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ABSTRACT

The virtual screening carried out on the malarial inhibitors in search of generation of novel compound, till date no
proper medication available for prophylactic of dangerous disease malarial. So in the seek of novel compounds
three dimensional quantitative structure activity relationship analysis (3D-QSAR) performed using k nearest
neighbor molecular field analysis (kNN MFA) method on a twenty 2,4,6-trisubstituted triazines derivatives as
antimalarial agent by molecular design suite. The best model generated with 7.5 dissimilarity values with 2k and 2i
as test set the statistical parameters were g° and Predr? for stepwise (0.8229 and 0.674), genetic algorithm (0.699
and 0.7521) and stimulated annealing (0.7069 and 0.6901) respectively. In virtual screening analysis the steric
descriptor indicates that bulky groups were required for enhancing the activity at R position and on triazine ring,
while the electrostatic groups suggested for attaching the electron donating and withdrawing groups at R position
on triazine ring for enhancing the activity. Inhibition of the Tyr 108 leads to discontinue the metabolic process in
protein, finally the enzyme fatal. The Tyr 108 of glutathione transferase interacts with morpholino ring. Thus
structural requirement predicted by QSAR analysis and docking was used to design a noble compound.

Keywords: 3D-QSAR, KNN-MFA, Docking, antimalarial, 2,4,64tibstituted triazines derivatives

INTRODUCTION

Malaria is airborne endemic disease which is céysgarasite, spreads in tropical and subtropiagibres especially
responsible for death and illness in childrens iestimated that about half of the world’s heaftbpulation lives in
malaria widespread areas [1]. Malaria is dangerisisase spreads by protozoan of the géthasmodium, but in
humans, four species responsible werePadalciparum, vivax, malariae and ovale that are accountable for
devastating disease. The several drugs were alaitathe bazaar but till date no significant prglalstic treatment
of malaria. There were different problem relateé&ndancing malaria protozoa in living body like proper choice
of medication available, spreading of parasite faasin the host body and most familiar was multigdresistance.
The presented problem of multi-drug resistancexistiag antimalarials drugs has lead to a majougoon the
generation and optimization of new synthetic moi@ly There is very less data accessible on thergisdity of
reputed drug targets fdlasmodium growth are limited to a few individual genes thatve been tested in gene
disruption studies [3-11]. The rational and emecgenf multidrug resistance of the conventional raatarial
compounds has led to the need of the generatiomeof antimalarial drugs. Quantitative structureiatti
relationship (QSAR) methods docking are used widalythe design and development of new antimalarial
compounds [12-14]. QSAR attempts to correlate thecgiral/molecular properties in the form of déstors (steric
and electronic) with biological activities [15-19The virtual screening on 2,4,6-trisubstitutediri@s derivatives
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can be used to predict biological activity of compd and subsequently utilized in designing of namimalarial
molecules.
MATERIALS AND METHODS

2.1 QSAR Analysis

2.1.1 Dataset

In the present study a dataset of 20 moleculesdo6-2risubstituted triazinederivatives [20], has been taken from
the previous literature for QSAR studies reportethble 1. The reported ¢gvalues (UM), have been converted to
the plGo, for QSAR study. Sphere exclusion (SE) algorithetimd used for separation of dataset into traiaimg)
test set. Thus statistical analysis executed by RNBA methodology with stepwise (SW), simulated aaitey
(SA) and genetic algorithm (GA) was used for buitdthe QSAR models.

Table 1 General structure of the compounds of 2,4.Bisubstituted triazines derivatives and their bidogical activities (data set of 20

molecules)
Compound R ICs(UM)  pICs
1 NH; 64 4.1938
//\
2a —N N-Me 1 6
v
OO
2b —N N—-C 2 5.6989
\n__/
/—\
2c —N N 10 5
~_/
2d cl —NHSTY 1 6
>< \=N
2e N“ N N o] 2 5.6989
JPR —NH™N_ :
of RTN 1R —NH™N O 2 5.6989
—/
2 e Y
2h _HN’Q 2 5.6989
2i —NH——(CH,);—CHs 2 5.6989
2j —NH——(CH,);—CH; 10 5
2k _N(Csz)z 10 5
2l ——NH—C(CHy)3 50 4.301

oy 0 e
! OF

2n H 10 5
N)*N —N
)l\ /)\ X
20 R® N R N AL 10 5
2a-2s ~ N
2p —N O 10 5
_/
2q — > 50 4.301
2r - Q 50 4.301
2s —NH\_-OH 50 4.301
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2.1.2 Molecular Modeling Analysis:

