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ABSTRACT 
 
Molecular modeling analysis performed by k nearest neighbor molecular field analysis (kNN MFA) to recognize the 
necessary structural requirements of 1,3-diaryl propenone derivatives in 3D chemical space for adjusting 
modulation of the antimalarial activity.  In study 14 compounds were selected randomly, using sphere exclusion 
(SE) algorithm and random selection method struture divided into training and test set. kNN-MFA methodology with 
stepwise (SW), simulated annealing (SA) and genetic algorithm (GA) was used for building the QSAR models. 
Predictive models were generated with SW-kNN MFA. The most significant model 1 is having internal predictivity 
64.24% (q2 = 64.24) and external predictivity 61.57 % (pred_r2 = 0.61.57). Model showed that steric (S_584), and 
electrostatic (E-295) interactions play important role in determining DPP IV inhibitory activity.  
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INTRODUCTION 
 

In spite of worldwide efforts to combat malaria, it still kills approximately one million people, mostly children, each 
year [1]. The World Malaria Report 2012 highlighted the progress made towards the global malarial targets set for 
2015 and described current challenges for global malaria control and elimination [2]. Malaria is caused by different 
species of plasmodium, namely P. falciparum, P. vivax, P. ovale and P. malariae and is transmitted by female 
mosquitoes belonging to the genus Anopheles to humans. Endemic disease indicates that P. falciparum and P. vivax 
were most dangerous and spreads 95% of malaria infections in the world wide . In humans it is spread by sporozoa 
of the genus plasmodium, characterized by episodic fever, anemia and enlargement of the liver and spleen [10]. 
There is no fully effective prophylactic vaccine against malaria to date [3,4], and the major problem in the 
chemotherapy of malaria is the development of resistance of the Plasmodium falciparum parasites to many of the 
standard quinoline antimalarial drugs such as chloroquine [5]. The discovery of chloroquine resistance drugs has 
opened a new era in malarial chemotherapy which are highly active against both chloroquine-sensitive and 
chloroquine resistant strains of P. falciparum [6]. The chloroquine resistant drugs and artemisinin combination 
therapy is currently the best option available for the chemotherapy of malaria [7]. Ligand-based approaches such as 
three-dimensional quantitative structure–activity relationship (3D-QSAR) studies have been very useful in 
identifying the essential structural requirements for biological activity of compounds where the 3D structure of the 
exact target is unknown [8,9]. Therefore, considering the importance of 1,3-diaryl propenone and its analogues as a 
potent class of antimalarial drugs effective against the multidrug-resistant P. falciparum strains, and the 
unavailability of the exact target for this class of molecule [10], molecular modeling and  [11] quantitative 
pharmacophore model utilizing this class of molecules [12]. V-life based models are computationally intensive and 
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generate the QSAR equations [13]; they give the minimum essential structural requirements for activity in terms of 
selected regions. The successful application of computational approaches to understand the effect of contrasting 
structural requirements in 3D chemical space has been reported by many research groups in the recent past [14,15], 
which should not only provide the information about favourable regions, but also provide information about 
unfavourable regions in defining potency. 
 

MATERIALS AND METHODS 
 

Data Set: The QSAR studies were performed using three series of 1,3-diaryl propenone derivatives reported in 
literature [20]. The homogeneity of the biological assays (pIC50= activity ranges from 4.909 to 5.818 µM) on 
Plasmodium falciparum is one of the important aspects in a QSAR study, therefore the dataset was collected from 
same pharmacological testing protocol. It has been suggested that generated models should be tested on a 
sufficiently test set to establish a statistically meaningful and reliable QSAR model; therefore, the molecules were 
randomly divided into a training set and a test set compounds in such a way that both sets cover the structural 
diversity, chemical prototypes and the complete range of antimalarial activity (Table 1). The pharmacological 
activity expressed in IC50 µM was converted into -log IC50 and used as dependent variable in the QSAR study. 
 
Table 1: General structure of the compounds of substituted 1,3-diaryl propenone derivatives and their biological activities (data set of  14 

molecules) 
 

 

Compound R R1 R2 R3 
IC50 
(µM) pIC50 

1.  

 

H Cl H 2.93 5.533 

2.  
N

N N  

H Cl H 2.5 5.602 

3.  

 

H Cl H 7.76 5.11 

4.  

 

H Cl H 6.01 5.221 

5.  

 

H Cl H 9.1 5.041 

6.  

 

H Cl H 8.26 5.083 

7.  

