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ABSTRACT

Molecular modeling analysis performed by k nearest neighbor molecular field analysis (kNN MFA) to recognize the
necessary structural requirements of 1,3-diaryl propenone derivatives in 3D chemical space for adjusting
modulation of the antimalarial activity. In study 14 compounds were selected randomly, using sphere exclusion
(SE) algorithm and random selection method struture divided into training and test set. KNN-MFA methodol ogy with
stepwise (SW), simulated annealing (SA) and genetic algorithm (GA) was used for building the QSAR models.
Predictive models were generated with SAW-kNN MFA. The most significant model 1 is having internal predictivity
64.24% (g2 = 64.24) and external predictivity 61.57 % (pred_r2 = 0.61.57). Model showed that steric (S 584), and
electrostatic (E-295) interactions play important role in determining DPP IV inhibitory activity.
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INTRODUCTION

In spite of worldwide efforts to combat malariasititl kills approximately one million people, mbsthildren, each
year [1]. The World Malaria Report 2012 highlightds progress made towards the global malariaktarget for
2015 and described current challenges for globdmaacontrol and elimination [2]. Malaria is cadsey different
species ofplasmodium, namelyP. falciparum, P. vivax, P. ovale and P. malariae and is transmitted by female
mosquitoes belonging to the genus Anopheles to haniendemic disease indicates tRatal ciparum andP. vivax
were most dangerous and spreads 95% of malarietimrfis in the world wide . In humans it is spregdsporozoa
of the genuglasmodium, characterized by episodic fever, anemia and gaitaent of the liver and spleen [10].
There is no fully effective prophylactic vaccineaatst malaria to date [3,4], and the major probliemthe
chemotherapy of malaria is the development of t&sce of the Plasmodium falciparum parasites toynudrthe
standard quinoline antimalarial drugs such as cljaine [5]. The discovery of chloroquine resistadcaegs has
opened a new era in malarial chemotherapy which héglly active against both chloroquine-sensitived a
chloroquine resistant strains of P. falciparum [Bhe chloroquine resistant drugs and artemisinimldioation
therapy is currently the best option availabletf@ chemotherapy of malaria [7]. Ligand-based apgites such as
three-dimensional quantitative structure—activiglationship (3D-QSAR) studies have been very uséful
identifying the essential structural requirememtstiological activity of compounds where the 3Rusture of the
exact target is unknown [8,9]. Therefore, consiutgthe importance of 1,3-diaryl propenone andiit@@gues as a
potent class of antimalarial drugs effective adaittee multidrug-resistant?. falciparum strains, and the
unavailability of the exact target for this clask molecule [10], molecular modeling and [11] qutaiive
pharmacophore model utilizing this class of molesyll2]. V-life based models are computationaltgmsive and
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generate the QSAR equations [13]; they give thammim essential structural requirements for actiuityerms of
selected regions. The successful application ofpedational approaches to understand the effectonfrasting
structural requirements in 3D chemical space has beported by many research groups in the reastt[p4,15],
which should not only provide the information abdatourable regions, but also provide informatidoat
unfavourable regions in defining potency.

MATERIALSAND METHODS

Data Set: The QSAR studies were performed using three sefies3-diaryl propenonelerivatives reported in
literature [20]. The homogeneity of the biologicdsays (pl€= activity ranges from 4.909 to 5.818 uM) on
Plasmodium falciparum is one of the important atpata QSAR study, therefore the dataset was aeltefrom
same pharmacological testing protocol. It has beseggested that generated models should be tested on
sufficiently test set to establish a statisticatiganingful and reliable QSAR model; therefore, niecules were
randomly divided into a training set and a test@@hpounds in such a way that both sets cover tiinetsral
diversity, chemical prototypes and the completegeanf antimalarial activity (Table 1). The pharmagical
activity expressed in UM was converted into -log Kgand used as dependent variable in the QSAR study.