The structures were sketch on VIifeMDS sketch medualftware. The energy minimization and moleculadeting
study was performed on selected dataset. The atighmvas required for better analysis and generatfothe
promising significant model. The selected datasetewaligned using template based method by sefectiost
active molecul€2a as a reference molecule (1) and structure (2)tasnalate shown in figure 1. The alignment of
all the molecules on the template is shown in #g(ras a reference aligned molecules. In the temflased
alignment method, benzene template structure wisedieand used as a basis for alignment of a setaécules.
Once the molecules are aligned, a molecular figldomputed on a grid of points in space aroundntbiecule.
Descriptors representing the steric, electrostatid hydrophobic interaction energies were calcdlatethe lattice
points of the grid via a methyl probe of charge Fhis field provides a description of how each nsale will be
inclined in the active site.

Figure 1 Template structure (1) and reference aliged structure (2) of malarial IV inhibitor

In order to evaluate the QSAR model externally enternally, data set was divided into training dest set using
sphere exclusion methods. Training set is useceteldp the QSAR model for which biological activilgta are
known [21]. The higher the dissimilarity level, thmaller the training set is and the larger thé gesis and vice
versa.

Test set is used to challenge the QSAR model dpedidased on the training set to assess the predict
effectiveness of the model which is not includedmidel generation. Different training and test skt2,4,6-
trisubstituted triazines derivatives were consedcusing sphere exclusion with dissimilarity leveb to 11.
Training and test set were selected and calculat@dolumn statistics. Unicolumn statistics suggestbat
maximum of training should more than test set &stl @f minimum should be more than training setuAigolumn
statistics adjusted with dataset further analysis performed.

The generation of statistical model depends on atkthhich is selected for analysis. Data generatekl bearest
neighbor molecular field analysis (kNN-MFA) in cangtion with stepwise (SW), forward-backward, siatat
annealing (SA) and genetic algorithm (GA) variabkdection methods with pIC50 activity field as degent
variable and descriptors as independent variabR2p]. The stepwise (SW) forward-backward, simulate
annealing (SA) and genetic algorithm (GA) methoilizetd for exploring the statistical parameters.eTéeveral
models are generated with contour plot by selectiffgrent training and test set, cross validatmorrelation
coefficient (d) and good predictivity (pred)rshows effective finding.

2.2 Docking analysis

The chemical structure were constructed on the dnemultra 8.0 and transformed to 3 dimensional) (S8ttucture
by chem 3D ultra 8.0 and energy minimization by M@Pand MM2 done. The 3D structures were saved ol .m
format for docking analysis. Docking binding enemyd binding site was detected by the molegro &ftware.
The pdb ofplasmodium falciparum downloaded from pdb site. Docking analysis congalein three steps, firstly
importing the pdb in the workspace of molegro Hfeparation of it performed as removal of water enale,
cofactor and ligand attached to protein. The seri@ea of protein developed and subsequently dmtect cavity
done. The five cavities were detected as defaulnglegro 5.0. Secondly the structures were impoitethe
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workspace of the molegro and preparation of strectreated. Finally the docking wizard analysigtsthto
generate the binding affinity data in the form ofding energy as dock score and binding interaddn

RESULTS AND DISCUSSION

3.1 QSAR interpretation

The virtual screening and correlation of biologiaativity profile with in the data set gives a hfot designing of
active compound which combat with existing maladiglease. The activity of the compound dividedlmnhasis of
inhibitory concentration oPlasmodium. The highly potent compounds 2g, 2d and 2g,8Q M) contain 1-amino-
cyclohexane, 3-(1H-imidazol-1-yl)-N-propan-1l-amim@d 4-methylpiperazine. Clue indicates that amima a
nitrogen containing ring increases the activitytted compounds. Slight decrease in activity achiemezbmpounds
2b, 2e, 2f, 2h and 2i (K= 1 pM) have 4-benzyl-piperazine, 1-morpholinoedrame, 1-morpholinopropanamine,
N-cycloheptanamine and butyl amine respectivelye Bupresence of aliphatic chain activity of moleadecreased
in comparison to parent analogues.