 

H Cl H 1.52 5.818 

8.  

 

H Cl H 5.15 5.288 

9.  

 

H OMe H 12.33 4.909 
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10.  
N

N N  

H OMe H 6.8 5.167 

11.  

 

OMe OMe OMe 7.16 5.145 

12.  

 

OMe OMe OMe 6.0 5.222 

13.  

 

OMe OMe OMe 4.6 5.337 

14.  
 

OMe OMe OMe 8.03 5.095 

 
 
Molecular Modeling Study: Molecular modeling and kNN-MFA study was performed on the software Molecular 
Design Suite (MDS) 4.1.19092011 [21]. The selected dataset were aligned by template based method using most 
active molecule 14 as a reference molecule (1) and structure (2) as a template shown in figure 1. The alignment of 
all the molecules on the template is shown in figure 1 as a reference aligned molecule.  

 
Figure 1: Template structure (1) and reference aligned Molecule structure (2) 

 
1 

 
2 

 
Once the molecules are aligned, a molecular field is computed on a grid of points in space around the molecule. This 
field provides a description of how each molecule will tend to bind in the active site. Descriptors selected were 
steric, electrostatic and hydrophobic interaction energies of them computed at the lattice points of the grid using a 
methyl probe as charge +1. In order to evaluate the QSAR model externally, data set was divided into training and 
test set using sphere exclusion methods. Training set is used to develop the QSAR model for which biological 
activity data are known. Test set is used to challenge the QSAR model developed based on the training set to assess 
the predictive effectiveness of the model which is not included in model generation. Sphere exclusion algorithm was 
used for creation of training and test sets. Sphere exclusion algorithm22 allows constructing training sets covering all 
descriptor space areas occupied by representative points. The higher the dissimilarity level, the smaller the training 
set is and the larger the test set is and vice versa.  
 
Model Building: Data generated by k nearest neighbor molecular field analysis (kNN-MFA) in conjunction with 
stepwise (SW) forward-backward, simulated annealing (SA) and genetic algorithm (GA) variable selection methods 
with pIC50 activity field as dependent variable and descriptors as independent variable [23-25]. Different training 
and test set of substituted 1,3-diaryl propenone derivatives as antimalarial agent derivatives were constructed using 
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sphere exclusion with dissimilarity level 13. Training and test set were selected and calculated Unicolumn statistics 
(table 2). 

 
Table 2: Uni-Column Statistics for Model 1 for training and test set activity 

 
Column Name Average Max Min Std Dev Sum 
Training set 5.2645  5.8181  4.9090  0.2634  63.1738 
Test set 5.1991  5.2881  5.1101  0.1259  10.3982 

 
RESULTS AND DISCUSSION 

 
The QSAR studies was performed at different dissimilarity value, best model selected on the basis of statistical 
predicted value, training and test set of substituted 1,3-diaryl propenone derivatives as antimalarial agent derivatives 
were constructed using sphere exclusion (dissimilarity level 13). Training and test set were selected if they follow 
the Unicolumn statistics, i.e., maximum of the test is less than maximum of training set and minimum of the test set 
is greater than of training set, which is prerequisite for further QSAR analysis shown in table 2. The most significant 
model is + Model 1 showed (test set=01, 02 and 03) that steric (S_584) and electrostatic (E_295) interactions play 
important role in determining as antimalarial activity. The most significant values of model 1 generated are internal 
predictivity 64.24% (q2 =0.64.24) and external predictivity 61.57 % (pred_r2 = 0.6157).This result shows that the 
test is interpolative i.e., derived from the min-max range of training set. The mean and standard deviation of the 
training and test set provides insight to the relative difference of mean and point density distribution of the two sets. 
k-Nearest neighbor molecular field analysis (kNN-MFA) was applied using stepwise (SW), simulated annealing 
(SA) and genetic algorithm (GA) approaches for building QSAR models. Results of models developed by SW-kNN 
MFA, SA-kNN MFA and GA-kNN MFA using sphere exclusion methods. Significant QSAR model generated.  