Table 1: General structure of the compounds of substituted 1,3-diaryl propenone derivatives and their biological activities (data set of 14

molecules)
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Molecular Modeling Study: Molecular modeling and kNN-MFA study was perfornmdthe software Molecular
Design Suite (MDS) 4.1.19092011 [21]. The seleatathset were aligned by template based method usosy
active molecule 14 as a reference molecule (1)sanatture (2) as a template shown in figure 1. alignment of
all the molecules on the template is shown in figliias a reference aligned molecule.

Figure 1: Template structure (1) and reference aligned Molecule structure (2)

Once the molecules are aligned, a molecular feeltbmputed on a grid of points in space aroundrblecule. This
field provides a description of how each molecuié tgnd to bind in the active site. Descriptordested were
steric, electrostatic and hydrophobic interactioergies of them computed at the lattice pointshefdrid using a
methyl probe as charge Hh. order to evaluate the QSAR model externallyadst was divided into training and
test set using sphere exclusion methods. Traingigssused to develop the QSAR model for which dgaal
activity data are known. Test set is used to chgltethe QSAR model developed based on the trasenhtp assess
the predictive effectiveness of the model whichasincluded in model generation. Sphere exclusigorithm was
used for creation of training and test sets. Sphrctusion algorithAf allows constructing training sets covering all
descriptor space areas occupied by representatinéspThe higher the dissimilarity level, the skaathe training
set is and the larger the test set is and viceavers

Model Building: Data generated by k nearest neighbor moleculad &elalysis (KNN-MFA) in conjunction with
stepwise (SW) forward-backward, simulated annegl8i) and genetic algorithm (GA) variable selectioathods
with pIC50 activity field as dependent variable atebcriptors as independent variable [23-25]. Déffié training
and test set of substituted 1,3-diaryl propendesvatives as antimalarial agent derivatives wamestructed using
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sphere exclusion with dissimilarity level 13. Traig and test set were selected and calculated Wmicostatistics

(table 2).

Table 2: Uni-Column Statisticsfor Model 1 for training and test set activity

Column Name

Average

Max

Min

Std Dev

Sum

Training se

5.2645

5.818:

4.909(

0.2634

63.173¢

Test set

5.1991

5.288

[15.1101

0.1259

10.3982

RESULTSAND DISCUSSION

The QSAR studies was performed at different didanity value, best model selected on the basistatfstical
predicted value, training and test set of substittit,3-diaryl propenongerivatives as antimalarial agent derivatives
were constructed using sphere exclusion (dissiityil&vel 13). Training and test set were seledtetiey follow
the Unicolumn statistics, i.e., maximum of the iedess than maximum of training set and minimutthe test set
is greater than of training set, which is prerei@ifor further QSAR analysis shown in table 2. Thest significant
model is + Model 1 showed (test set=01, 02 andti¥&) steric (S_584) and electrostatic (E_295) adtons play
important role in determining as antimalarial aityivThe most significant values of model 1 genedadre internal
predictivity 64.24% (g2 =0.64.24) and external jpcidty 61.57 % (pred_r2 = 0.6157).This result alsothat the
test is interpolative i.e., derived from the minxarange of training set. The mean and standardatiewi of the
training and test set provides insight to the retatlifference of mean and point density distribotof the two sets.
k-Nearest neighbor molecular field analysis (kKNNAJFwas applied using stepwise (SW), simulated alimga
(SA) and genetic algorithm (GA) approaches fordind) QSAR models. Results of models developed bykBIM
MFA, SA-KNN MFA and GA-KNN MFA using sphere exclosimethods. Significant QSAR model generated.

Figure2: Graphical fitness plot between actual and predicted activity values as antimalarial activity
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Table 3: Actual and predicted biological activity for Training set and test set

