree of freedomlL=c2 = 0.6371; q2_se =0.3491 ;Pfedr
=0.5921;pred_r2se = 0.4160

Another statistically significant model 1 was ob&d for PPAR and PPAR activity
through SW k-NN MFA justified by internal and extat predictivity of the model as 63 %
(9q2=0.6371) and 37 % (pred_r2=0.5921) respectively.

Model 2

S 263 (2.581 to 30.000); E_151 (-0.0329 to 6.350H) 256 (-0.5731 to 7.125) ; E_964 (-
1.4721t0 0.7831)

k Nearest Neighbor= 5; n = 16; Degree of freedori2=;g2 = 0.6941 ;q2_se = 0.4206
Pred_f = 0.5357; pred_r2se = 0.6260

For PPAR and PPAR, models, two were found to be statistically sigmaint justified by
the values of g2 that explained 98% internal ptedig

Model 3

S 1252 (-0.3452 t0 0.5438); S_765 (-1.789 to 0.6907

k Nearest Neighbor= 4; n = 16 ;Degree of freedori3=;g2 = 0.7263 ;q2_se = 0.5791
pred_r2=0.6975; pred_r2se = 0.7433

Model 3, the best model developed through k-NN Mfadl a value of q2=0.7263 and that of
pred_r2=0.6975 that explained 76% of total variarfceernal predictivity) and 24%
predictive power for the external test set.

Model 4

S 969 (1.8742 to 2.9076); E_262 (-10.000 to -0.6902

k Nearest Neighbor=5 ;n = 16 ;Degree of freedo#2sg2 = 0.8218 ;g2_se = 0.6211 Predr2
=0.7941 ; pred_r2se = 0.5652

Another statistically significant model, model 4 svgenerated for activity against PPAR
and PPAR having a value of g2 89 % and that of pred_r2=01799 %, Plot of the k-NN
MFA which shows the relative position and rangethefcorresponding important.

Materials and Methods

Data set and Molecular modelling

A dataset consisting of a series of 3-{4-[3-(2-gvkienoxy) butoxy]-phenyl} propionic acids
derivatives acting PPAR/6 dual activators (Table 1) has been chosen to dpveldual-
response QSAR model. The biological activitieshaf inolecules have been expressed as the
binding affinities measured ass{values in micro molar using recombinant PPAR by
[19]. For QSAR analysis, these have been converedC50 (log IGo) values in molar
terms (Table 1). The molecular modelling was cdraat on Compaqg PC having Pentium IV
processor and windows 98 operating system, usiagdiitware namely: Molecular Design
Suite supplied by the VLife Sciences, Pune (MDS RB]. The structures were constructed
using the 2D draw application and converted to 3MDcsures. Energy minimization and
geometry optimization was conducted using Merck@dalar Force Field (MMFF) method
with Root Mean Square (RMS) gradient set to 0.0&l#ol A’ and iteration limit to 10000.
Alignment of all the 16 compounds was done usimgplate based alignment in MDS; the
aligned structures were used for the study. Intd#mplate based alignment method, a
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template structure was defined and used as a basilignment of a set of molecules.
Following 3-{4-[3-(2-aryl-phenoxy) butoxy]-phenyl}propionic acids nucleus was the

template used for template-based alignment, aasta@mmon to all structures.

O
O

The alignment of molecule is shown in figure.1

Table-1 Substituted 3-{4-[3-(2-aryl-phenoxy) butox}-phenyl} propionic acids
With IC 5o and PICsg values

S.No. Compound R R! R’ PPAR ICs log ICsc

1. 1mol2 Benzoyl Me Et 5 0.69897
2. 8 mol2 3- Thiophenyl Me Et 568 2.75435%
3. 9 mol2 2-Thiophenyl Me Et 1090 3.03743
4, 10 mol2 2- Furanyl Me Et 940 2.97313
5. 11 mol2 2- Pyridyl Me Et 46 1.66276
6. 12 mol2 3- Pyridyl Me Et 60 1.77815
7. 13 mol2 4- Pyridyl Me Et 520 2.71611
8. 14 mol2 4 -Thiazolyl Me Et 346 2.53908
9. 15 mol2 2-Thiazolyl Me Et 1530 3.18469
10. 17 mol2 2- Oxazolyl Me Et 483 2.68395
11. 18mol2 2- Pyridyl Me Cl 88 1.94448
12. 19 mol2 2- Pyridyl Et GF 20 1.30103
13. * 21 mol2 2- Pyridyl Et CF 16 1.20412
14, * 7mol2 Phenyl Me Et 215 2.332438
15. * 20mol2 2- Pyridyl Et Et 35 1.544068
16. * 16mol2 4-Oxazolyl Me Et 979 2.99078B

* Selected Test Compound

Table -2 Actual and Predicted values for model-1 ashmodel-2 with Residual values for
Training set Compounds 3D QSAR analysis

