GET THE APP

Pyridazinium-based ionic liquids as corrosion inhibitors for copper in phosphoric acid containing chloride: electrochemical, surface and quantum chemical comparatives studies | Abstract

Der Pharma Chemica
Journal for Medicinal Chemistry, Pharmaceutical Chemistry, Pharmaceutical Sciences and Computational Chemistry

ISSN: 0975-413X
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission Systemof respective journal.

Abstract

Pyridazinium-based ionic liquids as corrosion inhibitors for copper in phosphoric acid containing chloride: electrochemical, surface and quantum chemical comparatives studies

Author(s): A. Bousskri, R. Salghi, A. Anejjar, S. Jodeh, M. A. Quraishi, M. Larouj, H. Lgaz, M. Messali, S. Samhan and M. Zougagh

The acid corrosion inhibition and adsorption process of copper in 2M H3PO4 containing 0.3M of NaCl by an Ecofriendly ionic liquid newly synthesized [1-(2-(4-chlorophenyl)-2 oxoethyl)Pyridazinium Bromid CPEPB] and [1-(2- (4-nitrophenyl)-2-oxoethyl)Pyridazinium Bromide NPEPB]. Was studied by using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.The presence of these tow molecules led to decrease of the corrosion rate of Copper. At 10-3 M of NPEPB and CPEPB, the inhibition efficiencies increase with the inhibitor concentration to reach 88.94% and 87.5%, respectively. The adsorption of these compounds on Copper surface agrees Langmuir’s adsorption isotherm. To support the experimental results and To perform the corrosion study, Quantum chemical approach, using the density functional theory (DFT), was applied in order to get better understanding about the relationship between the inhibition efficiency and molecular structure of NPEPB and CPEPB. The parameters include the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital (HOMO), amount of electrons transferred and dipole moment. The results of the study suggest that NPEPB is a better corrosion inhibitor than CPEPB, which is in agreement with most experimental results obtained at different concentrations.


PDF

Select your language of interest to view the total content in your interested language

30+ Million Readerbase
SCImago Journal & Country Rank
Google Scholar citation report
Citations : 25868

Der Pharma Chemica received 25868 citations as per Google Scholar report

Der Pharma Chemica peer review process verified at publons
Der Pharma Chemica- Journals on pharmaceutical chemistry