S. Actual Predicted Residue
No. SW-KNN | GA-KNN | SA-KNN | SW-KNN | GA-KNN | SA-KNN
MFA MFA MFA MFA MFA MFA
1 5.53:¢ 5.2736¢ 5.3477! 5.4289: 0.2593: 0.1852! 0.1040¢
2 5.60:2 5.7455: 5.7435¢ 5.4047¢ -0.1435: | -0.1415¢ 0.1972:
3 5.11 4.97742, 4.97742 5.56982 0.13258 0.13p58 5982
4 5.221 5.21775 5.2342b 5.43648 0.00325 -0.01325.215@8
5 5.041 5.37227 5.2342b 5.435%9 -0.33127 -0.19B25 .3949
6 5.083 5.23907 5.1442p 5.41278 -0.15607 -0.0612D.32978
7 5.81¢ 5.5461: 5.5437¢ 5.3322¢ 0.2718 0.2742: 0.4857:
8 5.28¢ 5.2904! 5.2177! 5.5093: -0.0024! 0.0702! | -0.2213¢
9 4,909 5.18999 5.1903B 5.22204 -0.28099 -0.281138.31304
10 5.167 5.23124 5.248 5.10181 -0.06425 -0.081 5094
11 5.145 5.23675 5.253b 5.14725 -0.09175 -0.1085.00225
12 5.222 5.2175 5.2342b 4.9091 0.0045 -0.01R25 20.31
13 5.337 5.18875 5.205p 5.134%5 0.14825 0.1815 2a=
14 5.09¢ 5.1095¢ 5.1095¢ 5.1695¢ -0.0145¢ | -0.0145¢ | -0.0745¢

Statistical measures used to correlate biologictiVity and molecular descriptors. Data fitnesst gl model is
shown in figure 2. Result of the observed and ptedi biological activity for the training and testmpounds for
the Model is shown in table 3. The plot of observedpredicted activity of training and test setsrhodel is shown
in figure 3. From the plot it can be seen that KMNA model is able to predict the activity of traigi set quite well
(all points are close to regression line) as welkaternal. Sphere exclusion (SE) algorithm andi@anselection
methods were used for constructing training antiges. kKNN-MFA methodology with stepwise (SW), siated
annealing (SA) and genetic algorithm (GA) was ukeduilding the QSAR models and alignment moleculth

descriptor shown in figure 4.

Model 1 for SW-kNN MFA

pICso= of =0.6457; Pred’s 0.6157; Ftest=88.6; ZScore=98; training =11 48401, 02 and 03)

Model 2 GA-KNN M FA

pICso= of =0.5278; Pred’= 0. 0.534; Ftest=81.6; ZScore=57; training =14t%8 (01, 02 and 03)

Modd 3 for SA-kNN MFA

pICso= of =0.6198; Pred’= 0.4581; Ftest=95.6; ZScore=48; training =11,48¢01, 02 and 03)

Figure 3: Training set (A) and Test set (B) biological activity is predicted graph
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The model 1 was considered to be best model iruatiah of predicted values. The steric (S_584)gme=d on the
phenyl ring indicates that the bulky group is neeeg for enhancing the activity. If at,RR,, R; position methyl
group and long chain is than there is change ifogical activity. Electrostatic (E-295) indicatdsat electron
withdrawing groups are required for enhancing ti@olical activity. At R functional group Cl, F another
electron withdrawing groups enhances the activitye KNNMFA contour plot provided further understangd of
the relationship between structural features ofssulted 1,3-diaryl propenongerivatives as antimalarial agent
derivatives and their activities which should belayable to design newer potential as as antinmallagent.

Figure 4: Showing 3D-Allignment of molecules and descriptor of model by wire frame model

CONCLUSION

Model developed evaluate biologically a series pnélags of 1,3-diaryl propenonéerivatives by modifying
systematically the molecule, in order to explore ®AR of these derivatives. In order to determime better
structural characteristics that were able to imprthe antimalarial activity and to investigate éffects of different
chemical modifications, an extensive SAR was exachipy varying the nature and the position of thHesStuents
both on the basic moiety.

The master grid obtained for the various KNN-MFAdals show that positive range in steric descripiodicates
bulky substituents group is preferred in R, and R. On the basis of the electrostatics near to ririg the electron
withdrawing group is required as Cl, F and COOHhwiteterocyclic ring. Steric and electrostatic pt&n
contributions to the developed model in this warkiseful in describing QSAR of substituted 1,3yligropenone
derivatives as antimalarial agent and can be eregléy design new derivatives with potent inhibitacyivity.
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