S. No. Molecules Ac;u.al Predicted model Residual value
activity

1. 1mol2 0.69897 1.30294 -0.60397
2. 8mol2 2.75435 2.88018 -0.12583
3. 9mol2 3.03743 2.80411 0.23332
4, 10mol2 2.97313 3.16774 -0.19461
5. 11mol2 1.66276 1.5466 0.11616
6. 12mol2 1.77815 1.80576 -0.02761
7. 13mol2 2.71611 1.64432 1.07179
8. 14mol2 2.53908 2.64115 -0.10207
9. 15mol2 3.18469 2.96391 0.22078
10. 17mol2 2.68395 2.86027 -0.17632
11. 18mol2 1.94448 2.37214 -0.42766
12. 19mol2 1.30103 0.714547 0.586483
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Table 3 -Actual Activity, Predicted Activity and Residual values oftest set Compounds

S. No. Molecules Ac;u_al Predicted model Residual value
activity
1. 21mol2 1.20412 1.64768 -0.44356
2. 7mol2 2.332438 2.31224 0.020198
3. 20mol2 1.544068 1.35126 0.192808
4, 16mol2 2.990783 2.74123 0.249553
Table-4 Selected Descriptors list using GenerateModels
S.No | E_151 | E_262 | E_256 E_964 S 263 |S 765 |S_969 |S_ 1252
1 -0.6567 | -0.0503 -0.06234 -0.07263 0.44088 1.38526.38549| 0.64375
2 -0.0367| -0.0169 -0.03408 -0.03444 0.55717 1.28250.06462| 0.80289
3 -0.2458 | -0.0094 -0.02765 -0.0335 0.25044 0.78[/78 9432| 1.00827
4 -0.4954 | -0.0295 -0.04694 -0.05248§ 0.35934 0.86284.49181| 0.98329
5 -0.2894 | -0.0096 -0.02967 -0.03132 0.49431 1.26850.71637| 0.72219
6 -0.4928 | -0.0572 -0.04939 -0.06361 0.35494  1.32161.98633| 0.58047
7 -0.1091| 0.0195 -0.13171 -0.12818§ 0.44423  1.17249 51944| 0.88284
8 -0.2003| 0.0134 -0.02407 -0.0187 0.55180 1.18664 4548| 0.70536
9 -0.5959 | -0.0442 -0.05667 -0.06559 0.54389 1.46[701.40681| 0.69589
10 0.0590 | -0.0258] 0.012139 0.006988 0.26011 1.59464987B1| 0.41411]
11 | -0.0197| -0.0288 -0.01755 -0.02662 0.30763 0.62858.67969| 0.88627
12 | -0.0246| -0.0013 -0.02773 -0.02682 0.39123 1.27606.70028| 0.68649
13 | -0.0582| -0.0601 -0.05639 -0.07047 0.26475 1.09756.52539| 0.35704
14 | -0.0886| -0.0323 -0.08055 -0.08934 0.41369 0.87093.63106| 1.00149
15 0.0031 | -0.0123] 0.006059 0.006477 0.49731 2.62949 750B6| 0.47314
16 | -0.0158| -0.0383 -0.01177 -0.02201 0.45613 1.04476.68346| 0.45757

The position of each atom is important for kKNN-MH#ecause the descriptors were
calculated based on the 3D space grid. Thus, tibaudo determine the conformation of
each molecule and the way to align molecules tayethe two sensitive input parameters to
build reasonable model [21] in the present study deferent alignment rules were adopted.

Figure-2 Graph of observed v/s predicted activitief statistically significant models
obtained through kNN MFA

ACTUAL Vs PREDICTED ACTIVITY

® Training set

A Testset

ACTUAL

2 4
PREDICTED

Model 1

ACTUAL Vs PREDICTED ACTIVITY

® Training set

W Testset

ACTUAL

4

PREDICTED

www.scholarsresearchlibrary.com

Model 2

86



M.C. Sharmaet al Der Pharma Chemica 2010, 2 (1): 82-90

Figure 3- Alignment of 3D structures of the seriesf 3-{4-[3-(2-aryl-phenoxy) butoxy]-
phenyl} propionic acids with steric and electrostat involvement in molecule 11

Figure 4 - Best Model Steric and electrostatic inM@ement in molecule 11

Calculation of field descriptor values

For calculation of field descriptor values, botbatostatic and steric field type with cut offs
10.0 and 30.0 Kcal/mol respectively were selectatléharge type was selected as Gasteiger
— Marsili. Dielectric constant was set to 1.0 cdesing the distance dependent dielectric
function. Probe setting was carbon atom with char§eand grid.

k-Nearest Neighbor (kNN) Method:

The kNN methodology relies on a simple distancenieg approach whereby an unknown
member is classified according to the majority tefk-nearest neighbors in the training set.
The nearness is measured by an appropriate distaetéc (e.g., a molecular similarity
measure calculated using field interactions of mwakr structures). The standard kNN
method is implemented simply as follows [22]

87
www.scholarsresearchlibrary.com



M.C. Sharmaet al Der Pharma Chemica 2010, 2 (1): 82-90

(1) Calculate distances between an unknown ohjger(d all the objects in the training set;
(2) Seleck objects from the training set most similar to objgcaccording to the calculated
distances.