Moderate activity was found in compound 2c, 2j, 2k, 2n, 20 and 2p (k= 10 uM). The following compounds
hold the functional group at R as 4-phenylpiperazimctylamine, diethylamine, 1-benzylamine, 3-fluor
benzenamine, 5,6,7,8-tetrahydro-1,7-naphthyridimé morpholine respectively. Halogen and long alijghehain
reduces biological activity as compared to pareal@agues.

Least activity (IGo= 50 uM) of 2I, 2q, 2r and 2s have 2-methylpropaamine, 1-piperidine, 1-pyrrolidine and 1-
aminoethanol at R. The saturated compound reduwesdtivity of compounds. Poor activity was foundthw
compound 1 which have amino group on R. The agtiwitnovel compound can be enhancing by attachiatgph
aromatic ring with nitrogen containing ring.

The selected series consist of 20 compounds fdoqpeing the QSAR studies the dataset was divide ithe test
and the training set. Different training and testt a&f 2,4,6-trisubstituted triazines derivativesrevdeveloped using
sphere exclusion (dissimilarity level 7.5 to 11heTtraining and test set were selected, on thes ldidini-column

statistics, i.e., maximum of the test is less thrximum of training set and minimum of the testisagreater than
of training set, which is prerequisite for furth@BAR analysis shown in table 2.

Table 2 Uni-Column Statistics for Model 1 for training and test set activity.

Column Name Average Max Min Std Dev  Sum
Training set 5.1995 6.0000 4.1938 0.6344 93.5913
Test se 4.650¢ 5.0000  4.301( 0.494: 9.301(

The best model 1 showed that steric (S_402) andiretgatic (E_1072) interactions engage in recoeatole in
determining antimalarial activity. This analysisopide insight that the test is interpolative i@erived from the
minimum and maximum range of training set. The mach standard deviation of the training and telspeavides
insight to the relative difference of mean and pdensity distribution of the two sets. k-Nearesighbor molecular
field analysis (kNN-MFA) was applied using stepw{§V), simulated annealing (SA) and genetic alparni{GA)
approaches for building QSAR models. Results of elodeveloped by SW-kNN MFA, SA-KNN MFA and GA-
kNN MFA using sphere exclusion methods. Signific@®AR model generated is shown in table 3.

Table 3 Result of kKNN-MFA study using sphere exclusn selection method

Model DV Testset SW-KNN MFA GA-kNN MFA SA-kNN MFA

q2 Predr2 g2 Predr2 g2 Predr2
1 7L 2k 2i 0.822¢ 0.67¢ 0.69¢ 0.752: 0.706¢ 0.690:
2 8 2k, 2i, 2q 0.6554 0.6712 0.6801 0.4495 0.5908451B
3 10 29, 2k, 2i,2q 0.6103 0.4973 0.5136 0.4194 1916 0.6447
4 11 2p,2i,2k, 2,2 0.696: 0.762¢ 0.635¢ 0.430: 0.675. 0.710%
DV: Dissimilarity value

The uni-column statistical parameter where usefuktiitable selection of data set for systemic Q@&#Rlysis The
uni-column parameter as average, maximum, minimme standard deviation provides valuable suggestion
regarding the analysis of QSAR model generatiothdfmaximum of the training set more as compaodegt and
minimum of test set is more as compared to thaitrgiset then the dataset was accepted for conseanalysis. In
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analysis the standard deviation must be least termine the statistically consistent parameterse Thalue
generation after uni-column studies helps bettelestanding of structural requirement in the conmgou