 
Figure 2: Graphical fitness plot between actual and predicted activity values as antimalarial activity 
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Table 3: Actual and predicted biological activity for Training set and test set 
 

S. 
No. 

Actual 
 

Predicted Residue 
SW-KNN 

MFA 
GA-KNN 

MFA 
SA-KNN 

MFA 
SW-KNN 

MFA 
GA-KNN 

MFA 
SA-KNN 

MFA 
1 5.533 5.27368 5.34775 5.42891 0.25932 0.18525 0.10409 
2 5.602 5.74554 5.74358 5.40479 -0.14354 -0.14158 0.19721 
3 5.11 4.97742 4.97742 5.56982 0.13258 0.13258 -0.45982 
4 5.221 5.21775 5.23425 5.43648 0.00325 -0.01325 -0.21548 
5 5.041 5.37227 5.23425 5.4359 -0.33127 -0.19325 -0.3949 
6 5.083 5.23907 5.14422 5.41278 -0.15607 -0.06122 -0.32978 
7 5.818 5.54613 5.54376 5.33226 0.27187 0.27424 0.48574 
8 5.288 5.29045 5.21775 5.50934 -0.00245 0.07025 -0.22134 
9 4.909 5.18999 5.19033 5.22204 -0.28099 -0.28133 -0.31304 
10 5.167 5.23125 5.248 5.10181 -0.06425 -0.081 0.06519 
11 5.145 5.23675 5.2535 5.14725 -0.09175 -0.1085 -0.00225 
12 5.222 5.2175 5.23425 4.9091 0.0045 -0.01225 0.3129 
13 5.337 5.18875 5.2055 5.13455 0.14825 0.1315 0.20245 
14 5.095 5.10958 5.10958 5.16958 -0.01458 -0.01458 -0.07458 

 
Statistical measures used to correlate biological activity and molecular descriptors. Data fitness plot for model is 
shown in figure 2. Result of the observed and predicted biological activity for the training and test compounds for 
the Model is shown in table 3. The plot of observed vs. predicted activity of training and test sets for model is shown 
in figure 3. From the plot it can be seen that kNN-MFA model is able to predict the activity of training set quite well 
(all points are close to regression line) as well as external. Sphere exclusion (SE) algorithm and random selection 
methods were used for constructing training and test sets. kNN-MFA methodology with stepwise (SW), simulated 
annealing (SA) and genetic algorithm (GA) was used for building the QSAR models and alignment molecule with 
descriptor shown in figure 4.  
 
Model 1 for SW-kNN MFA 
pIC50 = q2 =0.6457; Pred r2= 0.6157; Ftest=88.6; ZScore=98; training =11, test=3 (01, 02 and 03) 
 
Model 2 GA-kNN MFA 
pIC50 = q2 =0.5278; Pred r2= 0. 0.534; Ftest=81.6; ZScore=57; training =11, test=3 (01, 02 and 03) 
 
Model 3 for SA-kNN MFA 
pIC50 = q2 =0.6198; Pred r2= 0.4581; Ftest=95.6; ZScore=48; training =11, test=3 (01, 02 and 03) 
 

Figure 3: Training set (A) and Test set (B) biological activity is predicted graph 
 

 
A 

 
B 
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The model 1 was considered to be best model in evaluation of predicted values. The steric (S_584) presented on the 
phenyl ring indicates that the bulky group is necessary for enhancing the activity. If at R1, R2, R3 position methyl 
group and long chain is than there is change in biological activity. Electrostatic (E-295) indicates that electron 
withdrawing groups are required for enhancing the biological activity. At R functional group Cl, F and other 
electron withdrawing groups enhances the activity. The kNNMFA contour plot provided further understanding of 
the relationship between structural features of substituted 1,3-diaryl propenone derivatives as antimalarial agent 
derivatives and their activities which should be applicable to design newer potential as as antimalarial agent. 

 
Figure 4: Showing 3D-Allignment of molecules and descriptor of model by wire frame model 

 

 
 

CONCLUSION 
 

Model developed evaluate biologically a series of analogs of 1,3-diaryl propenone derivatives by modifying 
systematically the molecule, in order to explore the SAR of these derivatives. In order to determine the better 
structural characteristics that were able to improve the antimalarial activity and to investigate the effects of different 
chemical modifications, an extensive SAR was examined by varying the nature and the position of the substituents 
both on the basic moiety. 
 
The master grid obtained for the various kNN-MFA models show that positive range in steric descriptors indicates 
bulky substituents group is preferred in R1, R2 and R3. On the basis of the electrostatics near to ring at R the electron 
withdrawing group is required as Cl, F and COOH with heterocyclic ring. Steric and electrostatic potential 
contributions to the developed model in this work is useful in describing QSAR of substituted 1,3-diaryl propenone 
derivatives as antimalarial agent and can be employed to design new derivatives with potent inhibitory activity. 
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