(3) Classify objectu with the group to which the majority of tHeobjects belongs. An
optimalk value is selected by optimization through the ¢fasdion of a test set of samples
or by leave-one out cross-validation. The varialaled optimak values were chosen using
different variable selection methods as descrilzdavin

kNN-MFA 3D-QSAR Models:

To derive the KNN-MFA descriptor fields, a 3D culattice grid inx, y andz directions, was
created to encompass the aligned molecules. kNN-KEgtriptors were calculated using an
sp3 carbon probe atom with a van der Waals radius.52 A and a charge of +1.0 to
generate steric field energies and electrostaglddiwith the distance dependant dielectric at
each lattice point. The steric and electrostatiergy values were truncated at a default value
of 30 kcal/mol.

KNN-MFA with Simulated Annealing

Simulated annealing (SA) is the simulation of agatgl process, ‘annealing’, which involves
heating the system to a high temperature and thaduglly cooling it down to a preset
temperature (e.g., room temperature). During thiscgss, the system samples possible
configurations distributed according to the Batsrdatribution so that at equilibrium, low
energy states are the most populated.

KNN-MFA with Stepwise (SW) Variable Selection

This method employs a stepwise variable selectioocquiure combined with KNN to
optimize the number of nearest neighbours (k) aedselection of variables from the original
pool as described in simulated annealing.

kKNN-MFA with Genetic Algorithm

Genetic algorithms (GA) first described by Hollanamic natural evolution and selection. In
biological systems, genetic information that detess the individuality of an organism is
stored in chromosomes. Chromosomes are replicatddpassed onto the next generation
with selection criteria depending on fitness. Tile@SAR for molecular field analysis was
performed using the k Nearest Neighbour methodgusirftware V-LIFE MDS 3.5.

PLS analysis:

The partial least squares method (PLS), [23-25] wsesl to derive a linear relationship and
cross-validation was performed using leave-onemethod, [26-27] to check consistency
and predictive ness. Models were generated by usirege significant statistical methods,
namely, partial least square analysis, multipleesgjons, and principle component analysis.
The cross-validation analysis was performed udnegléave-one-out method. In the selected
equations, the cross-correlation limit was set.&t the number of variables at 10, and the
term selection criteria at.rAn F value was specified to evaluate the sigaifie of a
variable. The higher the F value, the more stribges the significance level: F test “in” as
4 and F test “out” as 3.99. The variance cutwés set at 0, and scaling was auto scaling in
which the number of random iterations was set & Tlie following statistical parameters
were considered for comparison of the generated R)8wWdels: correlation coefficient (r),
squared correlation coefficient (r2), predictivefor external test set (pred) rfor external
validation, and Fischer's (F).The predictéd(pred_f) value was calculated using Eq. 1,
where yi and yi are the actual and predicted #itss of the ' molecule in the test set,
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respectively, and ymean is the average activityalbfmolecules in the training set. Both
summations are over all molecules in the test®et. pred_7 value indicates the predictive
power of the current model for the external testsdollows

Y (yiry) 2
pred_f=1 - 1)
> (YirYmean 2

Internal validation was carried out using leave-one(cf, LOO) method. For calculatind,q
each molecule in the training set was eliminatedeoand the activity of the eliminated
molecule was predicted by using the model develdpethe remaining molecules. Thé q
was calculated using the equation which describesnternal stability of a model:

> (yi-yT) 2
> (YirYmean ?

Where y;, and y; are the actual and predicted activity of tiremolecule in the training set,
respectively, andytanis the average activity of all molecules in thaaring set.

Randomization Test.

To evaluate the statistical significance of the @S#odel for an actual data set, we have
employed a one-tail hypothesis testing. The rolmsstrof the QSAR models for experimental
training sets was examined by comparing these mddehose derived for random data sets.
Random sets were generated by rearranging biologgitiaities of the training set molecules.
The significance of the models hence obtained weased based on calculateg.&[28-29].

Evaluation of the QSAR Modéls.

The QSAR models were evaluated using followingsiaal measures, number of
observations (molecules); Vn, number of descriptkrsiumber of nearest neighbougg,
cross validated?2 (by the leave-one-out method); pred_r2, predicgtbr the external test
set; Zscore, the Z score calculatedd2yin the randomization test; best_ran_q2, the lsghe
g2 value in the randomization test; and R, the stta#il significance parameter obtained by
the randomization test.

Conclusion

The steric and bulky groups reduced the activitg, électrostatic methyl and ethyl groups at
positions R and R are essential for the activity. Substitution byyktiroup on position R
increases the activity. If the ethyl group is sibttd by CE the activity is increased as
compared to alkyl substitutions. For the best 3DAQSnodel, the cross-validated squared
correlation coefficient (€ was 0.8218 and predicted® Ralue was found to be 0.7941.
Models have given significant information to buidd strategy to improve the biological
activity of the compounds. Substituted methyl atitylegroups at R are essential for the
biological activity. The CEgroup at R gives compounds with better biological activitgh
the ethyl substituents. The electrostatic contiisubf 2-Pyridyl and 3-Pyridyl groups atR
led to compounds with good selectivity over PRABYd potent PPAR/6 affinity and
functional activity.
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