The dissimilarity values range from 7.5 to 11 iefiges the statistical parameter. The different ingeleerated by
changing dissimilarity value on the basis of theke, dataset in term of training set and test Isetifated which

helps in development of best model. The best statianodel parameters were utilized to correl&ie biological

activity with the structural requirement. The besidel generated with 7.5 dissimilarity values withand 2i as test
set the statistical parameters wefeagd Predt for stepwise (0.8229 and 0.674), genetic algorii{699 and

0.7521) and stimulated annealing (0.7069 and 06901

The IG, of the compound ranges from 64 to 1 andspf@m 4.1938 (1) to 6 (2a, 2d, 2g) respectivelye Thost
active compound 2a, 2d and 2g presented good esgddamas similar biological activity, consist of #mgt
piperazine, l-amino-propyl-imidazole and 1l1-aminctoliexyl at R respectively. The stepwise (5.67463 t
4.47005), genetic algorithm (5.83722 to 4.60167) stimulated annealing (5.77571 to 4.19812) thelipted value
found were 5.67473, 5.83722 and 5.77571 for mosivteacompound (2h, 2e and 2p) with functional group
cycloheptyl amine, 1 amino ethyl morpholine and arpmoline at R respectively according to analyfisthe
analysis it was found that if the at R positioraelted with morpholine ring the activity of compouranain
maintain as the amino and other steric group adHedactivity increased. In stepwise, genetic atbari and
stimulated annealing minimum predicted activity &ésund with compound 2k, 2h and 2s as 4.4700®146.6 and
4.09812 which contains the diethylamine, cyclohieptyne and hydroxyl ethylamine at R position. Arsidy
suggested that if the straight chain or aliphdtig changed with aromatic nitrogen and oxygen dairtg ring the
biological activity definitely increased.

The residual value is the difference between theah@nd predicted Pic50 of the model. The differmethods as
stepwise (1.17174 to -0.09996), genetic algoritini3554 to -0.82785) and stimulated annealing ({®82o -
0.77571) generated the predicted value and residlaé for model 1. The residual value and predist@ue of the
model 1 presented on the table 4 gives an ideatabeuchanges in biological activity within the asét. In
stepwise, genetic algorithm and stimulated anngatesidual value maximum fluctuation found were71.24,
1.13554 and 0.82793 for compound 2g, 29, 2r astifuma group cyclohexylamine, cyclohexylamine and
butylamine at R position. The activity least chahde comparison to actual pIC50 for predicted plG&6re
compound 2h (0.02417), 2j (0.1469) and 2j (0.025&8h functional group cycloheptylamine, octylamiaad
octylamine at R position.

Table 4 Actual and predicted biological activity fo Training set and test set for model 1.

Compound Actual Predicted plCso Residual Predicted pICso Residual Predicted pICso Residual
ICsq  SW-KNN MFA  SW-KNN MFA  GA-KNN MFA  GA-KNN MFA SA-KNN MFA  SA-KNN MFA

1 4.1938 4.47574 -0.28194 5.02165 -0.82785 4.30566 -0.11186
2a 6 5.59946 0.40054 5.19579 0.80421 5.51997 031800
2b 5.698¢ 5.4247;. 0.2741¢ 5.2420: 0.4568 5.5987 0.1001:
2c 5 5.59945 -0.59945 4.68638 0.31362 5.60117 1080
2d 6 5.59944 0.40056 5.68881 0.31119 5.52388 021761
2e 5.6989 5.67472 0.02418 5.83722 -0.13832 5.59753 0.10137
2f 5.6989 5.42472 0.27418 5.83722 -0.13832 5.60043 0.09847
29 6 4.82826 1.17174 4.86446 1.13554 5.29173 077082
2h 5.6989 5.67473 0.02417 4.60167 1.09723 5.59773 .101@7
2i 5.6989 4.82826 0.87064 4.81874 0.88016 4.87097 .82703
2j 5 5.34947 -0.34947 4.8531 0.1469 4.97445 0.02555
2k 5 4.47005 0.52995 4.82763 0.17237 4.45062 05493
2| 4.301 4.65049 -0.34949 5.04558 -0.74458 4.3094 0.0084
2m 5 5.59946 -0.59946 5.54589 -0.54589 4.9689 0.031
2n 5 4.65051 0.34949 5.41762 -0.41762 5.77406 4087
20 5 4.65051 0.34949 4.68695 0.31305 4.6237 0.3763
2p 5 4.65051 0.34949 4.65681 0.34319 5.77571 075
2q 4.301 4.82826 -0.52726 4.82672 -0.52572 4.79665 -0.49565
2r 4.301 4.65049 -0.34949 5.02287 -0.72187 4.33112 -0.03012
2 4.30] 4.8252! -0.5242! 4.947¢ -0.646¢ 4.1981: 0.1028t

Statistical measures used are shown in table drtelate biological activity and molecular desarigt Data fitness
plot for model is shown in figure 2. Result of thieserved and predicted biological activity for trening and test
compounds for the Model is shown in table 4. Tra pf observed vs. predicted activity of traininglaest sets for
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model is shown in figure.3rom the plot it can be seen that k-MFA model is able to predict the activity
training set quite well (all points are close tgression line) as well as external.here exclusion (SE) algorith
and random selection methods were used for conistgutraining and test sets. k-MFA methodology with
stepwise (SW), simulated annealing (SA) genetic algorithm (GA) was used for building QSAR models and
alignment mtecule with descriptor shown in figure 4. The KNNRIFEontour plot figure 5) provided further
understanding of the relationship between struttig@aures of 2,4 -trisubstituted triazines derivatives and tt
activities which should be applicable to ign newer potential as antimalarial agent.
!m a5

Predicted

425 450 475 500 525 550 575 6.00 1

Actual et #Pedeted

H Training ® Test

Figure 2 Graphical fitness plot between actual andpredicted
activity values asantimalarial agents for training and test se

Figure 3 Training set (A) and Test set (B) biologial activity is
predicted graph

In contour maps the steric descripwere positiveS_1416 (30.0000 30.0000), S_659 (0.0477 0.5Cwhile the
electrostatic descriptor were nega E_919 (-0.14800.1236) for the significant modeln analysis the steric
descriptor indicates that bulky groups wrequiredfor enhancing the activity at R position on triaziring, while
theelectrostatic groups suggested for attac the electron donating groups at R position andiazihe ring

Statistical measures used are showtable 4to correlate biological activity and molecular d@stors. Data fithnes
plot for model is shown in figure. Result of the observed and predicted biologicéliy for the training and te:
compounds for the Model is showntable 4 The plot of observed vs. predicted activity @ining and test sets f
model is shown in figure.3rom the plot it can bseen that KNNVIFA model is able to predict the activity
training set quite well (all points are close tgression line) as well as external. Sphere exctuégk) algorithrr
and random selection methods were used for conistgutraining and test s kNN-MFA methodology with
stepwise (SW), simulated annealing (SA) genetic algorithm (GA) was used for building QSAR models and
alignment molecule with descriptor shown in figute The KNNMFA contour plotfigure 5) provided further
understandingf the relationship between structural feature @f¢-trisubstituted triazines derivatives and tt
activities which should be applicable to design eepotential as antimalarial age

Ol o2 Bl

Figure 4 3D alignments of molecules and descriptor of modby Figure 5 The KNN-MFA contour plots shows structural features of
wire frame model derivatives and their activities
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3.2 Docking interpretation

The docking study performed on pdb 3FRélasmodium falciparum. The protein glutathione transferase selected
for docking studies with 20 molecules. The dockstggies required the preparation of protein anchib&cule for
stability and minimization of error. After prepdmt of the protein surface area determines. Orcthated surface
area 5 cavities as default selected. The cavity fwaad with volume and surface. The volume and aafof
cavities were predicted assigning as cavity 1 @8@&nd 568.32), cavity 2 (70.656 and 267.52), ga&if51.2 and
207.36), cavity 4 (31.744 and 140.8) and cavity29.§9 and 112.64). The protein and molecule sulesgty
imported on the workspace to start the docking wliza generate the moldock score reported in thie ta. On the
basis of moldock score active molecule can be tedecThe maximum moldock score was found 114.47 for
compound 2p.

Table 5 The binding affinity in the form of moldock score, rerank score and H bond of significant congunds (2p, 2f, 2e, 2c and 2b)
presented

Code | Moldock Rerank H Bond
Score
2p -114.43 | -100.7¢ -6.9¢
2f -111.450 | -85.8¢ -8.61
2e -110.888 67.91 -8.06
2c -103.113 62.51 -10.1

2b -101.388 88.14 -6.83

[Lvs 1094

HI'Ei- 1 EF?A‘i

Gin 104(4)

r_;Q [Tr1088))

Figure 6. The docking binding affinity of 2p molecue presented as hydrogen bond interaction (1), hydphobic interaction (2), 3D
hydrogen bond interaction (3) and 3D hydrophobic iteraction (4) with enzyme glutathione transferase3FR6)

The hydrogen bond and the hydrophobic interactiomaecule 2p shown in the figure 6, helps in thieipretation
and analysis of structural requirement of desigrangovel compound. At R position of 2, 4, 6 triazinng as
morpholino group present which shows hydrogen botetaction affinity with the Lys 109, lle 106 afgr 108. In
morpholino nitrogen and oxy atoms present. Oxy atafmmorpholino ring creates hydrogen bond acceptor
interaction with amine of glutathione transferafbe hydrophobic interaction of Asp 105, lle 106sL109, His
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107, GIn 104, Tyr 108 was establish with morpholamal triazine ring. The Tyr 108 was responsibtestavival of

the enzyme glutathione transferase. Thus inhibitibthe Tyr 108 leads to discontinue the metabptizcess in
protein, finally the enzyme fatal. The Tyr 108 dfitgthione transferase interacts with morpholimagr{figure 6).

On the basis of the docking study got indicatioattthe morpholino ring was responsible for enhamdine

biological activity. The docking binding affinityrgsented as (figure 6) hydrogen bond interactignhidrophobic
interaction (2), 3D hydrogen bond interaction (3)da3D hydrophobic interaction with enzyme glutatt@o
transferase (3FR6).

3.3 Virtual screening

The purpose of this study was not only to developediel, contour and to predict the estimated dgtiof the

compounds, but also to employ the hypothesis dwmaliscreening to search novel scaffolds. In virs@eening
analysis, we have built 3D QSAR models on malg@hsite inhibitors, the best quantitative modidcted and by
the help of docking features the active site ofyemz and active functional group determined. Tliected features
of antimalarial could be used as fast and accuocateto assist discovery of novel inhibitors. Thesidjned scaffold
used in further drug discovery of malarial inhilbgtd-igure 7.

:- Bulky favoured

1 region
NN
) | .-. Lessbulky,
R N *v electron-withdrawing
iR N 3‘ R . and electro-donating
' ) +._.." favoured region

Bulky favoured
«_region

Enzyme binding favoured region
Figure 7 The designed scaffold used in drug discomeof malarial inhibitors through virtual screening

CONCLUSION

The dataset were divided into test and trainingtsedeveloped the significant model in sphere esiolu data
selection method. Model developed with statistipafameter to predict the structural requirement2gf,6-
trisubstituted triazineslerivatives as antimalarial agents reveals usefidrination about the structural features
requirement for the molecule. In analysis the stekescriptor indicates that bulky groups were rexglifor
enhancing the activity at R position and on triaziing, while the electrostatic groups suggestedftaching the
electron donating and withdrawing groups at R jpasiand on triazine ring. In further analysis itsMfaund that if
R position attached with morpholine ring the a¢$ivof compound remain maintain as the amino aneérosgeric
group added the activity increased. Inhibitiontod Tyr 108 leads to discontinue the metabolic ®de protein,
finally the enzyme fatal. The Tyr 108 of glutathéoimansferase interacts with morpholino ring. Gatihsis of steric
and electrostatic parameter the developed moddisnvork is useful in describing efficiency of QBAn selected
2,4,6-trisubstituted triazines derivatives as aatarial activity and further docking analysis cam émployed to
design new derivatives with potent inhibitory aittiv
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